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1. Let us consider the cosine functional equation

(1) fep)+fxy=) = 2f(x)f(»), x,y€G,

where (G, .) is a group (not necessarily abelian) and the range of fis a commutative
ring (R, +, .). For (R, .) we suppose that

() 2a=0 for a=0 acR

holds, i.e., every equation 2a =2b in R can be cancellated by 2.
If we put y =1, the unity of G, in (1) then we have

: 2/()[1 =f(1)] = 0.
Thus it is a natural supposition to assume
(2) =1L
This assumption and (1) imply
3) SO N=Ay), ye€G

by substituting x=1 in (1).
Note that the commutability conditions

@ Sxy)=f(yx),  x,y€G
(inside) and
(5) S =ff(x), x yeG

(outside) are equivalent each to another since we have
fxy) = 2f()f () —flxy™ 1),
f(rx) = 2f()f(x) —f(yx~") =

= 2f(M)f(x) =f(xy~1)

by (1) and (3).
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P. L. KANNAPPAN has treated (1) in the case where (R, + .,) is the complex
field. He used the assumption

(6) JS(xyz2)=f(yxz), x,»,z€G

in order to obtain the solutions of (1) in the form

f(x)=1%[a(x) +a(x)~'] = ch a(x),

where a(x) is an arbitrary homomorphism of (G, .) into (R, .). Clearly, the condition
(6) is much more restrictive than (4). Indeed, (4) is the special case of (6) when z=1.

2. In what follows we investigate (1) under assumption (2) and (6) in the general
case where (R, +,.) is an arbitrary commutative ring restricted only by I). The
commutativity of (R,.) is a natural supposition since now we have (5) as a consequence
of (6).

The technic of the solution of a functional equation depends very greatly on
the following characteristic numbers:

I. the number n of the independent variables:

2. the number m of the given binary operations figuring inside of the required
function f.

E.g., in our equation (1) we have n=m =2 as x, y are independent variables
and xy, xy~! are given binary operations. It would be useful to find another equation
instead of (1), where the respective numbers n,, m, are changed such that

H',::'-N. nfl{m.

Here we show such a reduction of (1). We prove that

(7) F(x, y) = f(xy) =f(x)f(»)
satisfies
(8) F(x, y)F(u, v)= F(x, W)}F(y,v), x,y,u,v€G

for every solution / of (1) with subsidiary conditions (2) and (6).
For this purpose let us consider

Sxyz) = 2f(xy)f(z) —flxyz~1') =

2f(xp)f(2) =2f()f(yz~ 1) +flxzy~1) =
2/(en)f(2) =2 (N2 ) ()] +f(xzy™") =
2f(xy)f(2) + 2f () f(y2) =[S ()] +

+ 2/(x2) /() —2f(x) f() f(z) —f(xz),

Il

hence

S(xyz) =f(xp) f(2) = () S(yz) =) (@) + [ f(xz) —f(x) f(2)] ().

ie..

9) F(xy, z2) = f(x)F(y, 2) + F(x, 2) f(»), x, 5 z€G.
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Similarly, considering
F(xyu, v) = f(xy)F(u, v)+ F(xy, v) f(u) =
= SOy F(u, v) +[[(X)F(p, v) + F(x, v) f(0)] f(u) =
= f(x)F(yu, v) + F(x, v) f(yu) =
= f(x) F()F(u, v) + F(y, v) f()] + F(x, v) f(yu).

we conclude to

[f(xp) =f(x) f(0)] Flu, v) = F(x, o) [ fQu) —f(y) f(u)]

and this is equivalent to (8).
3. The Kannappan’s condition (6) seems to be very restrictive. E.g., (6) implies
that f maps every commutator xyx~'y~! onto

Syx=ly= ) =fOxx""y~)=f(1)=1.
But what can we state without supposing (6)? Observe that (6) was used in the
reduction of (1) to (9) only in a unique step. Therefore, (6) is necessary and sufficient
for the equivalence of (1) and (9). This raises the question weather is (6) necessary
also for the equivalence of (1) and (8) or not? (Assuming naturally (2).)

We answer this question negative and show that (1)—(2) and (8) may hold
without supposing (6), i.e., they do not imply (6) in general.

In fact, let us suppose (1)—(2). Then we have (3). By (5). also (4) is true. There-
after we define F(x, y) by (7). This F is symmetric with accordance to (4). However,
(9) can not be proved without using (6). We have only (10) F(xy, z)+ F(yx, z) =
= 2f(x)F(y, 2) +2f(¥)F(x, 2), x, y, z€G instead of (9). Now let us consider the
following equations equivalent to (8):

L/G09) 100 SONIF(w, 0) = FCx, o)L fu) () ),

2 () F(ws v) + 2@ F(y, 0]+ 2F(x, o) fu) +fwy)] =
= 2f([2f(x)F(y, v) + 2f(») F(x, v)] + 4f(xy) F(u, v),
2f(xy) F(u, v) +2f(u) F(xy, v) + 2f(yx) F(u, v) + 2f(u) F(yx, v) =
= 2f(x)F(yu, v) + 2f(yu) F(x, v) + 2f(x) F(uy, v) + 2f(uy) F(x, v),
F(xyu, v) + F(uxy, v) + F(yxu, v) + F(uyx, v) =

= F(xyu, v) + F(yux, v) + F(xuy, v) + F(uyx, v),
F(uxy, v)+ F(yxu, v) = FQyux, v)+ F(xuy, v),
Suxyv) + f(yxur) + f(yuxv) + f(xuyv).

This last equation holds since we have
Suxy) f(0) +f(yxu) f(v) = flyux) f(©) +f(xuy) f(v)
Suxy)=f(yux),  f(yxu))=f(xup)

as

are true by (4).
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Further equivalent form equations of (8) are the followings:
S(xyuv) +f(yxuw) = f(xuyv) +f(xvyu),
(11) S(uxyv) +f(xuvy) = f(xuyv) +f(uxvy), X,y u, v€G.

Summing up, (11) is a necessary and sufficient condition for the solutions
[ of (1)(2) to satisfy (8). Clearly, if (6) is supposed, then (11) holds evidently but,
conversely, (11) does not imply (6).

Note that also (11) seems to be a rather restrictive condition since it implies that
every commutator xyx~'y~! is mapped by f to the unity 1. It remains an open
question to find useful reduction instead of (8) without supposing such restrictive
conditions as (6) or (11).

4. Why is, however, interesting to reduce (1) to (8)?

We show the useful of this reduction in the special case where

(11) (R, 4, .) is a field.

Then (8) characterize the separable functions F for which

F(x,y)=cg(x)g(y), x,yeG

holds with a suitable constant ¢ in R. Here it is allowed ¢ =0 or g=0 too.
Thus (1) leads to a system of functional equations of the form

(89 J(xp) = f()f(y) + cg(x)g(y).} x,y€G
9) g(xy) = f(x)g(») +&(x)f()), A
where both fand g are unknown functions.

Thereafter, having this addition theorem form functional equations, it can be
built up the matrix

_ | f(x)  g(x)
(12) _ A0 = legx) 1)
satisfying
(13) A(xy)=A(X)A(y),  x,y€G.

Therefore, the most general form of fand g can be obtained by a special matrix
representation A(x) of the group (G, .). In this way the solution of (1) is reduced
to the determination of certain homomorphism x —A(x) of the group (G, .) into
a special matrix semigroup over (R, +..).

Note here that calculating af(xy-z) = af(x yz) in detail, whithout using (11)—(6),
we obtain only

(8 af (xy) = af()f(») +2(x)g(»), } 0
(9") ag(xy) = af(x)g(»)+ag(x)f(»,) 7
with

{ a = F(u,u) = f@?)—f(u)?* = fw)?—1,

) g(x) = F(x, u) = f(xu)—f S @) = £ ) —f (ru=?
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This yields an other matrix representation

. af(x) ag(x)
12 B(x) = .
s W [g(x} of ()
instead of the above A(x) by which we have only
(13) aB(xy)= B(x)B(y), X, yEG

instead of (13).
After (9”) ag(xy)=ag(yx) holds. Thus we have

a’f(xyz) = a f(xy) f(z) +ag(xy)g(z) =
= a*f(yx) f(2) +ag(yx)g(z) = a*f(yxz)
for every choosing of « in G, ie..
(15) [ f()* —112[ f(xyz) —f(yx2)] =0, Xy, 2, u€G

holds identically. This means that there is not a great distance between conditions
(6) and (11).

Remark that this reduction method here showen for obtaining (9) resp. (97)
can be applied also for more general type

foy) +glxy=1) = l_éfg(x)gi )

instead of (1).
If (R, +,.) is the complex field, then (8°) —(9’) is equivalent with

o(xy)=e(x)p(y), Yxp)=vxW(y). x yea,
o(x) = f(x)+V—cg(x), Y(x) =f(x)—V—cg).

Finally, remark that the importance of (8) can be seen also by putting suitable
special values of the independent variables x, v, u, v. E.g., if we substitute y=x"1,
v=u""1, then it becomes

(1 =21 —f()’] = [fxu) =f(x) S, x,u€G,

which is an interesting equation also in itself.

where
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Summary
The cosine functional equation

(1) fC+fxy=1) = 2f()f(y), x,y€G

is considered, where f maps a group (G,.) into a commutative ring (R, +,.). Assuming f(1)=1
and 2a#=0 for a#0 in R, the following results are established:

1. the relations f(x~Y)=f(x), f(xy)=f(yx) are true;

2. the Kannappan's condition f(xyz)=f(yxz) implies that

(8) F(x, ) F(u, v)=F(x,u) F(y,v), x,y,u,veG,
9) F(xy, 2) = f(X)F(y, 2)+F(x,2)f(»), x5 z€G
hold, where F is defined by
(7 F(x,y) = fxy)—f(x)f(y), x,y€G;
3. a necessary and sufficien condition for (8) is
(11) Sluxyv)+f(xuvy) = f(xuyv)+fluxvy),  x, v, u,veG;
4. (8) implies
(8) Sxp) = () f()+cgx)e(y), x,yEG,
}9"): g(xy) = f(x)g(»+g(x)f(y),
(13) Aey)=A() A(y), 0 apg=f s &e

cg(x) f)’

provided that (R, +,.) is a field;
5. (8) implies

(16) [1 =211 = f(w)?] = [f(xu)—f(x) f(w))?, x, u€G,

(15) ﬂ: [f(xyz)—f(yxz)] - 0, X,V ZEGs

and

(87) af(xy) = af(x)f(»+gx)g(y), x,yeG,

9" ag(xy) = af(x)g(y)+agx)f(y),

(%) aB(xy)=B(x)B(), 12)  B(x) = ["‘1r woarn
g(x) af(x),

where g, a are given by

(14) { a = F(u,u) = f(u?)— fu)* = f(u)*—1,
g(x) = F(x, u) = f(xu)—f(x)f() = f(x)f () —f(xu™?)

with arbitrarily fixed u€G.
The method of reduction showen here for (1) seems to be applicable also for the more general

type

S0+ ey~ = £ S0,



