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On metrical homogeneous connections
of a Finsler point space

By L. KOZMA (Debrecen) and S. BARAN (Debrecen)

Abstract. Finsler point spaces mean that vectors are defined at points of the
base manifold and not at line elements. We show a process how to obtain in such a
Finsler space a metrical homogeneous connection from an arbitrary linear (or nonlin-
ear) connection. The autoparallel curves of the given and the constructed connections
coincide as point sets. It is shown that the curvature tensors are coupled by the angular
operator.

Introduction

In the history of Finsler geometry the search of an appropriate connec-
tion — in other aspect, a parallelism structure — was the first challenge.
Several solution were obtained (see [2], [3]). Namely, in Finsler spaces it
is not possible, in general, to introduce a metrical (i.e. length preserving)
linear connection. There are, however, two ways for solving this defect.
One of these is lifting all notions and investigations to the tangent mani-
fold, traditionally saying, to the line element bundle (see [2], [3]). Another
outway proposes to find metrical, but not linear, only homogeneous con-
nections on the manifold itself. It was found by W. Barthel [1] implicitely
already by L. Berwald and E. Cartan, however, such a connection is
not unique at all. This second line of approach has not been completely
exploited.

Here we show a general construction for obtaining a metrical homo-
geneous connection from an arbitrary linear connection given in a Finsler
space. The basic idea, due to L. Tamássy [5] is the following. Take a
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unit vector, translate it along a curve according to the given linear con-
nection and normalize the translated vectors. Then we obtain a metrical,
i.e. length preserving parallel translation along curves. This connection
is, however, not linear, only homogeneous in general. We remark that this
program can be realized even if the starting connection is nonlinear, more-
over the Finsler space can be replaced with a Finsler structure in a vector
bundle.

Now we describe this construction in a Finsler vector bundle with the
aid of horizontal maps and give the relationships between the correspond-
ing covariant derivations, parallelism structures, geodesics and curvatures.

§1. Construction of a metrical homogeneous connection

We work in the category of smooth vector bundles. Let ξ=(E, π,B, F )
be a vector bundle with the total space E, the base space B, the projec-
tion π and the typical fibre F . ξ̇ denotes the splitted bundle with the
total space Ė = E \ {0}. A continuous function L : E → R+ which is C1

on Ė is called a Finsler fundamental function if it is positively homoge-
neous, i.e. L(tz) = tL(z) for all t ∈ R+ and z ∈ E, and, considering a
local vector bundle coordinate system (xi, yα, i = 1, . . . , dimB = n, α =
1, . . . , dim F = m), the fundamental metric tensor defined by

gαβ(x, y) =
∂2(L2/2)
∂yα∂yβ

(x, y)

gives a positive definite quadratic form for all (x, y) = z ∈ Ė.
The last assumption implies that the indicatrix

Ix = {z ∈ Ex = π−1(x) | L(z) = 1}
at each point x ∈ B is convex (see [3]). The indicatrix bundle Iξ =
(IE, π, B, Sm−1) of a Finsler vector bundle (ξ, L) is formed with the indi-
catrices Ix as fibres. In the following construction there will be a crucial
role of the normalizing operator η : ξ̇ → Iξ defined by

η(z) =
z

L(z)
.

Consider now a connection in the vector bundle ξ given by a horizontal map
H : π∗(τB) → τE (i.e. a vector bundle map satisfying dπ(H(z, v)) = v for
all z ∈ E, v ∈ TB with π(z) = πB(v), where π∗(τB) denotes the pullback
bundle (E ×B TB, E, pr1,Rn)). A curve ψ: I → E is called horizontal iff
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the tangents ψ̇ are horizontal vectors. Then we say also that ψ is parallel
along the base curve π ◦ ψ. Suppose that H satisfies the homogeneity
condition

H(µt(z), v) = dµt(H(z, v))

for all t ∈ R+, where µt : E → E, z 7→ tz is the multiplication by t in the
fibres. If H is differentiable on the whole E then we obtain the notion of
the linear connection. (Homogeneity and differentiability at z = 0 yield
linearity.) In this case the parallel translation along curves determines
linear maps and the local connection coefficients are linear: Γα

i (x, y) =
Γα

iβ(x)yβ . If H is not supposed to be differentiable on the zero section of
ξ then we have a homogeneous connection. Then the parallel translation
means only homogeneous maps and Γα

i (x, ty) = tΓα
i (x, y) holds for all

t ∈ R+.
Our construction has two steps. Starting with a linear connection

in ξ, first a connection in the indicatrix bundle Iξ is defined, then it is
extended to ξ in order to obtain a metrical homogeneous connection in the
whole ξ.

Proposition 1. If H is a horizontal map of a linear connection in the
Finsler vector bundle (ξ, L) then the map H(i) : π∗(τB) → τIE defined by

(1) H(i) = dη ◦ H|IE×BTB

is a horizontal map in the indicatrix bundle Iξ.

Proof. Clearly π ◦ η = π. Using this relation we obtain

dπ ◦ H(i) = dπ ◦ dη ◦ H|IE×BTB = d(π ◦ η) ◦ H|IE×BTB

= dπ ◦ H|IE×BTB = idTB . ¤

Remark. Having the homogeneity of the horizontal map H it is not
necessary to restrict H in (1) onto IE. In fact, if for z1, z2 ∈ E holds
η(z1) = η(z2) then dη(H(z1, v)) = dη(H(z2, v)). Namely, in this case
z1 = tz2 = µt(z2) for some t ∈ R+, supposed z2 6= 0, therefore

dη(H(z1, v)) = dη(H(µt(z2), v)) = dη(dµt(H(z2, v)))

= d(η ◦ µt)(H(z2, v)) = dη(H(z2, v)).

In the second step we extend the connection of the indicatrix bundle
Iξ homogeneously to the whole vector bundle ξ. In this way we obtain a
metrical homogeneous connection in the Finsler vector bundle.
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Proposition 2. The map H(m) : π̇∗(τB) → τĖ constructed from H
and defined by

(2) H(m)(z, v) = dµL(z)(H(i)(η(z), v)) ∀(z, v) ∈ E ×B TB

is a horizontal map for the vector bundle ξ which satisfies the homogeneity

property and means a metrical connection in the Finsler vector bundle

(ξ, L).

Proof. a) Using π ◦ µL(z) = π we show that H(m) is a horizontal
map in ξ, for

dπ(dµL(z)(H(i)(η(z), v))) = d(π ◦ µL(z))(H(i)(η(z), v))

= dπ(H(i)(η(z), v)) = v.

b) To check homogeneneity we observe that µt◦µL(z) = µtL(z) = µL(tz)

and η(z) = η(tz) for t ∈ R+. Therefore

dµt(H(m)(z, v)) = dµt(dµL(z)(H(i)(η(z), v)))

= dµL(tz)(H(i)(η(tz), v)) = H(m)(tz, v) = H(m)(µt(z), v).

c) H(m) is metrical by definition iff dL ◦ H(m) = 0. To verify this we
apply that L ◦ µL(z) = L(z)L holds for a fix z ∈ E and L ◦ η = 1, which
imply dL ◦ dµL(z) = L(z)dL, dL ◦ dη = 0. Therefore using these and the
definition of H(m) and H(i), we obtain

dL(H(m)(z, v)) = dL(dµL(z)(H(i)(η(z), v)))

= dL(dµL(z)(dη(H(z, v))) = L(z)dL(dη(H(z, v)) = 0. ¤

The following corollary formulates that this process produces essen-
tially the descriptive construction of L. Tamássy [5].

Corollary. Let ϕ : I → B be a curve in the base space B, ψ : I → E

a horizontal curve along ϕ with respect to H and z0 := ψ(0) ∈ π−1(ϕ(0)).
Thus the curve ψ∗ : I → E defined by ψ∗(t) = µL(z0)(η(ψ(t)) ∀t ∈ I is

a horizontal curve with respect to the constructed homogeneous metrical

connection H(m).

The corollary follows immediately from the definition: ψ is a horizon-
tal curve iff ψ̇ = H(ψ, dπ ◦ ψ̇) where ψ̇ denotes the tangents of ψ.
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Now we give the local description of our construction. Considering a
local coordinate system (xi, yα) for ξ, the map η is given locally by

η : (xi, yα) 7→
(

xi,
yα

L(x, y)

)
.

A short calculation shows that the action of dη : TE → TE is as follows:

dη

(
∂

∂yα

)
= (δβ

αL(x, y)− ∂L(x, y)
∂yα

yβ)
1

L2(x, y)
∂

∂yβ
,

dη

(
∂

∂xi

)
=

∂

∂xi
− ∂L(x, y)

∂xi

yα

L2(x, y)
∂

∂yα
.

If H is characterized by the local connection parameters Γα
i (x, y) which

satisfies

H
(

(x, y),
∂

∂xi

)
=

∂

∂xi
− Γα

i (x, y)
∂

∂yα

then using the above action of dη and (1),(2) we can obtain that the new
metrical homogeneous connection H(m) has the following local connection
parameters:

(m)

Γ α
i (x, y) = Γα

i (x, y)− yα

L(x, y)

(
∂L(x, y)

∂yβ
Γβ

i (x, y)− ∂L(x, y)
∂xi

)
.

Moreover, in the case of a linear connection Γα
i (x, y) = Γα

iγ(x)yγ we have

(3)
(m)

Γ α
i (x, y) = Γα

iγ(x)yγ − yα

L(x, y)

(
∂L(x, y)

∂yβ
Γβ

iγ(x)yγ − ∂L(x, y)
∂xi

)
.

§2. The relationships between the original linear and the
constructed metrical connections

First we derive a relationship between the corresponding covariant
derivations. The covariant derivation ∇ : X (B) × Sec ξ → Sec ξ of H is
given by

∇Xσ = α(dσ(X)−H(σ,X))

where α : V E → E is given locally as α(yβ ∂
∂yβ ) = (yβ).

Theorem 1. Denoting the covariant derivations ∇ and ∇(m) belong-
ing to H and H(m) resp., we have

∇(m)
v σ −∇vσ = η(σ)dL(H(σ, v)) ∀v ∈ TB, σ ∈ Sec ξ.
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As we see, this theorem expresses that the deviation of the two co-
variant derivations just measures the ’non-metric’ property of H.

Proof. We check first that for any fixed z ∈ Ė

(id− dµL(z) ◦ dη)(u) =
1

L(z)
dL(u)C(z) ∀u ∈ TzE

where C : E → V E denotes the Liouville vector field given locally as
C(z) = yα(z)( ∂

∂yα )z. In fact, applying the left side on the coordinate
functions

(id− dµL(z) ◦ dη)(u)(xi) = u(xi)− u(xi ◦ µL(z) ◦ η) = 0.

(id− dµL(z) ◦ dη)(u)(yα) = u(yα)− u(yα ◦ µL(z) ◦ η)

= u(yα)− u

(
yα

L
L(z)

)

= u(yα)− L(z)
u(yα)L(z)− yαu(L)

L2(z)

=
yα

L(z)
u(L) =

1
L(z)

dL(u)yα.

We calculate now the deviation of ∇(m) and ∇ with respect to (1) and (2)

∇(m)
v σ −∇vσ = α

(
dσ(v)−H(m)(σ, v)

)
− α (dσ(v)−H(σ, v))

= α
(
H(σ, v)−H(m)(σ, v)

)

= α
(H(σ, v)− dµL(σ)(dη(H(σ, v))

)

= α
(
(id− dµL(σ) ◦ dη)(H(σ, v))

)
.

Using the relation above and α ◦ C = id we have further

∇(m)
v σ −∇vσ = α

(
1

L(σ)
dL(H(σ, v))C(σ)

)

=
σ

L(σ)
dL(H(σ, v)) = η(σ)dL(H(σ, v)). ¤

The curvature tensor R of a linear connection ∇ is defined by

R(X, Y )σ := ∇X(∇Y σ)−∇Y (∇Xσ)−∇[X,Y ]σ

for all X, Y ∈ X (B) and σ ∈ Sec ξ, or locally

Rβ
γji =

∂Γβ
jγ

∂xi
− ∂Γβ

iγ

∂xj
+ Γβ

isΓ
s
jγ − Γβ

jsΓ
s
iγ
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On the other hand, the curvature of a homogeneous connection ∇(h)

is defined by
(h)

R (U, V ) = −v[h(U), h(V )],

for all U, V ∈ X (E), where h = H ◦ dπ, v = id− h. Locally

(4)
(h)

R α
ij =

∂Γα
j

∂xi
− ∂Γα

i

∂xj
+ Γβ

j

∂Γα
i

∂yβ
− Γβ

i

∂Γα
j

∂yβ
.

It is known [4] that the two types of curvatures are related as follows:

α ◦
(h)

R (Xh, Y h) ◦ σ = R(X,Y )(σ).

As far as our construction of a metrical homogeneous connection we
can prove the following theorem.

Theorem 2. Let us denote by Rβ
kji and

(m)

R β
ij the corresponding curva-

tures of a linear connection H and the constructed metrical homogeneous

connection H(m). Then they are related by

(m)

R β
ij = yδRα

δji

(
δβ
α −

yβ

L

∂L

∂yα

)
.

Proof. We calculate all term in (4) using the explicit form (3) of the

connection parameters
(m)

Γ α
i . First we have

∂
(m)

Γ β
i

∂xj
=

∂Γβ
iγ

∂xj
yγ − yβ

L2

(
∂2L

∂yα∂xj
Γα

iγyγ +
∂L

∂yα

∂Γα
iγ

∂xj
yγ − ∂2L

∂xi∂xj

)
L

+
yβ

L2

(
∂L

∂xj

∂L

∂yα
Γα

iγyγ − ∂L

∂xj

∂L

∂xi

)

and

∂
(m)

Γ β
i

∂yγ
= Γβ

iγ −
δβ
γ

L

(
∂L

∂yα
Γα

iδy
δ − ∂L

∂xi

)

− yβ

L

(
∂2L

∂yα∂yγ
Γα

iδy
δ +

∂L

∂yα
Γα

iγ −
∂2L

∂xi∂yγ

)

+
yβ

L2

(
∂L

∂yγ

∂L

∂yα
Γα

iδy
δ − ∂L

∂xi

∂L

∂yγ

)
.
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Using the relations

∂2L

∂yα∂yγ
yγ = 0,

∂2L

∂xi∂yγ
yγ =

∂L

∂xi
,

∂L

∂yγ
yγ = L,

which are consequences of the homogeneity of L, we obtain

(m)

Γ γ
j

∂
(m)

Γ β
i

∂yγ
= Γβ

iγΓγ
jδy

δ − Γβ
jδ

yδ

L

(
∂L

∂yα
Γα

iδy
δ − ∂L

∂xi

)

− Γβ
iδ

yδ

L

(
∂L

∂yα
Γα

jδy
δ − ∂L

∂xj

)
− yβ

L
Γγ

jmΓα
iδ

∂2L

∂yα∂yγ
ymyδ

− yβ

L

∂L

∂yα
Γα

isΓ
s
jδy

δ +
yβ

L

∂2L

∂xi∂yγ
Γγ

jδy
δ

+
yβ

L2

∂L

∂yγ
Γγ

jδy
δ

(
∂L

∂yα
Γα

iδy
δ − ∂L

∂xi

)

+
yβ

L2

∂L

∂yα
Γα

iγyγ

(
∂L

∂y`
Γ`

jδy
δ − ∂L

∂xj

)

− yβ

L2

∂L

∂xi

(
∂L

∂yα
Γα

jδy
δ − ∂L

∂xj

)
.

Thus

(m)

Γ γ
j

∂
(m)

Γ β
i

∂yγ
−

(m)

Γ γ
i

∂
(m)

Γ β
j

∂yγ
= (Γβ

iγΓγ
jδ − Γβ

jγΓγ
iδ)y

δ

− yβ

L

(
∂L

∂yα
Γα

iγΓγ
jδ −

∂L

∂yα
Γα

jγΓγ
iδ

)
yδ

+
yβ

L

(
∂2L

∂xi∂yγ
Γγ

jδ −
∂2L

∂xj∂yγ
Γγ

iδ

)
yδ

− yβ

L2

∂L

∂yα

(
Γα

jδy
δ ∂L

∂xi
− Γα

iδy
δ ∂L

∂xj

)
.

Substituting these in (4) we have

(m)

R β
ij =

∂
(m)

Γ β
j

∂xi
− ∂

(m)

Γ β
i

∂xj
+

(m)

Γ γ
j

∂
(m)

Γ β
i

∂yγ
−

(m)

Γ γ
i

∂
(m)

Γ β
j

∂yγ
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=

(
∂Γβ

jδ

∂xi
− ∂Γβ

iδ

∂xj
+ Γβ

iγΓγ
jδ − Γβ

jγΓγ
iδ

)
yδ

− yβ

L

∂L

∂yα

(
∂Γα

jδ

∂xi
− ∂Γα

iδ

∂xj
+ Γα

iγΓγ
jδ − Γα

jγΓγ
iδ

)
yδ

= Rβ
δjiy

δ − yβ

L

∂L

∂yα
Rα

δjiy
δ. ¤

Remark. Notice that the operator Hβ
α := δβ

α− yβ

L
∂L
∂yα in Theorem 2 is

closely related to the angular metric tensor hαβ of the Finsler metric. In
fact, transvecting by gβγ we have

Hβ
αgβγ =

(
δβ
α −

yβ

L

∂L

∂yα

)
gβγ = gαγ − ∂L

∂yα

∂L

∂yγ
= hαγ .

Therefore we call the operator H the angular operator of the Finsler vector
bundle (ξ, L). The angular operator is singular self adjoint operator with
rank m − 1 in the vertical bundle V ξ. So we can express the result of
Theorem 2 as follows:

(m)

R (U, V ) = H (`v
z(R(dπ(U), dπ(V ))))

where `v
z : π−1(π(z)) → VzE is the vertical lift: `v

z : (yβ) 7→ (yβ( ∂
∂yβ )z.

We consider now the geodesic structures of the connections in the
tangent bundle case ξ = τB . A curve ϕ: I → B is called a geodesic (or an
autoparallel curve) of the connection H iff its tangent curve ϕ̇ is parallel
(i.e. horizontal curve) along ϕ with respect to H.

Proposition 3. Apart from parametrization the geodesics of H and

H(m) coincide.

Proof. Consider a geodesic ϕ: I → B of H with initial vector v0 =
ϕ̇(0). Define a reparametrization γ :I → I as follows: γ(τ)=L(v0)

∫ τ

0
1

L(ϕ̇) .

Then ϕ1 := ϕ ◦ γ holds ϕ̇1 = L(v0) 1
L(ϕ̇) ϕ̇ = µL(v0)(η(ϕ̇)). It follows from

the Corollary that ϕ̇1 is a geodesic of H(m) with initial vector v0. By the
local uniqueness of geodesics every geodesic curve of H(m) can be gained
in this way. ¤
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