On the iteration of the divisor-function

By I. KATAI (Budapest)

1. Let d(n) denote the number of divisors of n, and let

(1. 1) d(n)=d,_,(d(n)), pP=2 3 vl d,(n)=d(n).
Let further
(1.2) D.(x) = ; d,(n).

It is well-known, that
D,(x) = (14+o())xlogx, as x-—es.

R. BELLMAN and H. SHAPIRO [1] called the attention to the investigation of D,(x)
for r=2. It was conjectured by them, that

(1.3) D(x) = ¢(l1+0o(l))xlog, x as x-—=e
for every r =1, where log, x denotes the r-fold iterated logarithmus of x, i.e.
(1.4) log, x = log(log,., x), log, x = log x; Pl Bt

It was remarked in a footnote that P. ERDOs proved the relation (1. 3) for r=2.
The aim of this paper is to prove the relation (1. 3) for r=3.
The proof of (1. 3) seems to be very difficult for r =4.
Let

(1.5) B,(x) = 3 d,(p—1),

p=x

where in the sum p runs over the prime numbers.
We shall prove that

(1.6) D,(x) = ¢ (1+0(1) {5~ log, x

in the case r=2.

We remark that the validity of (1. 6) for =1 (which is a more difficult problem)
was proved by Yu. V. LINNIK [2]).

It seems to be difficult to verify the relation (1. 6) for r = 3. We formulate now
our assertions.
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Theorem 1.
(1.7) D;,(x) = (1+o(1))e, xlog, x,
(1. 8) D,(x) = (1+0(1)c, ng. log, x,

as x tends to infinity, where c,, c, denote suitable positive constants.
Theorem 2.

(I 9) Dy(x) = (1+o0(1))c; x log, x

as x tends to infinity, where c; denotes a suitable positive constant.*

For the proof of our assertions we need a theorem due to ERDOS [3] which we
state as

Lemma 1. Denote P(x) the number of square-free integers = x having exactly
k prime factors. Then

6 R | k—1
e Pu(8) = (1+00) 73 for = Gy

uniformly for every k in the interval J(c) defined by
(1. 11) log, x — ¢ (log; x)'/2 =k =log, x +¢ (log, x)'/2,
where ¢ is an arbitrary constant.

Using contour-integration and a theorem of Esseen we could improve this
lemma (for this see Kubilius's book [4], Ch. 9.).

This lemma suggests me the following theorem concerning the asymptotic
behavior of the iteration of the indicator function of the square-free numbers.

Let p,(n) be an arithmetical function defined by
I, if » is square-free, or 1,
0 otherwise.

py(n)= {

Let U(n) denote as usual the number of different prime divisors of n, i.e.
let U(n)=r for n=pi'... pir. Let further

pa(n)=p I(U("))# 1(n),
Un)= U(Uk— 1(")): U (n)=U(n),
ti(n) =ﬂ1(Uk— M)ty (Ui—o(m)).... 1 (1) = py (U (M- 1 (n); k=3, 4, ...
In the case y,(n) =1 we call n a k-fold square-free number. We call a natural number
n total-square free, if it is k-fold square-free for every k satisfying Uy(n)=1. Let
T (n) denote the indicator of the set of total-square-free numbers, and let
Ml(x)= qul(n)i l__‘ 152";

nsx

MO @) = 3 4" ().

n=x

* P. Erd6s and I proved, that Dy(x)~c,xlog,x
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From Lemma 1 we can deduce very simply that

I
(1.12) M (x) = (1+0(1)) [T—g]x (x—+==)

in the case /=2,

It seems probable, that (1. 12) holds for every /, however we are unable to
prove this for /=3.

Let k£ (x) be an integer valued function defined on the interval e = x < == as follows:

1=log, x<e, k =k(x).

Perhaps the following relation holds:

M7™(x) k(x), 6
Iog % — = (l +0(1))—2"'ng ﬁf'
In the following ¢, ¢;, c;, ... denote positive constants, not the same at every

places.

2. The proof of Theorem 1.
Let 2 denote the set of those natural numbers n, which have every prime divisors
at least on the second power, and let

(2.1) S(x)= J 1.

n=x
nedl
From the Perron-formula we have

wrm Ly [ o}
(+e)
whence applying the contour-integral-technique we can deduce the following
Lemma 2.
2.2 9(x)=cx1?2 + O(x?),

where 3 <% is a suitable positive constant. Every natural number n can be represented
uniquely in the form

(2.3) n=Km; KeU, (m, K)=1, u(m)=0.
Let

2.4) d(K)=k:

Q2. 5) k=2Pk,,

where k, is an odd integer. Then we have

(2.6) d(d(m) = d [;‘,] (B+1+UGm) = d(k)+d(k,) UGm).
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Let us now introduce the following notations.

2.7) T K) = 3 lu(m)| UGm),
(m, K)=1
(2.8) Zy,K)= 2 |u(m)|.
(m,.'%il

The following inequalities are evident.

(2.9) Z(y, K)<y,
(2. 10) T(y, K)=y log, y.
Lemma 3.
(2. 11) Z(y, K) = Agy + O(Ky''?),
(2. 12) T(y, K) = Agylog, y+ O(y log; y),
where
@(K) ]“
1——| .
A= (2K Jx]
PrOOF. Using that
1= -9%1z+0(1c)
nK)=1
ns=z
and
u@ 1 [ | ]“ _
BN o e i 1/2
2 5 ol l-p touT
(3,K)=1
we have

z0nky= Zw0) 3 1= 3 (6){” o8 Lo} = Aey+0 Ky

umy/d
(6 K}= (u,K)=1 (J K) l

and hence it follows (2. 11).
For the proof of (2.12) let us put

T, K)= 2 2 lswl= 2 2 |p@| =
P=y nmp=y p=y (n,pK)=1
(pK) l(HM 1 (p,K)=1 n=y/p psy
295'?1“ Z T
From (2.9),
2=y,

Now using (2. 11), we have

I, =Agy 2 P ][1———2] + O(Ky®%).

P“'?

e
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Further the sum on the right hand side equals to

1 1
—+0() = lo - — 4+ 0(1).
pg'P M e p-%‘l’ M

(p.K)=1 p/K

Now we shall prove, that
1
Z P =log; K

|K
and hence (2. 12) follows. i

It is known that
a(n)=nlog, n,

where a(n) denotes the sum of the divisors of n. Hence we obtain that

Zl «log”[l+ ] < log — s )-s:log_;

riK P plK
Lemma 4. For y=1
(2.13) Z'f{(k_llﬁzy-uzﬂ
Ksy K
Keu

holds where ¢=0 is an ¢=0 arbitrary constant.
PrOOF. Using the inequality dd(n) <d(n)<n" we have
2 d(d(K)) < 3QM)M*® < M1/2+e,

Ms=Ks2M
Hence
iy s =y
e A dk,) = e = 1/24e o -UZH_
K‘;; K v—ZU 2"}’ 2')2(%"*‘]! ( l) v;'o 2vy( y) ¥

The proof of (1. 7) is straightforward. From (2. 3) it follows, that
D,(x) = Zd(k)z[—;_, K]+ Zd(kl)T[%,K] = I3+ Z,.
Ken Keu

Firstly we have evidently, that
- d(k)

Keu
Let now y be any number in the interval 1=y =x, and let
Zy= 2““2 =Zs+2¢-

K=y K->y

Using (2. 10) and Lemma 4 we have
k)

Ts < xlog, x Z— ~ < xlog, x-y-12+s & x,
K>y
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if
(2. 14) y=log x.
Applying now (2. 12) we obtain
Z, = dgxlogyx > 2% | o(xlog, x) = ¢,x1 O(x1
s = Agxlog, x 2, —p—+0(xlogs ) = ¢, xlog, x+ O(xlog, x),
Kiy
where
d(k
¢, = Ag Z'__(_L).

Kcu K

Hence the relation (1. 7) follows immediately.
For the proof of (1. 8) we need the following Turdn type inequality

Lemma 5.

p—1 = x
(2.15) 2 [U[T] —log, x] < TS log, x-log; x,

p=1(mod Q)
pP=x

uniformly for Q = (log x)'°.

For the proof see e.g. H. HALBERSTAM [5] (p. 24). Using the new result of Bombieri
concerning the distribution of prime numbers in arithmetical progressions we could
give a better estimation for (2. 15).

Using the notations (2. 3)—(2. 6) we have

D, (x) =x§; d(k)p_ gmlﬂ(m)l +x§xd(k‘)(.. g U(m)|u(m)| = Z;+ Zs.
P=x p—'l=}}u
(K,m)=1

Using Lemma 4 and the well known Brun—Titchmarsh inequality stating that

X

for K<x'2, we have

5 x d(k) g d(k) W

e i(Té; ki @(K) 7 anzkex K log—x.
Let us now choose y=(log x)'°, say, and let

lg = 2+ Z = 29+2p.

K=y K>y
By Lemma 4 and the inequality
2 U(m) =< xlog, x
msx

we obtain
d

Ziox Zd(k,) 2> U(m) < xlog, x P fg)«xﬂogzx.
K=y mi-{ K=y
K
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Summarizing our results we have

D,(x) = zg+o[

logx )’
Let now
iy = logzxKZ dky) 2 |u(m)+Z,,=1log,xZ;+Z;,,
<y

p—1=Km
(K,m)=1

m‘éi
K

Zyy= Kgf;d(kl) Z (U(m)_logz x) lu(m)|.

p—1=Km
(K, m)-

where

még

Using Lemma 5 and the Schwarz-inequality we have

b R 2 dk)n'?(x, K, 1){ 23 (U(m)—log, x)*}'/2 < (]ogzr log; x)'/2.

p=1=Km
P=x
Introducing the notation
Tx = 2 u(m)|
Ay
pP=x
we have
29 =KZd(k1)Tx-
-y

Now we shall give an asymptotic formula for T.

Te= 3 Su@= 3 w@Zu@ 31 =

—1=Km é%/m =x d K p=1(mod Ké?d)
(K n;): (J,K)=I P=x
p=
= 2 u©) 2 p(d)n(x,ds?, 1).
di=x d K
(6, K)=1

Hence one can deduce easily the relation

1 X 1
e 1“{][1 P 1)] Klogx [l *0[@?]]’

uniformly for K=y, using the quoted theorem of Brun—Titchmarsh and the theorem
of Siegel—Walfisz. Hence

_ Xlog, x [ £i3
Zg =0y og x 0 Tog % (log, x -log; x)
follows, where
S d(k,) [ 1
— RIS
" x‘-Z: K ;x U p(p-0

Kew
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xlog, x log; x ”2]
D = g 1+ gy
and so the relation (1. 8) holds.

3. The proof of Theorem 2.

Lemma 6. Let A be a natural number with a canonical representation

Therefore

A = IIp"
and let
&1 44x) = 3 d(An).
Then 3
(3.2 A (x) = co(A)x log x +¢,(A)x + O(x'/3)
uniformly in A<(log x)'°, where
(3.3) co(d) = d(4) [] [1 —{ff—‘f’-f‘?] .
pA P
and
I 1
G.9) e1(A) = co(d) 2 —2P e (1)eo(4).
A h+1 L,
e l,+1
Furthermore we have
3.5 co(A)=d(A),
(3. 6) ¢ (A)=d(A) log? A.

It can be easily verified, that the function

fr= S

can be written in the form

f(s) = {3(5) g[!ﬁl —j;:],
and that 4

co(4) | ¢,(4)
HOES G—1)2 o
in some neighborhood of s=1.
Using the same analytical method which was elaborated for the Dirichlet
divisor problem (see Titchmarsh [6], Ch. XII) we obtain (3. 2).
The relations (3. 5)—(3.6) from (3.3)—(3.4) immediately follow.
Let P(x, K, r) denote the number of integers m for which

m=x, lum)|=1, Um)=r, (K, m)=1

are satisfied.
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Let V(n) denote the total number of the primedivisors of #, i.e.
let V(n) = oy +... +a, for n=pi'... p.

Let further A(n) = ( —1)"™, the so called Liouville-function.

Let #¢ denote the set of all integers n, each of whose primedivisor is a divi-
sor of K, i.e. for K=pi'...p% let

Be={:n=p..pF B=0,1,..,i=1,..,r})

For the sake of brevity let us denote
Pix, r)y=P(x, 1,7).

The following relation holds.

Lemma 7.
3.7 P(x,K,r)= 2 P[ - r—-V(v)]).(r).
‘v‘:’xx

For the proof of (3. 7) we start from the identity

Uim) 5 JViv
ot 3 FOMO_ (i E] iy 5 0

(m, K)=1 m® vEdK

_ 3 ) 5 iz

ms vemx v ¥

Comparing the coefficients on the left and right hand sides we have
lu(m)| _ A(») { lu(n)!}

Uim)=r m* \rExﬁx l’(n)—r ¥Fiv) n'

(m K)=1
from which (3. 7) immediately follows.

Lemma 8. Let I, (¢) denote the interval

(3.8) log, x —c (log, x)'/? =r=log, x + ¢ (log, x)'/?,
where ¢ is an arbitrory positive constant. Then

s W Shar® (log, x)y~!
(3.9 Plx&,.r) = ?(l +0(])),.[x] [1 + E] iy g |

uniformly for r € I (c) and K<(log, x)*.

Hence it follows, that the relation (3. 9) holds uniformly for a suitable sequence
of the ¢, tending to infinity as x - eo.

ProoF. We need the following estimation:

1 v 1/2 g | s d(K)
Zr< 25 = am fl-a) <52

v>=4



12 I. Katai

From Lemma 7 we have

P(x,K,r)= 2, ).(v)P[%, r—V(v)]-}-O [—, r—V(v)]]
vex vedn

Choosing 4 =(log, x)® the inequality

s 1 _dK) x
“_d [ , r=V(v)| <x ‘;; 5777 S (log log x)?
VERK

holds for the rcmamder term.
Let us suppose, that r €I (c). Then r—V(v)€ I (2¢),if v=4. Applying Lemma 1
we have

[ x r—1-V(v)
; log, —]
v v x
P(x,K,r) = (1 +0(1)x %’ %—; ——————— —+0 m].
veax  log - (r—1-V()! 4
Using that V(v)<log A<log,; x, we have
[log x]r—l—l’(w)
e
(log, xy—1
= (1+0(1)) T

log- (r=1=V()!

uniformly for réJ,(c), v=A4. Taking into account, that

i(v) 1177 RS
250 J1le3) +ol3)
vEBx

T [ x (log, x)~ : [1+ _1__]_']
(log, x)? logx (r—1)! ik p
for rel(c), hence (3.9) follows.
We are now in the position to prove Theorem 2. We have, that

Dy(x)= 2 2 ds(m= 2+ 2 =Z,+2,,

K=xn=Km K=y K=y
Kc¥l nsx

and that

where y=(log, x)*.
Now we prove that X,<=<x. For any K

S = S de) = 3 E®+de)Uom) =3 1o, x,
n=Km n=Km m=

further
d(k
520 < og, 92,

K=y
whence Z,<x follows.
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For the sake of brevity let k, =d(k,). The sum X, can be written as follows:

I =2 2 |u(m)|d(d(k)+k, Um)) = Zjd(kz(ﬁ+l+r))f'[%, K, r] -

K=y (mK)=1 K=yr=1
x
mék—

=2 Z+Z Z=53+E4¢

K=yrélx Ksyrilx

where L, denotes the interval

1 3
L, = ) log, x, 510g2 x] :

Now we prove that X,<x. Really
S dim= Sdk) 3 Um)<(log,x)"* 3 d(k) 3 (U(m)—log, x)* <
K<y K=y x

U(m) ¢ L MEE' mz_sx_
U(m) ¢ Lx

<3< X Z q’(k) << X.
K=y K

Here we have used the inequality of TURAN [7] stating that

> (U(m)—log, x)? < xlog, x.

ms=x

Let now
L, = T«c)+1(c)+ R(c),
where
T(c) = [} log, x. log, x —c (log, x)'/?]
R.(c) = [log, x +c(log, x)'/2, 3 log, x]

and correspondingly let

23—':

4

+ 2 Z + Z =ET+ZI+£‘R°
€lx

K=y rcTx K=yr K=y rcRx

A

Let further

f = ;_ log, x+1I(log; ¥)'2, r, = _:2;‘ hogi 2= I00R 2

for I=1,2,...,1l,, where I, = [(log, x)'/2—¢], and
T =[t-1. 1), Ryy =[n-1, 1)

We shall prove, that the sums X; and X, are o(x log; x), whenever ¢=c,
tends to infinity as x —<. For this we need the Hardy-——Ramanujan inequality
stating that

X (log; x+ey~*
log x (r—=1)!

Pix.K.r)=Pix. 7)==
for reL,.
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For any K=y and /=],

] '
Zd(kz(ﬁ+l+r))P[ ] Klogr S dB+1+ )—(°g2"“:)",)'

rETx,1 reTa

 xk; (logy x+c)i~!
Klogx  (4—1)! ,ETZ,j,d(ﬂHJ""

Using Lemma 6 with A=1 we have
> dB+1+r)=A+p+1)—A(t, -, +B+1) < (log, x)''?(log; x).

rETxt

Using the monotonity of

¥ (log; x+¢)~*

re il (r_l)'

X, < x(log, x)'/? log, rZ T ‘_)“2

K=y

bt (log, x+¢)y~*

= r—1)! = o(xlog; x),

<« xlog; x

when ¢, -+ as x —+co,
It can be seen similarly, that
Zr=o0(xlog; x)
when ¢, +o as x —oo,
Now we start to investigate the sum X,. It follows from Lemma 8, that

)

(log, xy~*

5= (1+o(1)> 210g“ = reédd(kz(ﬁ+l+r)) T
Put
[ ] ‘
¥ 3 d(ky,(B+1+1) (ng R
rélx(c) ]}
and let

V= (log, x)°*.
It is easy to show that

(log 3 1 'S’ (logy xy*+-!
2 = (o), Z BT

uniformly for every r€7,(c,), whenever ¢, tends suitable slowly to infinity.
Using partial summation we have

vic= (o) X WEIE 3 g pr1+v) =

réI(c) (r_l)| ye=p=V

6 =1
- +o(1))?-r€§)(_'<zf=_"_l_);! {4, (B+1+7r)— 4, (B+1+r—V)}.
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Let us now assume, that
(S) ky=d(k,)<(log; x)*
Then using Lemma 7 with 4 =k, we obtain that
A, (B+1471) =4, (B+1+r —=V) = colk) Viogr+0(c,(k2)V)+O(V) =
= colk,)V logs x + O(d(k,)(log k,)? +d(k;)cy (log, x)=1/2)- ¥ =
= co(k,) V logs x+ O(d(k,)(logs x)*V) = co(k,)(1 +o(1)) V log; x,
whenever ¢, = O(log; x), say.
Using the relation
(logy x) !

civen (r=1)! = (14+o(1))logx for c,—==,

we have
Iy = cc,(af;'z)(l+o(l))f2 logx-logsx for ¢ ,—~e=.

Further for every K by d(mn) = d(m)d(n)

A, (B+1+r)=A,(B+14+r—V)=dk,) 4, (B+14+r) —4,(B+ 147 —V))=
<<d(k,)V log; x

follows. Therefore for the K-s not satisfying the condition (S) we have

xk,d(k;)
55 Qlog, x)*
From these inequalities it follows rapidly that
z, = (I +0(1))03 X lOg_-, Xy

where

e

1 -1
6 ok [T [1 +-—]
Cy = — - = Pl _ .
n? Kcu K

Combining our results the assertion of Theorem 2 immediately follows.
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