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Introduction. In a previous paper [1] we have determined the number of
holomorphs of rings with additive group of type (p, p) and (p, p?), (p is a prime
number). In this paper *) we want to discuss the rings with additive group of type
(2, 2, 2). As an abelian non-cyclic group of order 8 is either the direct sum of a cyclic
group of order 2 and a cyclic group of order 4 or the direct sum of three cyclic
groups of order 2, we get a survey of the number of holomorphs of all rings of order 8.
Together with our previous results of [1] we have determined the number of holo-
morphs for all finite rings R with order less than 16. Our results for non-zero rings
R with additive group R* of type (2, 2, 2) can easily be generalized to the case of
non-zero rings R with R* of type (p, p. p), where p is a prime number. The zero-
ring R with additive group R* of type (2. 2, 2) has a large number of holomorphs,
in fact 367. The question arises now to determine the number of non-isomorphic
holomorphs for finite rings with a small number of elements, both for non-zero
and zero-rings.

1. The non-zero rings R with additive group R* of type (2, 2, 2)

Let R be a ring, whose additive group R* =(a,)@®(a,)®(a;) is the direct
sum of three cyclic groups (a,), (a,) and (a;). We assume, that R is not a zero-ring,
i.e. the product ab (a, b€ R) does not vanish for all a, b€ R. The annulator ng of
R is the set of all elements a € R, such that aR = Ra=0. R? is the ideal in R, generated
by all products ab (a, b€ R). Both ng and R? are characteristic subrings of R, which
means that both n, and R? are invariant under all double homothetisms of R (for
the definitions and terminology we refer to our paper [1]).

As O(R) =8, we have that the orders of nz and R? are divisors of 8, i.e. 1,2, 4
or 8. If O(ng) =1 or ng=(0), then R has one holomorph (WEINERT—EILHAUER [3]).
If O(ng)=8 or ng =R, then R is a zero-ring, which we have excluded. If O(R?*)=1
or R*=(0), then R is a zero-ring. If O(R?) =8 or R?> =R, then R has one holomorph
(VAN LEEUWEN [1]). Thus we have to investigate only the cases: a) O(ng) =2, O(R?) =4;
b) O(ng) =4, O(R?*)=2; ¢) O(ng) =4, O(R*)=4, and d) O(ng) =2, O(R?*)=2.

*) This research was supported by National Science Foundation (GP-6539).
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Case a) O(ng) =2, O(R?*)=4.

a,) ng(\ R?*=(0). In this case R=ngx@® R? is the ring-theoretic direct sum of
its ideals ny and R* and R has one holomorph (WEINERT—EILHAUER [3], Satz 4).

a,) ng(1R?>#(0). As ng(\R*Sng, O(ng)=2, we must have O(ng() R?)=2.
Then ngx( 1 R*=ng or ng © R%. Without loss of generality we may suppose that
ng=1{0,a,} and R*={0, a,, a,, a, +a,}. One can construct 6 rings R with ngp=
={0,a,} and R*={0,a,,a,,a,+a,} and R* =(a,)P(a,)®(a;). These rings
have the following multiplication tables:

A, laylas; A, |aj|a;s o ‘az ay; Ay |ayla; -
a;'D a, a,| 0 |a, az|aZIO a, a, a,
as a; a, aha,!u,+a2 a, 0 ‘al as a, a,+a,

A5 az 1(13; Aﬁ !az :ﬂ'3
azla|+a210 da, al+azla]+az

as|0 a, a; a,+a2!az

Each of the rings 4; (i=1, ..., 6) is commutative. By the condition s/(ab)=
=sa)b for all a, b€ A;, those endomorphisms s5; of 4] are selected, which may
occur as a first component of a double homothetism of A4;. These endomorphisms
s; form a subring K,(4;) of E(A;"), the endomorphism ring of A4;". Likewise the
endomorphisms s, with si(ab)=a(sb) for all a, b€ A; form a subring K,(4;) of
E(A}). As A; is commutative, we get K,(4,)=K,(A4;) S E(A;*). For the uniqueness
of the holomorph of a commutative ring A, the commutativity of the ring K,(4;)=
=K,(A;)E E(A;") is necessary and sufficient ([3), Korollar, Satz 1). It is easy to
check that for all rings A4; (i=1, ..., 6) the ring K,(A4;) is commutative. Therefore
each of the rings A4; has one holomorph. It may be remarked here that the ring 4,
for instance, does not satisfy the conditions of a theorem of PoLLAK [2], which
reads: If the ring R has a characteristic subring R’, which has one holomorph, and
if each homomorphism of R/R’ in ng is the zero-homomorphism, then R has one
holomorph. As A4, has one holomorph, the conditions in this theorem are not
necessary for the uniqueness of the holomorph. This is an example of a finite ring
in which there is no proper characteristic subring R’ satisfying Polldk’s condition.

Case b) O(ng) =4, O(R*)=2.

by) ng R*=(0). In this case R=ng® R? is the direct sum of its ideals ng
and R? and as ng has more than one holomorph (vAN LEEUWEN [1], Satz 3), R has
more than one holomorph [1]. Now the subrings nz and R? are characteristic
subrings of R. Then the holomorphs of R exist in the form H=H , ®H,,
where H, is an arbitrary holomorph of ng and H, is an arbitrary holomorph of R?,
(PoLLAK [2]). The zero-ring ngp with ng =(a,)®(a,), O(a,)=0(a,)=2, has
224+2+3 = 9 holomorphs (VAN LEEUWEN [1], Satz 3). The ring R?>=(a;) has one
holomorph. Therefore R=ng® R* has 9 holomorphs. All rings R with O(ng) =4,
O(R?*)=2, R* =(a,)&(a,)® (a;), O(a,) = 0(a,) = O(a,) =2, are isomorphic. Hence
all of these rings have 9 holomorphs.



On the number of holomorphs of rings of order 8 35

b,) ngNR*#(0). As ng(NR*S R?>, O(R?*)=2, we must have O(ngR?*)=2.
Then ng(1 R?*=R? or R?>Zny. Without loss of generalily we may suppose that

={0,a,} and ng={0,a,,a,, a,+a,}. Then ai= a,a, =a,a3 = a,a, =a;=
=a,0y=a3a,=a3a,=0. And a%-a,, as'ai=0 1mpltes that R is a zcro—rmg
For this multiplication the ring R is a non-zero ring, which is commutative and
has 9 maximal rings of related double homothetisms and therefore 9 holomorphs.
Therefore all of the rings in this case b,) have 9 holomorphs.

Case ¢) O(ng)=4, O(R?*) =4.

Suppose ng={0,a.b,a+b} and c€R with cqng. Then c+a,c+b,c+a+b
belong to R, but none of them belongs to ng and R={0,a,b,c,a+b,a+c, b+c,
a+b+c). As aR=Ra=0 and bR=Rb=0 we get R*>= {0, ¢?}, which is a contra-
diction to O(R?*)=4. Thus there are no rings possible in this case.

Case d) O(ng)=2, O(R*)=2.

d,) nx(1R*=(0). Suppose ng={0,a} and R*={0,h} with a=b. Again,
if ¢c#a, ¢c#b (c€R), then R={0,a.b,c,a+b,a+c,b+c,a+b+c}. If b2=0,
then from bec=b we would get (bc)e=bc=b=b(c?), or ¢*=>b, but then b*>=b.
Contradiction. Thus »?=0 implies bc=0. Similarly »*=0 implies cb=0, But
now bR=Rb=0 or beng, which is impossible. We conclude: b%=5.

If be=b, then (bc)b=b*=b=>b(ch), and cb=b. Also (bc)c=bc=>b=0b(c?),
and ¢*=b. Then (b+c)R=R(b+¢)=0, which implies b+ ¢ € ng. Contradiction.
If be=0, then (bc)b=0=b(cb), or ch=0. Also (bc)c=0=5b(c?) and ¢>*=0. Then
¢R=Rc=0 or c€ng. Contradiction. Thus there is no ring satisfying the conditions
of this case.

d,) ng(\ R? #(0). It follows now that ng = R2. Without loss of generality we
may suppose that ng=R?=/{0, a,}. For each of the elements a3, 0203, asa, and
a; (€R) one can choose either 0 or a,, but not az—azas—asaz—as—o as R
is not a zero-ring. One can construct 12 non-zero rings R with ng=R*={0, a,}
and R* =(a,)@ (a,)®(a;). These rings have the following multiplication tables:

By: al|a;z|; Bz: |02 03 s By |ajlasz|; By |azlaz|;
—— % e
021 0 1a, | a, | 0 al| azlal 0 a, | ay 0

= St — flectd - ‘_
G3ial 0 03 a,|0‘1| 0'3 0 al a_;!al.al

By a2|a3f, Bs: laalasl;: By az‘as; Bg: ‘azla_,,-;

azlﬂ'llﬂl HZial_al |O 02 0 0
—— | — — '_i_ — — S— —
a, 0|a1 a3|a,|0| a3 a,IO as|a, a,
By: |a, a, E Bio: |ay|az; By;: 'ﬂ'zlas 3 Bya: az‘as .
= i s 578 ¥ TR MY
a; 0 al a,| 0 |a, a21a110 a, al!all
EAE | —| s e i
0 0 as| 0 a, a,la, 0 qr.'_.,i0|0|1

As the sets {B,_, 83, Bg}, {Bs, Bs}. {B,, Bg, By, B,,. By, B,,} are consisting of
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isomorphic rings each, we need only to consider the rings B,, B,, B, and B,. The
ring B, is commutative. Therefore K,(B,)=K,(B,) (see case a,)). As the ring
K,(B,) is commutative, the ring B, has one holomorph ([3], Korollar Satz 1). For
the same reason, the ring B, has one holomorph.

Now we consider the ring B,. Let s; be the first component of a double homo-
thetism of B,. Then s,(a3)=s(a,)=s(a,)a,, and s(a,)=0 or a,. From si(a,a;)=
=0=s,(a,)a; it follows that s(a,)=0, a,,a, or a, +a,. From sy(asa,)=s(a,)=
=sias)a, and s(a})=sda,)=s(as)a; we infer that sfa;)=0, a,, a; or a, +aj.
It turns out that s,(a,) =0 implies s,(a,) =0ora, and 5;(a;) =0 or a, and that s;(a,) =a,
implies s;(a,)=a, or a, +a, and s(a;)=a, or a, +a,. Let s, be the second compo-
nent of a double homothetism of B,. Then likewisz we find that s,(a,) =0 implies
si(a;) =0 or a, and s;(a;) =0 or a, and that s,(a,) =a, implies s,(a,)=a, or a, +a,
and sy(a;) =a; or a; +ay. Thus K,(B;)=K,(B,). The ring K,(B,) consists of the
same endomorphisms of (a,)®(a,)® (a;) as the ring K,(B;) or K(B,). Therefore
K,(B,) is commutative. The condition sy(s,a) =s,(s.a) is satisfied for all s,€ K,(B,),
s € Ky(B,) and for all a< B,. The condition (s.a)b=a(s;h) for all a,bc B, with
5;€K,(B,) and s,€K,(B;) implies that we cannot use all possible pairs (s;, 5;)
(5;€ K\(B,), 5. € K,(B,)) as double homothetisms of B,. But if (s, s,) and (s, 5%)
are double homothetisms of B,, then s;5, =sis; and 8,5, =55, as K,(B,) = K,(B,)
is commutative. All double homothetisms of B, are pairwise related, therefore B,
has one holomorph.

Finally we investigate the ring B,. From the conditions s;(ab)=s,(a)b. s(ab)=
=asb), as(b)=sla)b for s;, s, endomorphisms of B and all a, b< B, we get
that sy(a;)=0 or a,, s(a,)=0, a,,a, or a, +a,, s(a;)=0,a,, a; or a; +a; and
si(a))=0 or a,,s(a,)=0,a,.a, or a,+a,, s(a;)=0.a,,a; or a, +a;. More-
over if si(a,;)=0 then s;(a;) =0 or a, and if s,(a,)=a, then s(a;) =a; or a, +a,;
likewise if s,(a,) =0 then s,(a,) =0 or a, and if si(a,) =a, then s(a,)=a, ora, +a,.
Also if si(a,) =0 or a, then sy(a;) =0 or @, and if s,(a,)=a, or a, +a, then s(a;) =a;
or a; +a,. A pair of endomorphisms (s;, s5,) of By satisfying the above conditions
is a double homothetism of B, if s.(s,a) =s,(s.a) for all a€ B,. It turns out, that the
set of all double homothetisms (s;. 5,) of B, consists of 72 elements. The double
homothetisms (s;, s,) and (s;, 5;) of B, are related if s,s, =s;s5; and s, 5; =5, 5, hold
Each set of pairwise related double homothetisms of B, is contained in a maximal
ring D of this kind. The ring B, has 4 maximal rings of related double homothetisms
and therefore 4 holomorphs.

2. The zero-ring R with additive group R* of type (2, 2, 2)

In this section R will be a zero-ring i.e. ab=0 for all @, b€ R and R* =(a,)&
& (a,)® (a;) 1s the direct sum of 3 cyclic groups, each of order 2. An endomorphism
s of R* is determined by the images s(a,), s(a,) and s(a;). We start with the zero-
endomorphism: s(a,) =0, s(a,) =0, s(a;) =0 and call it 5, . Then s,(a,) =0, s,(a;) =0,
sy(az)=a,: sy(a,)=0, s5(a,) =0, s;(a;) =a,, etc. The endomorphisms of R* are
indexed ,,lexicographically” and are in this order s,.....55,,. Where s55,,(a,)=
=a, +a,+ay, ss,,(a,) = a, +a,+a;, ss,,(a;) = a, +a, +a;. For the zero-ring
R a pair of endomorphisms (s;. 5,) of R is a double homothetism of R if s;5, = 5,5;.
Two double homothetisms (s;, ;) and (s/, s;) are related if s;5; =scs; and 5,5 =5/ 5;.
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Our problem is to determine the number of holomorphs of R, i.e. the number of
maximal rings of related double homothetisms of R. In order to do so, we introduce
the following notation for the set of endomorphisms of R*, consisting of elements
which are commuting with a given s: {s}={s;€ E(R*), s;s=ss;}. There are 2
endomorphisms s in E(R™"), such that {s} has order 512, namely s, and sg4: a, —a,,
G, —~a,, Gy —~ay. There are 98 endomorphisms s in E(R*), such that {s} has order 32.
These 98 endomorphisms can be divided into pairs, such that each pair consists
of two endomorphisms s;, s, with the same elements in {s,} and {s;}, s, #5s,. The
remaining 412 elements of E(R*) are each commuting with 8 endomorphisms of
E(R™).

A. First we consider the sets {s} with order 8. If {s} is a set of order 8, and
Sg. S € {s}. then s,5,=15,5,. Now we distinguish two cases:

(i) if s, is an arbitrary element of {s}, s, #5,, 5. #5g4, then {s.}={s}.

(ii) there is at least one element s, € {s}, 5, #5,,5, #5g4, such that {s,} = {s}.
In this case {s}c {s,} and {s,} has order 32.

Case (i). Let {s} be a set of endomorphisms of E(R*) of order 8. If 5., s, are
arbitrary in {s}, then (s,, 5,) is a double homothetism of R, as s,5, = 5,5,. It is clear
that every pair of double homothetisms (s,, 5;), (s, 53) is related. The set of all
double homothetisms, obtained in this way, is a maximal set and therefore a maximal
ring of related double homothetisms of R. For let (s,, s,) be related to (s,, s,) with
Sqas Sp€{s}. Then s,5,=s5,5, or 5,€{s,}={s} and s,5,=3s,5, or s,€{s,}={s}. Thus
we get 8 maximal rings of related double homothetisms of R and therefore 8 holo-
morphs of R. These holomorphs are denoted by P; (i=1, ..., 8).

Case (ii). Let s be an endomorphism which commutes with 8 endomorphisms,
so that {s} has order 8 and let s,¢€ {s} with {s}c {s,}, where {s,} has order 32. If
s, and s, are arbitrary in {s}, then (s,, s,) is @ double homothetism of R, as s,5,=
=5,5,. Again we form the set of all pairs (s,, s,) with s,. 5,€ {s}. Then we obtain
a set S of related double homothetisms of R, since, if s,, 5, 5;, 55 € {s}, then s,s, = 535,
and s,s,=s,5,, whence the double homothetisms (s,, s,) and (s,, s;) are |related.
We state that S is a maximal set of related double homothetisms of R. Indeed, let
(s,,s,) be a double homothetism related to all double homothetisms of S. In parti-
cular, (s, s,) is related to (s, s) which means s,s=ss, and s,s=ss, or s€{s} and
5, € {s}. Therefore (s, s,)€ S, hence S is maximal with respect to the property of
relatedness. In this way we get 133 maximal rings S; of related double homothetisms
of R and therefore 133 holomorphs of R, which we denote by Q; (i=1, ..., 133).

B. Next we consider the sets {s} with order 32. As we have remarked, there
are 49 different sets of this kind. Let {s.} and {s,} be two different sets, both of
order 32, and such that s.s,=s,s.. It may be remarked here, that two arbitrary
elements s,, s, of a given set {s} of order 32 need not be commuting. Now (s, s,)
is a double homothetism of R. Then we consider the endomorphisms of E(R™)
which belongto the set & = {s.}( {s,}. The endomorphisms of &/ are commuting
and o/ has order 8. There are now two cases: (a) there is at least one endomorphism
s in o/, such that {s} has order 8, then &/ ={s}; (b) for all endomorphisms s in
o, except s, and sg4, the set {s} has order 32. In both cases we form the set of all
pairs (s, s,) with s, 5,€.27. In case (a) we get a set S of pairwise related double
homothetisms which were obtained already in case (ii) of A. In case (b) the elements
of o ={s.}N{s,} are: s,, Sgq, S, 54 S, such that {s,}={s.}, s, such that {s,}=
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={ss}, s, with {5}V {s.}={s,} "\ {s4} =/ and s, with {s,}={s,}. The set of all
pairs (s, , ;) with s, 5, € o7 is again a set S” of pairwise related double homothetisms of R.
Also S’ is a maximal set of related double homothetisms of R. For, let (s,,s,) be
a double homothetism related to all double homothetisms of S’. Then (s, s,) is
related to (s.,s.) or s,s.=s.s, and s,5.=s.5,. Likewise we have s,s5,=s,5, and
5S4=2548, Hence s,€{s.}( {s,} =, and s,€.o, whence (s,,s,)€S’. Thus we get
42 maximal rings S; of related double homothetisms of R and therefore 42 holo-
morphs of R, which we denote by R; (i=1, ..., 42).

C. Let {s.} and {s;} be equal sets, both of order 32, with 5,5, As 5. and
54 belong to the same set {s.} = {s,}. it is clear that 5., =s,5.. Now we can form the
set §” consisting of all pairs (s,, s,), (534, 5.), (5., 5c), (54, 5), where s,, 5,, s, and
s, run through the set {s.}. Then S” consists of related double homothetisms of R.
Let (s, s;) bea double homothetism related to all double homothetisms of S”.
We are going to prove that (s,, s,)€S”. In {s.} we can find two endomorphisms
Sas Sy{sa} # {55} such that both {s,} and {s,} have order 8. We show that {s,} {s,}=
=(8y, Sga» Sc» 54). Indeed, as s,€{s.}={s,} we have that s.€{s,} and s,€{s,},
sy € {s.} ={s,} implies that s.€{s,} and s5,€ {s,}. Hence (s,, Sgq, S, 55) S {5.} N {55}
or the order of {s,}( {s,} is =4. But as the orders of {s,} and {s,} are 8, and
}s,, # {s,}, we must have that the order of {s,}/{s,} is =4. This proves that
Sa) (1 {55} = (51, Sga, 5., 5,). From (s,, 5,) is related to (s, 5,) we infer that s.s, =s5,5,
or s.€{s,). Likewise 5.5, =s,5, or s.€{s,}. Hence s,€{s,} ) {ss}=0(5,, 554 Scs Sa)-
From (s, s,) is related to (s.s,) we also infer that s.s.=s.s, of s,€{s.}. Thus
(s, 5,)€S”. It follows that §” is a maximal ring of related double homothetisms
of R. As we have 49 different pairs s,,s, with {s.} = {s,} and O({s.}) = 32, we can
form 49 maximal rings S and we get 49 holomorphs of R.
In the same way we can form the set S™ consisting of the pairs (s,, 5,), (5, Sg4),
(Sxs 50), (8y, S,), Where s,, 5,, S, 5, run through the set {s.}={s,} (s.# s, O({s.})=
=32). As above, we can prove that §” is a maximal ring of related double homo-
thetisms of R. Thus we get again 49 holomorphs of R, which yields altogether 98
holomorphs of R, denoted by T; (i=1, ..., 98).

D. Let {s.} and {s,} be two different sets, both of order 32, and such that
5.54 #545.. Then we consider the endomorphisms of E(R*), which belong to the set
o’ ={s.}N {s,}. The order of o/ is 4 or 8.

If o#” has order 4, then the elements of o’ are (s,, Sgq, S;, 5;), Where s, €
€{s.}N{sy} and {s;}={s,} with 5, =5s;. Now we can form the set of all pairs
(5. 8% (5 s ), (sk,s) (S, 8,), where s,,s,,s, and s, run through the set {s,}:
we get a maximal ring of related double homothetisms of R, which was obtained
already in case C. The set of all pairs (s,,s,), (5,, Sg4). (5., 5) and (s,, 57) is a
maximal ring of related double homothetisms of R, if s,. s5,. 5, and s, run through
the set {s.}. This ring, too, is one of the rings of case C. If o/ has order 8, then the
elements of of” are (s, Sg4, S, 5., 57, S, §,, 5,). where each of the last 6 endomor-
phisms commutes with 32 endomorphlsms ol' E(R*). The notation s,, s, indicates
that the sets {s.} and {s;} are equal, and likewise for s, and s,. In E(R*) we can
find an endomorphism, say, s, S, = S., 5, %S4, Sy =50, S =S4, such that {s.}N{ss}=
={s,} N {s}={s.} N {s,}. Now we form the set B’: (5, Sga+ Scs Scs Sqs Sas Sps Sp)- AS
A’ {s,}= {5}, it follows that each element of Z’ is commuting with each element of
of’. The set (s,. ;) of pairs s, € A’, 5,€/ isa set S~ of related double homothetisms
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of R. Moreover S~ is a maximal set of related double homothetisms of R. For,
let (s,,s,) be a double homothetism related to all double homothetisms of S~.
Then s,s.=s.s, and s5,5,=5,5,, hence s,€{s.}\{s,}=2". As s,5,=5,5, and s,5,=
=5;5,, it follows that s,€ {s,} N {s,}. But {s.} N {s,} =2, whence s,€#’. Therefore
(s,.5,)€S". The set of all pairs (s;, s;) with 5,€.9/", s, € 4" is likewise a maximal
set S”” of related double homothetisms of R. In this way we obtain 42 pairs S$~, §™°
of maximal sets, hence 84 maximal rings of related double homothetisms of R.
The 84 corresponding holomorphs of R are denoted by U; (i=1, ..., 84).

E. Finally we consider the two sets {s,} and {sg;}, both consisting of all
endomorphisms of R*. Here we form the set S™ of all pairs (s,, 5,) and (sgs, 5,)
where s, and s, run through E(R*). S consists of related double homothetisms
of R and it is a maximal set of this kind.

Likewise the set S*, consisting of all pairs (s;, s,) and (s,, 5g4), wWhere s, s,
run through E(R*), is a maximal ring of related double homothetisms of R. Thus
we obtain 2 holomorphs of R, denoted by V,. V,. For a zero-ring R, whose additive
group R* =(a,)® (a,)® (a;) is the direct sum of three cyclic groups each of order 2,
we have determined 367 holomorphs. We prove now that these are all holomorphs
of R.

Let U be an arbitrary maximal ring of related double homothetisms of R.

a. Suppose there is an element (s;, s) €U, 5;#5,, Sga, S #5,, 844, sSuch that
{s;} has order 8, and if s. is arbitrary in {s;}, then {s.} = {5;} (5. #5,, 554). As we have
seen in case (i) of A, the set of all pairs (s,, 5;) with s,, 5, € {s,} is a maximal ring
M of related double homothetisms of R. It follows that (s;, 5,) € UMN M. Now let
(s., 54) be an arbitrary element of U (s5.#5,, Sg4, 54 %Sy, Sgs). AS 5.5, =55, and
5 € {s;}, we get that {5} = {s;} and s5.€ {s5;}. From s;s5; =35;5, it follows that s, € {s;}.
Therefore (s., 5;) € M. The elements (s, 5;) in U with either s. or s, or both equal
10 5, or sg4 belong to M, as s,, sg4 € {s;}. Thus US M, and as U is maximal, U= M.
Then the holomorph cooresponding to U is one of the holomorphs P; (i=1, ..., 8).
In the sequel we need the following properties of the ring E(R*):

Property I. If {s,} has order 8, {s} has order 32 and s,€ {s}, then {s,}< {5}
() P{o}perty IL If 5, 5.€{s;} N {s,} and both {s;} and {s,} have order 8, then

Sif = Sk s-

b. Suppose there is an element (s;, 5,) € U, 5, %5, , Sgq, Sk %5y, Sg4 With 5;, 5, €
€ {s}, {s} being a set of order 8 of case (ii) of A. Moreover we assume that at least
one of the two sets {s;} and {s,} is of order 8, say {s;}. As s;5=ss; and both {s}
and {s;} have order 8, we get {s} = {s;} (property II).

by. {s:} has order 8, which implies that {s}={s;}={s;}. Let (s,,s;) be an
arbitrary element of U. From (s,. s,) is related to (s;. 5;) it follows that s, € {5, } = {s;}
and s, € {s;}. This means that UZ S;, where S; is a maximal ring of related double
homothetisms of R, obtained in case (ii) of A. From the maximality of U we infer
that U= S;, hence the holomorph corresponding to U is one of the holomorphs
g, (i=1, ..., 133).

b,. {s:} has order 32, which implies {s;} < {s;} (property I).

b, (i). All double homothetisms of U have as second component s,, Sg4. 5.
or sy, where s; is the uniquely determined endomorphism of R* with {s;}= {5},
s, # 5;. Let (s,. s5,) be an arbitrary element of U. Then s, € {s;}, hence US S;”, where
S;” is one of the maximal rings of related double homothetisms of R, obtained in C.
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Again U=S;" and the holomorph corresponding to U is one of the holomorphs
T, (i=1, ..., 98).

b,.(ii). There is at least one double homothetism in U, say (s., s,), such that
54 is not one of the endomorphisms s, , Sg4, 5i, 5, of case b,(i). As (s., s,) is related
to (s;, s,) it follows that s, € {s;} < {s;}. Let (s,, s,) be an arbitrary element of U.
Then (s,, s) is related both to (s;, s5,) and (s, s,). Therefore s,€ {s,} N {s,}.

b,(iia). Suppose {s,;} has order 8, then {s,} {s;} (property 1) and s,€ {s,}.
From s;5;=s;5; and both {s,} and {s;} have order 8, it follows that {s,}={s;}
(property II). Hence s, € {s;}. From (s,, 5,) is related to (s;, s,) we infer that s, € {s;}.
Thus in this case US §;, where S; is one of the maximal rings of related double
homothetisms of R, obtained in case (i1) of A. Then U=S; and the holomorph
corresponding to U is one of the holomorphs Q; (i=1, ..., 133).

b,(iib). Suppose {s,} has order 32. Now &ss5,=s5,5. both {s.} and {s,} have
order 32 and {s;} # {s,}. From (s,, 5;) is related to (s;, s;) it follows that s, € {s,} N {s;}.
Also s,€{s;} and, as {s;} has order 8, one gets s,5,=s,5, or s,€{ss}. Hence
Sy € {53} N {sq}. Now U< o#;, where o, is one of the maximal rings of related double
homothetisms of R of case B. Then U=./; and the holomorph corresponding
to U is one of the holomorphs R; (i=1, ..., 42).

Remark. The case: “there exists an element (s;, 5,) € U, §; #5,, Sga, Sk # 515 Sga
with s;, 5, € {s}, {s} being a set of order 8 of case (ii) of A and {s,} having order 8"
is quite similar to the case b just finished.

c. Suppose there is an element (s;, 5,) € U(s; 75y, Sga: Sg # 5y, Sgq) With 5, 5, €
€ {s}, where {s} is a set of order 8 of case (ii) of A. Now we assume that both {s;}
and {s.} have order 32.

First we remark that we may assume that for every element (s,, s,) € U(s, #5;,5g4:
Sp# Sy, 5g4) both {s,} and {s,} have order 32. For let (s, s,)€ U, where, say s,
has order 8. As s,€ {s.}, we have that s, 5,€ {s.}, {s.} being a set of order 8. Then
we get a ring U, already considered in case a or case b. Secondly we state that if
(s., s)EU, s.#5,, g4, then (s;, 5,) € U, where s, is the uniquely determined element
of E(R*) with {s.}={s.},s.#s.. For, if (s,,s,) is an arbitrary element of U,
then s.s, =s,5., as 5.5, =55, and s,5,=s,5,. Likewise from (s.,s,)€U it follows
that (s., s;)€ U. In the sequel the notation s,,s, means that the sets {s,} and
{s.} are equal, both of order 32, and s, #s,.

¢,. All double homothetisms of U have as a first component s,, sg4, 5; OF 5.
Let (s,, s,) be an arbitrary element of U. Then s,€ {s;} and US S}, where S is
one of the maximal rings of related double homothetisms of R of case C. The maxi-
mality of U implies U= S;. The holomorph corresponding to U is one of the holo-
morphs T; (i=1, ..., 98).

¢,. There is at least one double homothetism of U, say (s.,s,), such that
5.4(8,, Sg4» 8i, 5;). Now the endomorphisms s,, Sg4, S;, 5/, 5., 5. occur as first
components of double homothetisms of U.

¢, (i). First we suppose that s;s.=s.5;. Let (s,, s,) be an arbitrary element of
U, then s,€{s.}N{s;}). Therefore the set K of all second components of double
homothetisms of U is a subset of a set .o7; = {s5.} " {5;} of case B. Now s,, 5; € K, 5, #
# 5y, Sg4, hence the order of K =4. If the order of K is 4, then all double homothetisms
of U have as second component s, , g4, 5, Or Sx. This case has been considered in ¢,,
hence O(K)=4. Then the endomorphisms s,, Sg4. S, Sk, 5, 5 occur in K, where
87815 Sgas ks 8 and s, € {s.} N {s;}. As s, commutes with all second components,
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it follows that s,€ {s,} N {s;} = o;. Thus in this case U< S/, where S; is a maximal
ring of related double homothetisms of R of case B. As U is also a maximal ring,
we get that U=S;. The holomorph corresponding to U is one of the holomorphs
R, (i=1,...,42).

¢, (ii). Secondly we suppose that s.s;#s;s.. Again, if (s,, s,) 1S an arbitrary
element of U, s, € {s.} [ {s;}. Therefore the set L of all second components of double
homothetisms of U is a subset of a set o/, = {s.} N {s;} of case D. As s, sy €L, 5 #
#=5§,, Sg4, we have that O(L)=4. If O(L) 4, then all double homothetisms of U
have as second components §,, Sgq, 5 or sy, which is agam case ¢, , hence O(L)==-4
Then the endomorphisms s,, Sg4, Sk, 5k, 5, §; occur in L, where $17 515 Ssas F s
and s,€ {s.} N {s;}. An element s, that commutes with all elements of .=/ belongs
to #;, where #; = {s,} N {s,}. Hence U< S/, where S; is a maximal ring of related
double homothetisms of R of case D. It follows that U= S;". The holomorph corres-
ponding to U is one of the holomorphs U, (i=1, ..., 84). In the preceding cases
a, b and cwe have assumed the existence of an element (s;, 5,)€ U with s; #5,, Sg4
and s, #5,, Sg4. Now every endomorphism s,€ E(R*)(s,#5,.5g4) belongs either
to a set {s} of case (i) of A or to at least one set {s"} of case (ii) of A. If 5; and s,
belong to the same set {s} of case (i) of A, we get case a. The case that s; and s,
belong to different sets of case (1) of A is impossible, as s;5, = 5.5;. It is a consequence
of properties I and II that 5;€ {5} of case (i) of A and s, € {s"} of case (ii) of A or
conversely is also impossible. There remains the case that 5; and s, both belong
to sets of case (ii) of A. If 5; and s, belong to the same set {s"} of case (ii) of A, we
get cases b and c. Suppose now that s;€{s} and s, € {s"}, where both {s} and {s"}
are sets of case (ii) of A, such that {s} = {s"}. Then O({s;}) = O({s,}) =8 is impossible,
since this would imply {s} = {s"} by property IL. If at least one of the sets {s;} and
{s} has order 32, we can proceed as in the cases b, or ¢, since in b, and in ¢ the as-
sumption that s; and s; belong to the same set of case (ii) of A is not essential.

d. Suppose there is no element (s;, s;) € U with 5;#5,, s34 and s, #5,, Sg4.
It is clear that, if (s,,s)€U, (sgs, )€U and, if (s, s,)€U, (s, 554) € U. Now
suppose (s,,s) and (s,,s,) belong to U, where s,#5,, 554 and s,=5,, 5gq. If
(s, 5p) is an arbitrary element of U, then s,€ {s,} and s,€{s,}. If {5} and {s,} both
have order 8, then {s,} = {s,} (property II) and this means that U is a proper subset
of a maximal ring of A or B, which contradicts the maximality of U. Also if either
{s,} or {s,} or both have order 32, we can prove that U is a proper subring of a maximal
ring of related double homothetisms of R of one of the cases A, B, C or D by the
same method as in case ¢ with only a few modifications. As U is maximal this gives
a contradiction at any case. Hence (s, s,), (5,, 5;) € U with 5, #5,, Sg4 and s, # 5, , 5g4
is impossible. Thus, if (s,. s,) € U with s, #5,, sg4, then for every element (s,, 5,) € U
one gets s, =5, Or 5,=S5g4. But then UC S%, and as U is maximal, U= S™, If there
is no element (s,, s,)€ U with s,5,, 5g4, then for every element (s, 5,)€U one
has s, =5, or 5, =sg4. In that case US S*, and as U is maximal, U= S". The only
holomorphs corresponding to rings U of d are V, and V,. This completes the proof
that the zero-ring R with additive group of type (2, 2, 2) has 367 holomorphs.

In [1] we have determined the number of holomorphs of all rings R with additive
group R* of type (p, p) and (p, p?), where p is a prime number. Together with our
previous results for rings R with R* of type (2, 2, 2) we can give a survey of the
number of holomorphs of all rings R with O(R)<16. If Rhas 2,3,5,7,11 or 13
elements, then the additive group R* of R is a cyclic one, and as E(R*) is com-
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mutative, R has one holomorph [1]. If R has 6, 10, 14 or 15 elements, then, as is
well known, the additive group R* of R is again cyclic and R has one holomorph.
In the sequel we leave the rings R with cyclic additive group R™ out of consideration.
If R has 4 resp. 9 elements, then the additive group R* of R is of type (p, p) with
p =2 resp. 3. In this case, if R.is a non-zero ring, R has one holomorph (Satz 2, [1]).
A zero-ring R with R* of type (2, 2) has 22 +2+3 = 9 holomorphs. A zero-ring
R with R* of type (3, 3) has 3 +3+3 = 15 holomorphs. If R has 12 elements
and R* is not a cyclic group, then R* is the direct sum of a four-group of Klein
and a group of order 3. Therefore R is the ring-theoretical direct sum of its subrings
R, resp. R,, consisting resp. of the 4 elements of order 2 and the 3 elements of order
3 in R. As both R, and R, are characteristic subrings in R all holomorphs of R
have the form H=H,® H,, where H, is an arbitrary holomorph of R, (i=1, 2) [2].
As R, has one holomorph it follows that R has one holomorph if R; has one
holomorph. If R, is a non-zero ring it has one holomorph. If R, is a zero-ring it
has 9 holomorphs as we have seen. Consequently, a ring R with 12 elements has
one holomorph, except when the subring of elements of order 2 in R is a zero-ring.
In the last case R has 9 holomorphs.
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