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On some properties of commutator subsemigroups

J. DENES (Budapest)

Dedicated to Professor A. G. Kuros on the occasion of his sixtieth birthday

A. SuscHKEWITSCH was the first who introduced the graph representation
of a transformation of degree » i.e. a mapping of a set of n elements into itself
(see [8]). For a certain generalization see [9].

One can formulate A. Suschkewitsch’s graph representation as follows: to every
transformation of degree n there may correspond uniquely a directed graph having
n labelled vertices in such a way that the vertices are labelled by the natural numbers
1,2, ...,n and if the transformation maps i to j then the graph has a directed edge
from i to j (see [8]).

The same graph representation was rediscovered by O. ORg, F. HARARY and
others. (See e.g. [4], [6]).

Several properties of the graph representation have been investigated by the
author and some of the results were contained in three of the author’s papers
(see [1], [2], [3D).

It is easy to see that a directed graph corresponds to a transformation if and
only if each of its connected components contains a singele cyclically directed circuit
and directed rooted trees. Such graphs with n vertices will be called F(n) graphs.
A transformation corresponding to a component of an F(n) graph is conveniently
called generalized cycle. Deleting the trees (apart from their roots) from an F(n)
graph one can obtain a special F(k) graph (k =n), containing circuits only. The
transformation corresponding to the F(k) graph is a permutation: it is called the
main-permutation of the original transformation.

If o denotes an arbitrary transformation of degree n, then the quasiinverse
will be defined so that the quasiinverse of « is its power z* with the least exponent s
whose main permutation is the inverse of the main permutation of z. Obviously
if # is a permutation its quasiinverse is equal to its inverse. Therefore the notation
(2~ ") of the quasiinverse of o will not be troublesome.

For an arbitrary abstract semigroup S of order n there exists a subsemigroup
S’ of the symmetric semigroup of degree n+ 1 such that § and S’ are isomorphic.
If the representation is given by the correspondence

[ a 4z ... 4y Gyy,
a; <
al a,- azai Ry aua‘ a"

where a- €S, i=1,2,...,n it is called a regular representation. By means of the
regular representation one can define the quasiinverse of an arbitrary element
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of an abstract semigroup in a similar way as it would be for a transformation.
Let us consider the abstract semigroup S and its regular representation T if 2€ T
and a€ S then a<-a implies o~ '<+a~ ' and the commutator subsemigroup of S
will be defined as the subsemigroup which is generated by the commutators aba='b~"
where a, b€ S. If A, denotes the alternating group of degree n, S, denotes the sym-
metric group of degree n, and the symmetric semigroup of degree n i.e. the semi-
group of all transformations of degree n will be denoted by F,,, then for the commutator
subsemigroup K, of F, the equality

K,=(F\S,)UA,

holds, where \ denotes the set-theoretical difference. The proof which we omit
here has been published in [2].

Since K, plays a similar role in F, as 4, in S,, K, will be called alternating
semigroup of degree n.

It is almost trivial, that «K,«~' =K, (z€ F,) holds, i.e. K, is a normal subsemi-
group of F,. Further K, is a maximal normal subsemigroup, since {K,, a} = F, if
a4 K, holds.

When a group coincides with its commutator subgroup it is said to be a perfect
group. It is well-known that A4, is perfect. A semigroup will be called perfect if it
coincides with its commutator subsemigroup. To exhibit the strong analogy between
A, and K, we shall prove that K, is perfect.

Since A, is perfect and all the transformations of the form
[1 2...i—1 i i+l..n

I 2.:8=1 J id+l.an
formations) are idempotent elements and so commutators, there remains to
prove that 4, and the set 7, of all singular transformations generate K, i.e.

) i#j,i,j=1,2,...,n (they are called singular trans-

K,={T,, 4}

holds. It is obvious, that an arbitrary element of K, whose main permutation is
even can be represented as the product of the elements of 4, and T,

The proof will be completed when it is pointed out that for any « € K, whose
main permutation is odd «€{T7,, 4,} holds. This is true since if k is odd then the
permutation ¢g=(1 2 ... k) (k=n)is contained in 4, and the singular transformation

e [: ; i :I :‘] is an element of 7,. Obviously ¢o is a transformation whose

} 2w k~1k

z 3- ) 1
can be easily extended to an arbitrary transformation (which is not a permutation)
and whose main permutation is odd.

N. ITo [5] and O. ORE [8] proved: if n =35 all the elements of A4, are commutators.
The author has the conjecture, that a similar theorem holds for the alternating
semigroups i.e. all the elements of K, (#=35) are commutators.

The author hereby wishes to express his thanks to Prof. B. N. SCHEIN who kindly
called his attention to [9]. The author is indebted to Prof. §. ScuwaRz for making
possible to have a copy of A. Suschkewitsch’s book.

main permutation is odd, since QO‘=( ] By iteration the proof
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