On the density of certain sequences of integers
By I. KATAI and J. MOGYORODI (Budapest)

1. Let p, p,, p5. ... be prime numbers. We use the << symbol in Vinogradov’s

sense. Let di(n) denote the number of solutions of n=x,, ..., x,, dy(n)=d(n),
and put o,(n) = > d*. Let ¢ denote arbitrarily small positive constants, not necessarily
din

the same at every case.

For a general natural number » let B, denote the set of those integers, all prime
factors of which divide n. We call K a square-full number, if all its prime factors
occur at least on the second power. In other words the number K having the
prime decomposition K=pi'...pj is square-full, if «, =2, ..., 2,=2. Let B denote
the set of all square-free numbers.

An arbitrary integer n can be written in the form

(1.1) n=a,b,,

where a,€ B, and b, is a square-free number coprime to a,. This representation is
unique. We shall call a, the quadratic part and b, the square-free part of n.

Let F denote the set of those arithmetical functions, the values of which depend
only on the quadratic part of the number. In other words f(n)€F, if f(n)=
=f(a,) forall n=1.

Here we are interested in the local-distribution on some special subsets of
integers of the values of functions belonging to F.

The first result of this type is due to A. RENYI [1]. He proved the following
assertion. If we define f(n) as f(p}..p¥) = (¢, —D+...+(, —1) (py,.... P,
are different prime numbers), then x~'N{n=x, f(n)=q} tends to a limit d, for
all ¢=0,1,2,..., and Zd,=1. This theorem was improved and generalized by
many authors (see [2], [3], [4]. [5]).

Suppose that f(n)€ F and let 4,, 4,, ... be the different values taken on by f(n).
One of us proved the following assertion [6].

Theorem. N{n=x;f(n) = 4} = dx+ O(Yx (logx)0,) as x-—oo, where
Zd,;=1,0=0,=1 and 20, = 1. The constant implied by the O-term is an absolute one.

2. Let K,,K,€# and let B(x; K,, K,) be the number of n=x, for which
the quadratic part of n is K,, and that of n 41 is K,, i.e.

2.1) B(x; K,,K;) = J'1 (a,=K,, a,,,=K)).

n=x
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Let
Vi [1—]—] Vi [1—%] when (K,,K;) =1,
(2.2) (K, K3) = | plks k2 P) pikik: P
0 when (K,,K,) = L.
Let
|
2.3) Ax)= 2 B(x;K,,Kz)—t(-'-{‘-"-{z)x'.
Ki, K268 KK, |
First we prove the following
Theorem 1.
(K, K3) [x”"(log x) ]
s A Kn) = —— - O|— —d(K,K,)]|.
(2 4) B(x Kl 2) K[Kz X+ (Kl Kz)hj ( 1 2)
Furthermore
6
@2.5) A) =<xT

Jor all fixed &= 0.

Let f,(n), f>(n) be arbitrary functions belonging to F, with the set of values
{#4), {u;}, respectively. Let

E(x) = IZJ' IN{n=x; fi(n) = 4, f2(n+1) = #j}_d:,jx|,
where '

(K, K
4= 5 Mekd (£, 00 =0
K, K263 1422

From Theorem 1 it follows immediately that E(x)=A4(x)<<x®7%¢,

3. Let g(n) be an irreducible polynomial over the rational field with integer
coefficients. Let B(x; K)=B(x: K, g) denote the number of those n=x for which
the quadratic part of g(n) is K. Let g(m) denote the number of solutions of the
congruence g(n)=0 (mod m). It is known that o(p*)=1 for a=1, 2, ... uniformly
in p and that g(m) is a multiplicative function. Let

3.1 Ty 1 .__9(2)] 17 ,_g%a]
piK P ) pik P
and
2) PE) = 2 !B(x;K)—-’(Ki)x’.
Kea |

It seems likely that
(3::3) x'P(x)-0 as x-—oo,

for all polynomials. For the moment we can prove this only for polynomials of
degree not higher than 3.
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Theorem 2, Ler g(n) = n*+1. Then we have

2/3 1
(3.9) B(x; K) = ") +0{ et d(x)]
and
5.
(3.5) Px)y=x? ",

where ¢ is an arbitrary positive constant.
We state without proof the
Theorem 3. Let g(n) be an irreducible polynomial of degree 3. Then
P(x)=o0(x).

4. Proof of Theorem 1. First we prove (2. 4). Since for (K,, K,)=1 we have
B(x: K,, K,)=0, thus (2.4) holds in this case. Assume now that (K,, K,)=1.
Let d; run over the sets of integers relatively prime to K;, and §; the set &y, (resp.
for i=1,2). Using the relations

if all = Kl s
otherwise;

#(51)ﬂ(d1) = { :}’

d1diK;|n

I, |f a"+l=K2,

2 H@)ud;) = { 0 otherwise

d2d3Kz2ln+1

B(x; K,, K;) = 2 p(0,0,d,d,),

we have

where the second X means a summation over those é,,d,.d,,d, for which
0,diK,|n, 6,d3K,|n+ 1. By changing the order of the summation we obtain

4.1 B(x;K,,K;) = 2 p(3,0,d,d))S(x; K,6,d}, K,6,d3),
d1,02
dy,d2

where S(x; a, b) is the number of those n= x for which n=0 (moda) and n+1=

= 0 (mod b) hold. This congruence system is solvable only if (a, b)=1, and for
(a, b)=1

.2) S(x;a,b) = —-+0(1).
Thus we deduce from (4. 1)

B(x; Ky, K;) = ———Z'+ O(Z{) )+ O(Z2k,),

K K 3
where

4.3) o 2 #(5 5zd1dz) )

T8,0,d2dZ
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The summation in (4. 3) is extended over those 9,,d,,d,,d, for which
0,0,d}d? = x6 (where B is a constant satisfying the relation lﬁﬂ-:Z) .,
is the number of the values 4&,,d,,d,,d, satisfying 8,8,d7d3 K,Kz‘i-%r” and

}:‘!’h denotes the number of &, 4, d, d, for which §,6,d}d}K,K,=x" and
3,diK,|n, 52d2!(2fn+l for one n=x at least.

Taking into account that

0,0,d,d
S = K K,
we deduce from (4. 3)
2 = 1(K,, K3)+ O(Zg) k)
where

1
(4.4) I, = ZI‘W (0,0,d? di K, K, = xP).

Using that > d(v)v~?<=<u~'log # and that v=d,d, has at most d(v) solutions

VEu

ind,,d,, we deduce from (4. 4) that
4.5) Ik, < x P2 (log ) VK, K; 0_,,,(K, K>).

In order to estimate X3’ , we consider that the number of d,, d, satisfying
8,0,did}K K, =x" is smaller than

dvy =< Nlogx, N= ——,
% Vo,0,K, K,

whence after a summation over the é’s we obtain

xPI2

xP2log x

(4.6 1) SO Sl L
) Kk S,

“-uz(Kl K).

For the estimation of X} x, we need the following

Lemma 1. Let a. b arbitrary positive integers. Then the number of solutions
1 =u, v=x of the equation
au*—bv? = 1
is at most O (log x).
Let
4.7 n=16,Kdi,n+1 = 1,6,K,d3

and let R(d,, d,) denote the number of those n=x for which (4. 7) is satisfied
with suitable /,./,,d,,d, satisfying the inequality ,6,K,K,d}d} >x*. For fixed
l,1,,8,,8, the number of the n's in (4. 7) is at most O (log x) by Lemma 1. Hence
by 1/, (=2x(3,6,K,K,d}d3)"')=2x2"F we have

R(0,,8;) =<(logx) 2> 1=«x?*"Ptlog’x

lilz=2x2-#
Summing over the é's we obtain
(4.8) 23k, < x2~Plog? xd(K, K,).
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Now we choose f as follows. If K, K, =x?, then ﬂ=%4 With this f we have
b2 x2/3
S— — i ot S - —_—
VK, K, (K Ky)'?

Thus we obtain (2. 4) immediately by combining our inequalities (4. 8), (4. 6), (4. 4).
In order to prove (2. 5) we remark that 4(x) = O(Z")+ 0(2?) 4+ 0(X®), where

- (1 - | e
1) = 5‘ X 1&’ 32 — '9 le s
Kl.lizE-ﬂ K, lszCﬂ

2(3} > z};’;)h

K. K265 K Kz

<« log x we have from (4.6) and (4.4)

4.9) Z‘” <« x!-#2(logx)3, ZB) =« xP2(logx)3.

Now we consider X?. Set N,=06,d?K,. N,=0,d3K,. In our case N,N, = xf
and N, has at most d;(N,) representations as product of 9, d?, K;. Let N,= ufv,,
where u? is the greatest quadratic divisor of N,. Using the fact that N, is a square-
full number, we have v;= N3, Taking n = [N, = Liv,u}, n+1 = Lv,u? we have
that X‘®<x*R, where R denotes the number of solutions of the equation

(4. 10) !202“%“’{1 l-“luf — l
for those /,.1,,v,,v,,u,,u, which satisfy the inequality

2 YZ

) 1. 1= _x e e T 2—%5 — —
I:‘llz‘z[zzu{,u% =2 (NINZ)HB] = 2x . Uy=X, Uy=X.

By Lemma 1 (4. 10) has at most O (log x) solutions in u,, u, for fixed /,,/,, v, v,.
Thus
R << (log x) > 1ac Aot
lilapy vas=2x2- : B
and consequently
4.11) I « x? 304

Now we choose ﬁ=¥ . Taking into account (4. 11), (4. 9) we deduce (2. 5.)

S. PROOF OF THEOREM 2. This is a similar one to that of Theorem 1, therefore
we give only a scetch for it. It is known that ¢(p*)=2 or 0, according to p=1 or
= —1 (mod 4). Furthermore ¢(2)=1 and ¢(2*)=0 for a =2.

Let 4 run over the divisors of K, and let 4 denote the numbers coprime to K.
Then

.1 B(x; K) = X p(od)e.(0d* K),
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where p,(m) denotes in general those number of n= x for which m divides n* + 1.
Then we have

(5.2) dumy = LI

m

+ O(o(m)).

From (5. 1) and (5. 2) we have

(5.3) B(x:K) = -T-(Kﬁ)—x +0 [% Z,‘g"’] +0CZM+o0ER),
where
(5.4) I = > o(6Kd?) (0d*K =x")
d,d
(5.5 I = 3 o.(6Kd?) (6d?* K= x*)
d,d
£~ _g(é!{d’)_ 3 p
(5.6) P = g = (8d? K= xP).
Using that o(6K) =o(K), o(d*)=po(d) and that > g(m)=<<y we have without
any difficulty, that e
(5.7 F o 2 (K)o_,,»(K)
. K VE Q -1/2 ]
(5.8) I® < x~P2YKa_,;,(K)

For the estimation of Z{¥’ we use Lemma 1. X’ is not greater than the number
of the solutions of

(5.9) n? —IKd*=1  (n=x)

for those d, n, I, & which satisfy the inequality /<=x?~f. For fixed /,d (5.9) has
at most O (log x) solutions. Consequently

(5.10) I <= x2~F(log x)d(K).
Choosing f = % where K=x7, and taking into account (5. 3), (5.7),

(5. 8), (5.10) we obtain (3. 4).
The estimation of P(x) goes in a similar manner as that of 4(x) and thus we
drop it.

6. The proof of Theorem 3 goes in a similar way as that of Theorem 2 applying
the following lemma due to C. HooLEy [8].

Lemma 2. If g(n) is an irreducible polynomial of degree 3, then the number of
n = x, for which there exists a p* divisor of g(n), =log x is at most

O(-" (log x)~A/legloglog x)’
A=0 is a constant.
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