Further examples of normal numbers

By JANINA LUPKIEWICZ SPEARS and JOHN E. MAXFIELD (Manhattan, Kansas)

Introduction
Definition 1. 1. A number « is simply normal to the base (or scale) r iff, in the
expansion of the fractional part of « to the base r, we have
e T 1
lim = = —,
awse N r

for all ¢, where n, is the number of occurrences of the digit ¢ in the first » digits of a.

Definition 1. 2. A number is normal to the base r iff «, ra,r?a, ... are each
simply normal to all the bases r, r?, r3, ....

Definition 1. 3. A real irrational number « is said to be a Liouville number
iff, for every positive integer n, there is a rational number p/q. with g= 1, depending
on n, such that

e —plq|<1/q".
We shall call the class of such «, L.

It was first proved by E. BOrEL [1], who introduced the concept of normal
numbers, as above, that almost all real numbers are normal.

There are, however, only a very few numbers that have been proved normal.
The first of these is known as Champernowne’s number x =,1234567891011121314... ,
formed by writing the natural numbers in succession. CHAMPERNOWNE [2] showed
this number normal to the base ten, while CorPeLAND and ERDGS [3] extended the
proof for normality to any base r of the analogous number constructed as above.
TH. ScHEIDER [7] shows that Champernowne’s number is transcendental but not
in L.

We will introduce the class %, which yields normality when its elements are
added to normal numbers. This generates a set of normal numbers having the power
of the continuum, and different from the known normal numbers. The remainder
of the paper will partially characterize the class Z.

The class &

Definition 2. 1. Let ¢ be a given digit (or finite sequence of length s of digits)
to the scale r, and let A be a number to the scale r such that the number of non-¢
digits in the first N digits (sN digits) of 4 is f(N)=0(N).
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Definition 2. 2, We define Z to be the class of all elements of the type 4.
Note: The class £ is closed under addition and subtraction.

Theorem 2.1 If A is an element of %, and if « is normal to the scale r, then
o+ (p/q)A+py/q, is normal to the scale r, where p, ¢, p,, q, are integers.

PRrOOF. It is necessary to consider only the case when y = « + A, since = (g/p)x
is normal. Thus, proving the theorem for f -+ /4 gives us the fact that

(pl)(B+4) = (p@)(g/p)+ 4] = a+(p/q)

is normal. Further, we need only consider 4 of the form when ¢ is zero, since
A —.ccc... is in &, with the dominant digit zero.

Let A4, be a given block of s digits to the scale r. We wish to classify the occurrences
of A4, in a according to how many digits equal to r— 1 follow A, before a non-r—1
digit occurs. Hence, define A,,; to be a block of s+j+1 digits, equal to r —1,
followed by a non-r —1 digit. Since, for each k, the fractional part of r* is less than
one, the part to be carried in adding « and 4 will never exceed one. Thus, a non-zero
digit from 4, added into « to the right of A, ; does not change the A, part. Further,
any digit of 4, added info the block A,,; can change no more than the one A,

block occurring in that A, ;.
Now, we fix j=0 and A4,, and from the normality of x and a result of NIVEN-

ZUCKERMAN [6], we find that
lim 45T .

gt N iy pitit1?

for each A,, ;, where N(4,, ;) stands for the number of occurrences of the blocks
Agy; in the first N digits of «. But there are r —1 possible assignments to the non-
zero digit terminating A, ;; hence

lim N(As+1) = r—1

» N = pititl?
- o0

for all 4,.,;.
Thus for any e>0 and 7> 0, we may find an M, such that

| N(,) _ r=1 | _ e
| N psti+i Py

if N> M; or, in particular, we have

Ne —1
_'ZT':N(AH-J) s+_;+1 -N.

If N°(A4,. ) represents the number of these A, blocks within 4, ; blocks that
are preserved m the first N digits of y = «+ 4, we have

N’(Asi-j) +f(N) = N(As+j)a
and

T =f(N) < N'(Ays )~ —rigir N.
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Thus
Z [———f(N)] Z N4, ) -2,

or

~ - (N) < ZN(A,+,) MI)Z— ZN(A,H) M

or finally,
SN @) K1 e g

=4 N T psted 2 N

Since ll_pl f(N)/N=0, we may choose N so large that f(N)/N=<g/2t, or
—g/2t = —f(N)/N. We now define N’(4,) to be the number of occurrences of A,

blocks in the first N digits of y. Then, since N'(4,) = > N’(4,, ;), we have for some N,
Jj=0

.
e 1 % ¢ P 1

;
or
N@A4) 1 !
B SR R
Thus,
PR b 7 1
!:Tﬂ'nf[ S r.;] = -we

and the left member is independent of 7, while the right is as small as one pleases,
which implies that
N'(4,) _ 1_] e

Iim mf[ N -

N=+oo

From lemma 8. 2 of [5], it follows that

: N(d) 1]
llm[ N -;]—0,

N=oo

and using the Niven-Zuckerman result once more, it follows that y = a+4 is
normal.

A partial characterization of the class .

We state two lemmas which are not difficult to prove.

Lemma 3.1. If p/q is a rational number such that (p, q)=1, and if there exists
a rational number p,/q,, (p,. q,) =1, satisfving the relationship

! S P 1

- R ik

9 ¢ g mq’

where m is an integer =q —1, then q, = q. Further, the conditionm = q —1 is necessary.
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Lemma 3.2. If p/q is a rational number, (p, q)= 1, satisfyving

1105+ + 1 p 110rtiil 1

1T S g ST T
for integers n, s, and t such that (1,10**')=1, and ¢q"=10*"1, then g=10""2.

ProoOF. There is some rational fraction p,/q, such that

p _t10°*1 41 p,

q 102s11_'+q|’

which gives us p,/q, <1/q"<1/10*~1, or p,10**~!' =g¢,. Further combining the
right hand side of this equality, we get

2 _ @:(10° 4 1) 4 p, 103#%1
g” g, 10771 '

Now if ¢, contains a power of ten, not equal to 25+ 1, we are done; for if
q,=10°¢’, where 101q’, and v = 25+ 1+r for r=0, then

P IOZ’:”'q'(rIO“”'-i-l)-i-pl 1025_4-1

q lozﬁ'i'l'o'z's?"fﬂqr

100" (¢ 10°% ' 4+ 1) + p,
= jgnritrg

But at most, we can divide 10" out of both numerator and denominator of this
last fraction, when p, =10"*“p, for some positive integer p,, and ¥ =0; and at least,
this fraction is in lowest terms when (p,, 10)=1, since (p,.q,)=1, and hence
(p1,q’)=1. Then we have ¢ =10**14", and our result follows immediately.

Similarly, if ¢, =10"¢’. where 10{¢’, and v = 2s+1—r for some positive
r=2s+1, then

p = q’loz.i+l—r(rlos+l+l)+pl 10234—1

.

q e DX lOZs+I 102'5'+|_-_f-q

q (11071 4 1)+ p, 107
25+1q‘ .

And the most that can happen to this fraction is its reduction by some power of
two or some power of five, when and only when ¢” is a multiple of this common
divisor. In any case, our power of ten in the denominator remains intact, and
g =10**1 yielding the desired result.
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We suppose, finally, that v = 2s+ 1. Then

P" -~ 102’+lq'(f]0"+' +1)+p, 1025+1

-’-;7 1023+'1'1025+1‘q'

g @10 +1)+p,
10_'25_+'Iq' :Y

_ g 10" +(g" +p,)
o 102s+1q' .

Now assume ¢’'<10°-2. We have p,10*-'=<gq,, and ¢q,=10**1g’, so
p,; <10%¢’. Then

g’ +p,<q +10%q" = 101g" <10%¢’ <10°10*"% = 10°+".

Thus, with an argument analogous to those preceding, we find that not quite as
much as 10°*! could possibly be factored out of both numerator and denominator
of our fraction, and hence,
25+ 1 o'
q = l(:ori'lq — lo‘q”
and our result follows.

Assuming ¢’ =10°2, we find by an argument similar to that of the preceding
lemma that the maximum divisor of both numerator and denominator is 10>*1,
giving us g=¢q =10°"2,

We are now ready to look closely at the class #. First we make the following
definition of E. MAILLETT [4]:

Definition 3. 1. A real number

< O
X =4 —
"'”;: gv

(where &, is a positive integer =¢g—1, A and ¢ are positive integers, and Y(n) is
a monotone increasing function of », taking on integral values), is a quasi-rational
number iff x, when represented to the base ¢, contains after the y(n)™ digit, é,,
followed by an increasing number of zeros. We will show, in the remainder of this

paper:
Theorem 3.1. Z (L =0.
Theorem 3.2. L ¢ L.
Theorems 3.3. and 34. LT Z.
Note that Rc.%, where R represents the rationals, and R> quasirationals.

ProoF of Theorem 3. 1. Take

|

DM

<

a=

o = . 1100010000000000000000010. . .
(10"

II
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It is clear that « is in &, since hl,lll;lp f(N)/N =0, where f(N) is the number of

occurrences of the digit 1" in the first N digits of «. It is also well known that  is
Liouville.

o n-1 i
PROOF of Theorem 3.2. Consider «=.1010001000€000100... = > 10~
a=1

Again, « is in class 2. The proof that z is not in L is by contradiction. Thus, we
assume o is Liouville; hence that, for every positive integer n, there is a rational
p/q. dependent upon n, g= 1, such that | —p/g —=1/g". This equality may be further
written as p/qg —1/¢"<a<p/g+1/q", and we will consider two cases: first if
plg<=o—=pjg+1/q" for some n=3, and second, when p/q —1/¢" <ax <p/q.

In both of these cases, we will use the following notation:

We wish to keep track of the digits in equalling 17, Thus

k-1
(i) the k™™ occurrence of a one will be in the g;® digit = 10°%, where ¢, = 3 2\,
i=0
Notice that
k=2
ek = 2 21"{“2'&_1 =
i=0

k=2
=23 21421 4] =

i=1

k=3
=23 2i4+2.2¢24] =
i=0
k-2
=23 24+1=2e_,+1
i=0

(ii) o is the partial representation of a up to and including the k™ occurrence
of a one, followed only by zeros.
(1i) o, =py/qy.-

Using this notation, we see that o, =a,=...<a for all £k and lima,=a.
k--u

Case 1. Here, p/g<a<p/q+1/g". We may restrict our consideration to n=3.

Since p/q is less than o, and p/q is rational, we find that p/¢ and « agree in rep-
resentation, digit by digit, until the ¢f* digit, where « contains a ’1”, but p/q contains
a 0", and is followed by any sequence of digits. Thus, using the notation above, we
have

(1) U1 =plg<o,, forsome integer k.

But, if oy, =pi—1/Gi-1 =p/q. since both are reduced to their lowest terms,
it follows that g;_;= ¢=10°-', and p,_, =p, and recalling that ¢,=2¢,_, +1,
the only way for p/q+ 1/¢" to exceed « is for n =2.

(This is true, since p,_,/q;-, agrees with o« for the first ¢, _, digits, and one
can multiply by ar most 10°*-1 and add a one in order to exceed «. That is, the least
addition to p; _ /g, -, will be a string of zeros, than a one, the digital length of which
equals that of p,_,, which is equivalent to squaring the base.)
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This equality is impossible under our assumption that »=3, and (1) becomes
Uy <Pq<0%

or
(2) Pi-119k-1 <Plq <P/ G-

Now g =10 = 02ex-1+1 = Qex-1. ]0%~-1+1 and p, = p,_, 10%-1+1 4+ 1, which
implies :
P _ Puy 1024141
g 10%-1]Qex-1+1

Pk -1 1
. + _— .
oy G-y l0EATL

Letting m =10%-:*1 and using the above equality, we may write (2) as

¢ o LR N P&_—_ll_{_ 1

Gk -1 q R

It is evident that m>g, so we apply lemma 3.1 to the above inequality to
obtain ¢g=g¢,_,. Then
3) ll"=1/q;_,.

Further, we have »n =3, so (3) becomes, after expansion:
lrfqn'==: 1/9’5{_1 = ”qf_l = ]/]03:&—1.

And this implies that —1/¢" affects at most, the 10%%-1~!% digit in the expansion
of a. That is, adding 1/4" to p/g cannot affect the digits before the one containing
the k™ ™17, since this occurs in the 102¢«-1=15 digit, But, the only way p/q can be
made to exceed « is to change one of the zeros in the first g, digits of p/q to a one.

Therefore, 1/¢" + p/q <=, which contradicts the assumption that « is Liouville,
and < p/q+1/q". Thus « is not Liouville in this case.

Case 2. We now consider p/q —1/q" <a <p/q. But case 1 implies that for all
n=3, if a lies in the right half of the interval (p/q —1/q", p/q +1/q"), we do not
have « Liouville; so if « is Liouville,  must lie in the left half of the above interval
for all n=3. It is then necessary to find only one n implying a contradiction to deny
our assumption that z is Liouville.

Using the notation as before, we find there is some integer k, such that

] f
-1 = plq—1/q" < .

Now, if a,_, = p/q —1/q", then q,_, =¢"=10°%-1, since (pg~-* —1, ¢") = 1. But,
adding 1/¢"=1/10°-1 to «,_, changes %, _, only in the last non-zero digit, which
becomes a two, and so the sum, equal to p/q. is not in lowest terms, since (p, ¢) = 2.
(One cannot reduce p and ¢ further, for there is no way for (¢/2)" to equal 10°%-1,)

Hence, we have the inequality

Mg =< p"rq_ ]‘,’q" = o
or

4) Uy < %_,+1/¢" < plqg < o+ 1/q".
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By the construction of x, the only way for p/q to exceed « is for 1/¢" to exceed
1/10°, or more appropriately, for the inequality

1 1

'éi ™ 102ex—1

to hold. Then we may apply lemma 3. 2 to (4), and let
g=10%—2=]02ex-1—1,

and the conclusion follows exactly as that of case 1.
Thus we have shown « not Liouville.
To demonstrate a Liouville number that is not in class .#, we consider the number

17 120-24 720-120
—— pr——— — e,
o 00 8 E Y RN T SRR 1) ) (SR | [ ! VA
= lim pnlqn’
where i
q"=]0"'!’
pl=]9

(2K)!—(2k—1)!—1
o

P2k = Pax—, 10@VI-Gk=Dy s 10°
i=0

P2ks1 = Pak 10.(2*]1_(2,‘_1)'+ 1.

We wish to show first that

Theorem 3. 3. o is Liouville.

PrOOF. This is not difficult to show.

Theorem 3. 4. The « in theorem 3. 3 is not in class Z.

PROOF. Since a is the limit of a sequence of rationals, we may write « inde-
pendently as the limit of two subsequences,

a=a, = lim 2%=1
k—wco Gak-1
and
a = a, = lim P2
kwoo {2k

If we count the number of occurrences of the non-zero digit one in the first g,
digits of a,, we find this frequency has a superior limit =1. But, counting this
frequency in the first ¢,,_, digits of &, gives us an inferior limit = 0. Thus, in 2,

. NN oo o TEN)
!\}_‘]’”SUP = ;‘A!rﬂ mf—ﬁ—,
where f(N) is the number of non-zero digits occurring in the first N digits of «;
and hence,
f(N)

lim —-= does not exist.
Noves Y
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We have shown that « is not in class Z.
In passing, we remark that the number z, just defined, is also a quasi-rational
number.
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