On the density of certain sequences of integers

By I. KÁTAI and J. MOGYORÓDI (Budapest)

1. Let $p, p_1, p_2, ...$ be prime numbers. We use the \ll symbol in Vinogradov's sense. Let $d_k(n)$ denote the number of solutions of $n = x_1, ..., x_k, d_2(n) = d(n)$, and put $\sigma_a(n) = \sum_{d|n} d^a$. Let ε denote arbitrarily small positive constants, not necessarily the same at every case.

For a general natural number n let B_n denote the set of those integers, all prime factors of which divide n. We call K a square-full number, if all its prime factors occur at least on the second power. In other words the number K having the prime decomposition $K = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ is square-full, if $\alpha_1 \ge 2, \dots, \alpha_r \ge 2$. Let B denote the set of all square-free numbers.

An arbitrary integer n can be written in the form

$$(1.1) n = a_n \cdot b_n,$$

where $a_n \in B$, and b_n is a square-free number coprime to a_n . This representation is unique. We shall call a_n the quadratic part and b_n the square-free part of n.

Let F denote the set of those arithmetical functions, the values of which depend only on the quadratic part of the number. In other words $f(n) \in F$, if $f(n) = f(a_n)$ for all $n \ge 1$.

Here we are interested in the local-distribution on some special subsets of

integers of the values of functions belonging to F.

The first result of this type is due to A. RÉNYI [1]. He proved the following assertion. If we define f(n) as $f(p_1^{\alpha_1}...p_r^{\alpha_r}) = (\alpha_1 - 1) + ... + (\alpha_r - 1)$ $(p_1, ..., p_r)$ are different prime numbers), then $x^{-1}N\{n \le x, f(n) = q\}$ tends to a limit d_q for all q = 0, 1, 2, ..., and $\Sigma d_q = 1$. This theorem was improved and generalized by many authors (see [2], [3], [4], [5]).

Suppose that $f(n) \in F$ and let $\lambda_1, \lambda_2, \dots$ be the different values taken on by f(n).

One of us proved the following assertion [6].

Theorem. $N\{n \le x; f(n) = \lambda_i\} = d_i x + O(\sqrt{x}(\log x)\theta_i)$ as $x \to \infty$, where $\Sigma d_i = 1$, $0 \le \theta_i \le 1$ and $\Sigma \theta_i \le 1$. The constant implied by the O-term is an absolute one.

2. Let $K_1, K_2 \in \mathcal{B}$ and let $B(x; K_1, K_2)$ be the number of $n \leq x$, for which the quadratic part of n is K_1 , and that of n+1 is K_2 , i.e.

(2.1)
$$B(x; K_1, K_2) = \sum_{n \le x} 1$$
 $(a_n = K_1, a_{n+1} = K_2).$

Let

$$(2.2) \quad \tau(K_1, K_2) = \begin{cases} \prod_{p \mid K_1 K_2} \left(1 - \frac{1}{p} \right) \prod_{p \mid K_1 K_2} \left(1 - \frac{2}{p^2} \right) & \text{when} \quad (K_1, K_2) = 1, \\ 0 & \text{when} \quad (K_1, K_2) > 1. \end{cases}$$

Let

(2.3)
$$\Delta(x) = \sum_{K_1, K_2 \in \mathcal{B}} \left| B(x; K_1, K_2) - \frac{\tau(K_1, K_2)}{K_1 K_2} x \right|.$$

First we prove the following

Theorem 1.

(2.4)
$$B(x; K_1, K_2) = \frac{\tau(K_1, K_2)}{K_1 K_2} x + O\left(\frac{x^{2/3} (\log x)}{(K_1 K_2)^{1/3}} d(K_1 K_2)\right).$$

Furthermore

(2. 5)
$$\Delta(x) \ll x^{\frac{6}{7} + \varepsilon}$$
 for all fixed $\varepsilon > 0$.

Let $f_1(n)$, $f_2(n)$ be arbitrary functions belonging to F, with the set of values $\{\lambda_i\}$, $\{\mu_i\}$, respectively. Let

$$E(x) = \sum_{i,j} |N\{n \le x; f_1(n) = \lambda_i, f_2(n+1) = \mu_j\} - d_{i,j}x|,$$

where

$$d_{i,j} = \sum_{K_1, K_2 \in \mathcal{B}} \frac{\tau(K_1, K_2)}{K_1 K_2} \qquad (f_1(K_1) = \lambda_i, f_2(K_2) = \mu_j).$$

From Theorem 1 it follows immediately that $E(x) \le \Delta(x) \ll x^{6/7 + \varepsilon}$.

3. Let g(n) be an irreducible polynomial over the rational field with integer coefficients. Let B(x; K) = B(x; K, g) denote the number of those $n \le x$ for which the quadratic part of g(n) is K. Let $\varrho(m)$ denote the number of solutions of the congruence $g(n) \equiv 0 \pmod{m}$. It is known that $\varrho(p^{\alpha}) \ll 1$ for $\alpha = 1, 2, \ldots$ uniformly in p and that $\varrho(m)$ is a multiplicative function. Let

(3.1)
$$\tau(K) = \prod_{p \nmid K} \left(1 - \frac{\varrho(p)}{p} \right) \prod_{p \nmid K} \left(1 - \frac{\varrho(p)}{p^2} \right)$$

and

$$(3.2) P(x) = \sum_{K \in \mathcal{B}} \left| B(x;K) - \frac{\tau(K)}{K} x \right|.$$

It seems likely that

(3.3)
$$x^{-1}P(x) \to 0 \text{ as } x \to \infty,$$

for all polynomials. For the moment we can prove this only for polynomials of degree not higher than 3.

Theorem 2. Let $g(n) = n^2 + 1$. Then we have

(3.4)
$$B(x;K) = \frac{\tau(K)}{K} x + O\left(\frac{x^{2/3} \log x}{K^{1/3}} d(K)\right)$$

and

$$(3.5) P(x) \ll x^{\frac{6}{7} + \varepsilon},$$

where ε is an arbitrary positive constant.

We state without proof the

Theorem 3. Let g(n) be an irreducible polynomial of degree 3. Then

$$P(x) = o(x)$$
.

4. Proof of Theorem 1. First we prove (2. 4). Since for $(K_1, K_2) > 1$ we have $B(x; K_1, K_2) = 0$, thus (2. 4) holds in this case. Assume now that $(K_1, K_2) = 1$. Let d_i run over the sets of integers relatively prime to K_i , and δ_i the set \mathcal{B}_{K_i} (resp. for i = 1, 2). Using the relations

$$\sum_{\delta_1 d_1^2 K_1 \mid n} \mu(\delta_1) \mu(d_1) = \begin{cases} 1, & \text{if } a_n = K_1, \\ 0 & \text{otherwise;} \end{cases}$$

$$\sum_{\delta_2 d_2^2 K_2 | n+1} \mu(\delta_2) \mu(d_2) = \begin{cases} 1, & \text{if } a_{n+1} = K_2, \\ 0 & \text{otherwise,} \end{cases}$$

we have

$$B(x; K_1, K_2) = \sum_{n \le x} \sum \mu(\delta_1 \delta_2 d_1 d_2),$$

where the second Σ means a summation over those $\delta_1, \delta_2, d_1, d_2$ for which $\delta_1 d_1^2 K_1 | n, \delta_2 d_2^2 K_2 | n+1$. By changing the order of the summation we obtain

(4.1)
$$B(x; K_1, K_2) = \sum_{\substack{\delta_1, \delta_2 \\ d_1, d_2}} \mu(\delta_1 \delta_2 d_1 d_2) S(x; K_1 \delta_1 d_1^2, K_2 \delta_2 d_2^2),$$

where S(x; a, b) is the number of those $n \le x$ for which $n = O \pmod{a}$ and $n + 1 = O \pmod{b}$ hold. This congruence system is solvable only if (a, b) = 1, and for (a, b) = 1

(4.2)
$$S(x; a, b) = \frac{x}{ab} + O(1).$$

Thus we deduce from (4.1)

$$B(x; K_1, K_2) = \frac{x}{K_1 K_2} \Sigma' + O(\Sigma_{K_1, K_2}^{(1)}) + O(\Sigma_{K_1, K_2}^{(2)}),$$

where

(4.3)
$$\Sigma' = \sum \frac{\mu(\delta_1 \delta_2 d_1 d_2)}{\delta_1 \delta_2 d_1^2 d_2^2}.$$

The summation in (4.3) is extended over those $\delta_1, \delta_2, d_1, d_2$ for which $\delta_1 \delta_2 d_1^2 d_2^2 \le x \delta$ (where β is a constant satisfying the relation $1 \le \beta < 2$). $\Sigma_{K_1, K_2}^{(1)}$ is the number of the values $\delta_1, \delta_2, d_1, d_2$ satisfying $\delta_1 \delta_2 d_1^2 d_2^2 K_1 K_2 \le x^{\beta}$, and $\Sigma_{K_1, K_2}^{(1)}$ denotes the number of $\delta_1, \delta_2, d_1, d_2$ for which $\delta_1 \delta_2 d_1^2 d_2^2 K_1 K_2 > x^{\beta}$ and $\delta_1 d_1^2 K_1 | n, \delta_2 d_2^2 K_2 | n+1$ for one $n \le x$ at least.

Taking into account that

$$\sum \frac{\mu(\delta_1 \delta_2 d_1 d_2)}{\delta_1 \delta_2 d_1^2 d_2^2} = \tau(K_1, K_2),$$

we deduce from (4.3)

$$\Sigma' = \tau(K_1, K_2) + O(\Sigma_{K_1, K_2}^{(3)}),$$

where

(4.4)
$$\Sigma_{K_1,K_2}^{(3)} = \sum \frac{1}{\delta_1 \delta_2 d_1^2 d_2^2} \qquad (\delta_1 \delta_2 d_1^2 d_2^2 K_1 K_2 > x^{\beta}).$$

Using that $\sum_{v \ge u} d(v)v^{-2} \ll u^{-1} \log u$ and that $v = d_1d_2$ has at most d(v) solutions in d_1, d_2 , we deduce from (4.4) that

(4.5)
$$\Sigma_{K_1, K_2}^{(3)} \ll x^{-\beta/2} (\log x) \sqrt{K_1 K_2} \ \sigma_{-1/2}(K_1 K_2).$$

In order to estimate $\Sigma^{(3)}_{K_1, K_2}$, we consider that the number of d_1, d_2 satisfying $\delta_1 \delta_2 d_1^2 d_2^2 K_1 K_2 \leq x^{\beta}$ is smaller than

$$\sum_{v \le N} d(v) \ll N \log x, \quad N = \frac{x^{\beta/2}}{\sqrt{\delta_1 \delta_2 K_1 K_2}},$$

whence after a summation over the δ 's we obtain

(4.6)
$$\Sigma_{K_1, K_2}^{(1)} \ll \frac{x^{\beta/2} \log x}{\sqrt{K_1 K_2}} \sigma_{-1/2}(K_1 K_2).$$

For the estimation of $\Sigma_{K_1, K_2}^{(2)}$ we need the following

Lemma 1. Let a, b arbitrary positive integers. Then the number of solutions $1 \le u, v \le x$ of the equation

$$au^2 - bv^2 = 1$$

is at most $O(\log x)$.

Let
(4. 7)
$$n = l_1 \delta_1 K_1 d_1^2, n+1 = l_2 \delta_2 K_2 d_2^2$$

and let $R(\delta_1, \delta_2)$ denote the number of those $n \le x$ for which (4.7) is satisfied with suitable l_1, l_2, d_1, d_2 satisfying the inequality $\delta_1 \delta_2 K_1 K_2 d_1^2 d_2^2 > x^{\beta}$. For fixed $l_1, l_2, \delta_1, \delta_2$ the number of the n's in (4.7) is at most $O(\log x)$ by Lemma 1. Hence by $l_1 l_2 \ (\le 2x(\delta_1 \delta_2 K_1 K_2 d_1^2 d_2^2)^{-1}) \le 2x^{2-\beta}$ we have

$$R(\delta_1, \delta_2) \ll (\log x) \sum_{l_1 l_2 \le 2x^{2-\beta}} 1 \ll x^{2-\beta} \log^2 x$$

Summing over the δ 's we obtain

(4.8)
$$\Sigma_{K_1, K_2}^{(2)} \ll x^{2-\beta} \log^2 x d(K_1 K_2).$$

Now we choose β as follows. If $K_1K_2 = x^{\gamma}$, then $\beta = \frac{\gamma + 4}{3}$. With this β we have

$$\frac{x^{\beta/2}}{\sqrt{K_1 K_2}} = x^{2-\beta} = \frac{x^{2/3}}{(K_1 K_2)^{1/3}}.$$

Thus we obtain (2. 4) immediately by combining our inequalities (4. 8), (4. 6), (4. 4). In order to prove (2. 5) we remark that $\Delta(x) \leq O(\Sigma^{(1)}) + O(\Sigma^{(2)}) + O(\Sigma^{(3)})$, where

$$\Sigma^{(1)} = \sum_{K_1, K_2 \in \mathcal{B}} \Sigma^{(1)}_{K_1, K_2}, \quad \Sigma^{(2)} = \sum_{K_1, K_2 \in \mathcal{B}} \Sigma^{(2)}_{K_1, K_2},$$

$$\Sigma^{(3)} = \sum_{K_1, K_2 \in \mathcal{I}} \frac{x}{K_1 K_2} \, \Sigma^{(3)}_{K_1, K_2}.$$

Using $\sum_{K \le x} \frac{\sigma_{-1/2}(K)}{\sqrt{K}} \ll \log x$ we have from (4.6) and (4.4)

(4.9)
$$\Sigma^{(1)} \ll x^{1-\beta/2} (\log x)^3, \quad \Sigma^{(3)} \ll x^{\beta/2} (\log x)^3.$$

Now we consider $\Sigma^{(2)}$. Set $N_1=\delta_1d_1^2K_1$, $N_2=\delta_2d_2^2K_2$. In our case $N_1N_2>x^\beta$ and N_i has at most $d_3(N_i)$ representations as product of δ_i , d_i^2 , K_i . Let $N_i=u_i^2v_i$, where u_i^2 is the greatest quadratic divisor of N_i . Using the fact that N_i is a squarefull number, we have $v_i \leq N_i^{1/3}$. Taking $n=l_1N_1=l_1v_1u_1^2$, $n+1=l_2v_2u_2^2$ we have that $\Sigma^{(2)} \ll x^{\varepsilon}R$, where R denotes the number of solutions of the equation

$$(4.10) l_2 v_2 u_2^2 - l_1 v_1 u_1^2 = 1$$

for those $l_1, l_2, v_1, v_2, u_1, u_2$ which satisfy the inequality

$$l_1 v_1 l_2 v_2 \left(\le 2 \frac{x^2}{u_1^2 u_2^2} \le 2 \frac{x^2}{(N_1 N_2)^{2/3}} \right) \le 2 x^{2 - \frac{2}{3} \beta}, \quad u_1 \le x, \quad u_2 \le x.$$

By Lemma 1 (4. 10) has at most $O(\log x)$ solutions in u_1, u_2 for fixed l_1, l_2, v_1, v_2 . Thus

$$R \ll (\log x) \sum_{l_1 l_2 v_1 v_2 \le 2x^2 - \frac{2}{3} \beta} 1 \ll x^{2 - \frac{2}{3} \beta + \varepsilon},$$

and consequently

(4.11)
$$\Sigma^{(2)} \ll x^{2-\frac{2}{3}\beta+\epsilon}.$$

Now we choose $\beta = \frac{12}{7}$. Taking into account (4.11), (4.9) we deduce (2.5.)

5. PROOF OF THEOREM 2. This is a similar one to that of Theorem 1, therefore we give only a scetch for it. It is known that $\varrho(p^{\alpha}) = 2$ or 0, according to $p \equiv 1$ or $\equiv -1 \pmod{4}$. Furthermore $\varrho(2) = 1$ and $\varrho(2^{\alpha}) = 0$ for $\alpha \geq 2$.

Let δ run over the divisors of K, and let d denote the numbers coprime to K. Then

(5.1)
$$B(x;K) = \sum_{\delta,d} \mu(\delta d) \varrho_x(\delta d^2 K),$$

where $\varrho_x(m)$ denotes in general those number of $n \le x$ for which m divides $n^2 + 1$. Then we have

(5.2)
$$\varrho_x(m) = \frac{\varrho(m)x}{m} + O(\varrho(m)).$$

From (5. 1) and (5. 2) we have

(5.3)
$$B(x;K) = \frac{\tau(K)}{K}x + O\left(\frac{x}{K}\Sigma_K^{(3)}\right) + O(\Sigma_K^{(1)}) + O(\Sigma_K^{(2)}),$$

where

(5.4)
$$\Sigma_K^{(1)} = \sum_{\delta,d} \varrho(\delta K d^2) \qquad (\delta d^2 K \leq x^{\beta})$$

(5.5)
$$\Sigma_K^{(2)} = \sum_{\delta,d} \varrho_x (\delta K d^2) \qquad (\delta d^2 K > x^{\beta})$$

(5.6)
$$\Sigma_K^{(3)} = \sum_{\delta,d} \frac{\varrho(\delta K d^2)}{\delta K d^2} \qquad (\delta d^2 K \leq X^{\beta}).$$

Using that $\varrho(\delta K) = \varrho(K)$, $\varrho(d^2) = \varrho(d)$ and that $\sum_{m \le y} \varrho(m) \ll y$ we have without any difficulty, that

(5.7)
$$\Sigma_K^{(1)} \ll \frac{x^{\beta/2}}{\sqrt{K}} \varrho(K) \sigma_{-1/2}(K),$$

(5.8)
$$\Sigma_K^{(3)} \ll x^{-\beta/2} \sqrt{K} \, \sigma_{-1/2}(K).$$

For the estimation of $\Sigma_K^{(2)}$ we use Lemma 1. $\Sigma_K^{(2)}$ is not greater than the number of the solutions of

$$(5.9) n^2 - l\delta K d^2 = 1 (n \le x)$$

for those d, n, l, δ which satisfy the inequality $l \ll x^{2-\beta}$. For fixed l, δ (5. 9) has at most $O(\log x)$ solutions. Consequently

(5.10)
$$\Sigma_K^{(2)} \ll x^{2-\beta} (\log x) d(K).$$

Choosing $\beta = \frac{\gamma + 4}{3}$, where $K = x^{\gamma}$, and taking into account (5. 3), (5. 7), (5. 8), (5. 10) we obtain (3. 4).

The estimation of P(x) goes in a similar manner as that of $\Delta(x)$ and thus we drop it.

6. The proof of Theorem 3 goes in a similar way as that of Theorem 2 applying the following lemma due to C. HOOLEY [8].

Lemma 2. If g(n) is an irreducible polynomial of degree 3, then the number of $n \le x$, for which there exists a p^2 divisor of g(n), $> \log x$ is at most

$$O(x (\log x)^{-A/\log\log\log x}),$$

A > 0 is a constant.

References

- [1] A. RÉNYI, On the density of certain sequences of integers, Publ. Inst. Math. Belgrád, 8 (1955), 157-162.
- [2] H. DELANGE, Sur un theoreme de Rényi, Acta Arithm., 11 (1965), 241-252.
- [3] I. Kátai, Egy megjegyzés H. Delange "Sur un theoreme de Rényi" c. dolgozatához, MTA III; Oszt. Közl., 16 (1966), 269—273.
- [4] H. DELANGE, Sur un theoreme de Rényi II, Acta Arithm., 13 (1968), 339-362.
- [5] И. П. Кубильюс, Вероятностные методы в теории чисел, Вильнюс, 1962. [6] І. Катаї, Egy lokális határeloszlástétel a számelméletben, Mat Lapok (in print).
- [7] F. V. ATKINSON and LORD CHERWELL, On arithmetical functions, Quarterly J. Math. (Oxford), 20 (1949), 65-79.
- [8] C. Hooley, On the power free values of polynomials, Mathematika, 14 (1967), 21—26.

(Received September 12, 1966.)