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Linear and quadratic predictability for homogeneous
bilinear time series of Hermite degree two

By J. M�ATH (Debrecen)

Abstract. The linear and quadratic predictors are considered for bilinear realiz-
able Hermite degree-2 processes. We give a sufficient condition for the equivalence of
the two predictors based on the bispectrum of the noise of the best linear predictor.
This gives an example, where the two predictors are equivalent but the process is not
Gaussian.

1. Introduction

It is a well known fact that the best least squares predictor with
respect to the past of stochastic process is the conditional expectation. A
method has been given by Masani and Wiener (1959) for finding the best
predictor for stationary processes. It has been shown that under certain
circumstances the Hilbert space spanned by all the polynomials of the past
is the same as the Hilbert space generated by the random variables with
second moments, measurable with respect to the σ- algebra generated by
the past.

In this paper we are considering cases when the linear predictor is
as good as the linear and quadratic ones together and the process is not
necessarily Gaussian. The assumption of the best linear predictability is
concerned with the bispectrum of the innovation series originating from
the best linear predictor. We focus on bilinear realizable Hermite degree-
2 processes with separable kernel. That is an example of the situation
when although the process is non-Gaussian, the linear predictor is the
best among all possible nonlinear ones. We are giving a necessary and
sufficient condition of the linear predictability in a simplest but nontrivial
case.
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2. Linear and quadratic predictor

Suppose there is given a zero mean time series Yt stationary up to the
third order with finite fourth moments.

The construction of the linear predictor ŶL(t + 1) =
∑∞

k=0 akYt−k is
well known (see Priestley (1981)), and based on the spectrum SY of the
process. One needs only the Szegő assumption, i.e.,

(1)
∫ 1

0

log SY (z)dλ > −∞

to be fulfilled. Let
et = Yt − ŶL(t),

be the innovation process. Note that under the assumption (1), Yt has a
moving average representation

Yt =
∞∑

k=0

dket−k.

The spectrum SY is denoted by

SY (z) =
∞∑

k=−∞
cY (k)z−k,

where z = ei2πλ, λ ∈ [0, 1], cY (k) = EY0Yk.
The quadratic predictor of one lag is of the form

(2) ŶQ(t + 1) =
∞∑

k=0

akYt−k +
∞∑

j,k=0

ajkYt−jYt−k,

and the coefficients ak, aj,k are chosen such that the mean square error

E
∣∣∣Yt+1 − ŶQ(t + 1)

∣∣∣
2

,

is minimum.
It is well known that if the process Yt is Gaussian then the conditional

expectation of Yt+1 with respect to Yt, Yt−1, Yt−2, . . . is linear, i.e., ŶL(t) is
the best predictor. However if the process Yt is non-Gaussian then it can
happen that the variance of the error process according to the quadratic
predictor, i.e., Yt+1 − ŶQ(t + 1) is smaller than the variance of the linear
innovation process et. Recently it was shown by Terdik and Subba Rao
(1989) that the variance of the best linear predictor of a bilinear process
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driven by Gaussian white noise ut is greater than the variance of the noise
process ut.

Our question is whether the contribution of the quadratic term in (2)
is significant or not, i.e., whether the linear predictor ŶL(t+1) is the same
(in the mean square sense) as the quadratic one ŶQ(t + 1).

The main tool we base our analysis on is the bispectrum of the pro-
cess Yt

BY (z1, z2) =
∞∑

k,j=−∞
cY Y (k, j)z−k

1 z−j
2 ,

where z1 = ei2πλ1 , z2 = ei2πλ2 , λ1, λ2 ∈ [0, 1], and cY Y (k, j) = EY0YkYj .
BY exists for all λ1, λ2 ∈ [0, 1] if

∞∑

k,l=−∞
|cY Y (k, l)| < ∞.

The following symmetry properties are fulfilled for the third order mo-
ments cY Y

(3)
cY Y (k, l) = cY Y (l, k) = cY Y (−k, l − k)

= cY Y (l − k,−k) = cY Y (−l, k − l) = cY Y (k − l,−l).

From the definition of BY and from (3) one can prove the following prop-
erties

BY (z1, z2) = BY (z−1
1 , z−1

2 ),

BY (z1, z2) = BY (z2, z1) = BY (z1, z
−1
1 z−1

2 )

= BY (z−1
1 z−1

2 , z1) = BY (z2, z
−1
1 z−1

2 ) = BY (z−1
1 z−1

2 , z2).

Let L be the backshifting operator, i.e., LYt = Yt−1 and let P and Q be two
polynomials with roots outside of the unit circle. The operator P (L)/Q(L)
defines a linear filter on Yt. It is known that the spectrum of the process
Ỹt = [P (L)/Q(L)Yt] is given by

SỸ (z) =
∣∣∣∣
P (z)
Q(z)

∣∣∣∣
2

SY (z),

moreover the bispectrum is

BỸ (z1, z2) =
P (z1)P (z2)P (z−1

1 z−1
2 )

Q(z1)Q(z2)Q(z−1
1 z−1

2 )
BY (z1, z2).
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We use Masani and Wiener’s (1959) definition of the spectrum of a
distribution, which is often used in the measure theory.

Now we are in the position to prove the following

Theorem 1. Let the time series Yt be stationary in third order with

spectral density SY . Moreover suppose that the fourth order moments of Yt

exist, and let SY fulfil the Szegő condition (1) and let all finite-dimensional

distributions of Yt have positive spectrum. Then the necessary and suffi-
cient condition for the equivalence of the linear ŶL(t) and the quadratic

ŶQ(t) predictor is that the bispectrum Be(z1, z2) of the innovation process

et has the form

(4) Be(z1, z2) = f(z1) + f(z2) + f(z−1
1 z−1

2 ),

where

f(z) =
∞∑

k=0

ckzk,

and

z = ei2πλ, z1 = ei2πλ1 , z2 = ei2πλ2 .

The proof is given in Terdik and Máth (1993b). Here we note that
the assumption (4) is automatically fulfilled when the bispectrum of the
process Yt is zero for all frequencies because the bispectrum of the linearly
filtered process et is given as a product of the bispectrum of the process Yt

and the filter. This implies that the bispectrum of the innovation process
et is also zero. Therefore it may happen that although the linearity test
fails, the best predictor is linear.

3. Bilinear realizable processes with Hermite degree two

The so called bilinear realizable model is given in the following way

(5)
Xt = AXt−1 + DXt−1εt−1 + bεt + f,

Yt = c′Xt.

We shall consider a simplified case of this model, the so called homo-
geneous bilinear model with Hermite degree 2.
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In this case the process Yt can be given by the following state space
equations

(6)

P1∑

k=0

a
(1)
k X

(1)
t−k = εt,

P2∑

k=0

a
(2)
k X

(2)
t−k =

R,S∑
m=1,n=0

cm,m+nX
(1)
t−m−nεt−m + const.,

Yt = X
(2)
t .

The Wiener-Ito integral representation of the stationary solution of
this model is

(7) t =
∫ 1

0

∫ 1

0

ei2π(ω1+ω2)t
γ(z1, z1z2)

α22(z1z2)α21(z1)
,W (dω1, dω2),

where W denotes the stochastic spectral measure with respect to the
Gaussian white noise series εt. The polynomials α21(z), α22(z) and γ(z, v)
are given by

α21(z) =
P1∑

k=0

a
(1)
k z−k; a

(1)
0 = 1,

α22(z) =
P2∑

k=0

a
(2)
k z−k; a

(2)
0 = 1,

γ(z, v) =
R,S∑

m=1,n=0

cm,m+nz−nv−m,

γ0(v) =
R∑

m=1

cm,mv−m.

Let us denote the roots of α21 by α1, . . . , αP1 and the roots of α22 by
β1, . . . , βP2 These roots are supposed to be inside the unit circle.

The process Yt is called separable if the polynomial γ is the product
of two polynomials of a single variable, i.e.,

γ(z, v) = γ0(v)γ1(z).
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The spectrum and the bispectrum for bilinear realizable processes
with Hermite degree-2 are explicitly given (see Terdik and Meaux
(1991)), i.e.,

(8) S(z1) = σ4

∣∣∣∣
γ0(z1)
α22(z1)

∣∣∣∣
2

+
σ4

|α22(z1)|2
∫ 1

0

∣∣∣∣
γ(z, z1)
α21(z)

∣∣∣∣
2

dλ

and

(9) B(z1, z2) = ψ(z1, z2, z
−1
1 z−1

2 )

where

(10)

ψ(z1, z2, z3) =
6σ6

α22(z1)α22(z2)α22(z3)

[
γ0(z1)γ0(z2)γ0(z3)

3

+ sym

(∫ 1

0

γ(z−1, z1)γ(z−1z−1
1 , z2)γ(z, z3)

|α21(z)|2 α21(z−1z−1
1 )

dλ

)]
.

Theorem 2. If the homogeneous bilinear realizable Hermite degree-2
process (6) is separable and the roots of γ0 are inside the unit circle, then
the best linear predictor is the best quadratic one as well.

Proof. In this case the spectrum and the bispectrum have the fol-
lowing form

(11)
SY (z1) = σ4

∣∣∣∣
γ0(z1)
α22(z1)

∣∣∣∣
2
[
1 +

∫ 1

0

∣∣∣∣
γ1(z)
α21(z)

∣∣∣∣
2

dλ

]
= σ2

e

∣∣∣∣
γ0(z1)
α22(z1)

∣∣∣∣
2

,

B(z1, z2) = ψ(z1, z2, z
−1
1 z−1

2 ),

with

(12)

ψ(z1, z2, z3) =
2σ6γ0(z1)γ0(z2)γ0(z3)
α22(z1)α22(z2)α22(z3)

×
[
1 + sym

(∫ 1

0

γ1(z−1)γ1(z−1z−1
1 )γ1(z)

|α21(z)|2 α21(z−1z
−1)
1

dλ

)]
,

where σ2
e is the variance of the residual series of the best linear predictor.

Assuming that the roots of γ0 are inside the unit circle the residual series
has the form

et =
α22(L)
γ0(L)

Yt,
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where L is the backward shift operator and the bispectrum of the residual
series is also simple, morover

ψ(z1, z2) = 2σ6(f(z1) + f(z2) + f(z−1
1 z−1

2 )),

where

f(z1) = 1/3 +
∫ 1

0

|γ1(z)|2 γ1(z−1z−1
1 )

|α21(z)|2 α21(z−1z−1
1 )

dλ.

As ψ(z1, z2) satisfies the necessary and sufficient condition of Theorem 1,
the proof is completed.

Now, we assume that the best linear and the best quadratic predictor
are the same and we try to find a necessary condition.

From (8) it is easy to infer that the error of the best linear predictor
has the form

(13) et =
α22(L)
h(L)

Yt,

and the degree of h is just S.
Using (13) we can prove the following

Lemma 1. If the best linear and quadratic predictor are the same
then

h(z1)h(z2)h(z−1
1 z−1

2 )
α22(z1)α22(z2)α22(z−1

1 z−1
2 )

will be a divisor of the bispectrum of Yt.

Let

(14) B1(z1, z2) = α22(z1)α22(z2)α22(z−1
1 z−1

2 )B(z1, z2).

We assume that α1, . . . , αP1, are different. So we can write

I(z1, z2, z3) =
∫ 1

0

γ(z−1, z1)γ(z−1z−1
1 , z2)γ(z, z3)

|α21(z)|2 α21(z−1z−1
1 )

dλ(15)

=
P1∑

k=1

γ(α−1
k , z1)γ(α−1

k z−1
1 , z2)γ(αk, z3)

Akα21(α−1
k z−1

1 )
,(16)

with some constants Ak. As

(17) B1(z1, z2) = 6σ6

[
γ0(z1)γ0(z2)γ0(z3)

3
+ sym I(z1, z2, z

−1
1 z−1

2 )
]
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the poles of B1 are

(18) z1 = α−1
k α−1

j , z2 = α−1
k α−1

j , z−1
1 z−1

2 = α−1
k α−1

j , k, j = 1, . . . P1

Using (16) we have

(19)

lim
z1→α−2

k

B1((z1, z2, z
−1
1 z−1

2 )(1− α2
kz1)

=
γ(α−1

k , α−2
k )γ(αk, z2)γ(αk, α2

kz−1
2 )

A1
k

.

From the Lemma and (19) we get

(20) γ(α−1
k , α−2

k )γ(αk, ri)γ(αk, α2
kr−1

i ) = 0.

where ri, i=1, . . . S are the roots of h. Let us assume that γ(α−1
k , α−2

k ) 6=0.
Then together with the consequence of the Lemma we have the necessary
conditions

B(ri, · ) = B( · , ri) = 0,(21)

γ(αk, ri)γ(αk, α2
kr−1

i ) = 0, k = 1, . . . P1, i = 1, . . . S.(22)

Moreover using the notation

γ(z, v) =
S∑

n=0

γn(v)z−n,

where

γn(v) =
R∑

m=1

cm,m+nv−m,

we can say that if

(23) γ(αkj , ri) = 0, j = 1, . . . , S + 1,

holds then ri is the root of γn, n = 0, . . . S, and in this case

(24) γ(z, v) = (1− riv
−1)

S∑
n=0

γ
′
n(v)z−n.

If (23) holds for all the roots of h and these roots are different that means
γ is separable.
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4. An example

To give the general form of the matrices according to (5) is not easy
so we shall do it in a particular case which will be considered later, parallel
with (5). The particular model is the following

X
(1)
t + a

(1)
1 X

(1)
t−1 + a

(1)
2 X

(1)
t−2 = εt,

X
(2)
t + a

(2)
1 X

(2)
t−1 + a

(2)
2 X

(2)
t−2 = X

(1)
t−1εt−1 + g1X

(1)
t−2εt−1 + cX

(1)
t−2εt−2

+ cg2X
(1)
t−3εt−2 − σ2(1 + c2),(25)

Yt = X
(2)
t .

Here P1 = 2, P2 = 2, R = 2, S = 1,

α21(z) = (1− α1z
−1)(1− α2z

−1),

α22(z) = (1− β1z
−1)(1− β2z

−1),

γ(z, v) = v−1(1 + g1z
−1 + cv−1 + cg2z

−1v−1),

γ0(v) = v−1(1 + cv−1).

In the case of separability g1 = g2. From S = 1 it follows that h can be
written as

(26) h(z) = K(1− rz−1).

Using the model (5) and writing

C1 =
(

1 0 1 0
0 1 0 1

)
,

A1 = diag(α1, α1, α2, α2),

B1 =
1

(α1 − α2)




α1 1 0 0
0 0 α1 1
−α2 −1 0 0

0 0 −α2 −1







1
g1

c
cg2


 ,

C2 = (1, 1),

A2 = diag(β1, β2),

B2 =
1

β1 − β2

(
β1 1

−β2 −1

)
,
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the matrixes according to (5) are the following

A =
(

A1 0
0 A2

)
, D =

(
0 0

B2C1 0

)
,

b =
(

B1

0

)
, c = (0, C2).

Particularly, from (25) (21) and (22) we have the following simple
formulae

B(r, ·) = B(·, r) = 0,(27)

γ(α1, r)γ(α1, α
2
1r
−1) = 0,(28)

γ(α2, r)γ(α2, α
2
2r
−1) = 0.(29)

Let us consider the value r in this particular case. Using (8) we have

SY (z1) = H1z
−1
1 + H0 + H1z1,

where

H0 = σ4
[
1 + c2 + E1(1 + c2 + g2

1 + c2g2
2) + 2E2(g1 + c2g2)

]
,

H1 = σ4 [c + E1(c + cg1g2) + E2c(g1 + g2)] ,

and

E1 =
1

(1− α1α2)(α1 − α2)

[
α1

(1− α2
1)
− α2

(1− α2
2)

]
,

E2 =
1

(1− α1α2)(α1 − α2)

[
α2

1

(1− α2
1)
− α2

2

(1− α2
2)

]
,

which gives

r =
−H0

H1
±

√
H2

0
H2

1
− 4

2
.

We must choose the solution which is inside the unit circle.
It is more difficult to calculate the bispektrum. Let

A1 = 1 + cz−1
1 , A2 = 1 + cz−1

2 , A3 = 1 + cz1z2,

B1 = g1 + cg2z
−1
1 , B2 = z1(g1 + cg2z

−1
2 ), B3 = g1 + cg2z1z2.
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With the notations

C−1 = A1A2B3

C0 = A1A2A3 + A1B2B3 + B1A2B3

C1 = A1B2A3 + B1A2A3 + B1B2B3

C2 = B1B2A3

IN−1 =
∫ 1

0

z−1

|α21(z)|2α21(z−1z−1
1 )

dλ

=
(α1 + α2)(1 + z1 − α2

1z1 − α22z1)
(1− α2

1)(1− α2
1z1)(1− α2

2)(1− α2
2z1)(1− α1α2)(1− α1α2z1)

,

INk =
∫ 1

0

zk

|α21(z)|2α21(z−1z−1
1 )

dλ

=
1

(α1 − α2)(1− α1α2)(1− α1α2z1)

×
[

αk+1
1

(1− α2
1)(1− α2

1z1)
− αk+1

2

(1− α2
2)(1− α2

2z1)

]
, k > 0,

we get
ψ(z1, z2) = C−1IN−1 + C0IN0 + C1IN1 + C2IN2.

The bispectrum is the following:

B(z1, z2) = (1 + cz1)(1 + cz2)(1 + cz−1
1 z−1

2 ) + sym ψ(z1, z2),

where

sym ψ(z1, z2) = (ψ(z1, z2) + ψ(z1, z
−1
1 z−1

2 ) + ψ(z2, z
−
1 1z−1

2 )

ψ(z2, z1) + ψ(z−1
1 z−1

2 , z1) + ψ(z−1 1z−1
2 , z2))/6.

To find the explicit solutions of (27), (28) and (29) is too difficult.
Therefore we solved them numerically on a rectangle of the parameter
space. The parameters are α1, α2, c, g1, g2 and the rectangle is (−1, 1) ×
(−1, 1)× (−1, 1)× (−2, 2)× (−2, 2). On this rectangle we found separable
solutions. This suggests that in this particular case the separability is not
only sufficient but also a necessary condition for the equality of the two
predictors.
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