Further examples of normal numbers

By JANINA LUPKIEWICZ SPEARS and JOHN E. MAXFIELD (Manhattan, Kansas)

Introduction

Definition 1. 1. A number α is simply normal to the base (or scale) r iff, in the expansion of the fractional part of α to the base r, we have

$$\lim_{n\to\infty}\frac{n_c}{n}=\frac{1}{r}\,,$$

for all c, where n_c is the number of occurrences of the digit c in the first n digits of α .

Definition 1. 2. A number is normal to the base r iff α , $r\alpha$, $r^2\alpha$, ... are each simply normal to all the bases r, r^2 , r^3 , ...

Definition 1.3. A real irrational number α is said to be a Liouville number iff, for every positive integer n, there is a rational number p/q, with q > 1, depending on n, such that

$$|\alpha - p/q| < 1/q^n$$
.

We shall call the class of such α , L.

It was first proved by E. BOREL [1], who introduced the concept of normal numbers, as above, that almost all real numbers are normal.

There are, however, only a very few numbers that have been proved normal. The first of these is known as Champernowne's number x = .1234567891011121314..., formed by writing the natural numbers in succession. Champernowne [2] showed this number normal to the base ten, while Copeland and Erdős [3] extended the proof for normality to any base r of the analogous number constructed as above. Th. Scheider [7] shows that Champernowne's number is transcendental but not in L.

We will introduce the class \mathcal{L} , which yields normality when its elements are added to normal numbers. This generates a set of normal numbers having the power of the continuum, and different from the known normal numbers. The remainder of the paper will partially characterize the class \mathcal{L} .

The class \mathcal{L}

Definition 2.1. Let c be a given digit (or finite sequence of length s of digits) to the scale r, and let λ be a number to the scale r such that the number of non-c digits in the first N digits (sN digits) of λ is f(N) = o(N).

Definition 2. 2. We define \mathcal{L} to be the class of all elements of the type λ . *Note:* The class \mathcal{L} is closed under addition and subtraction.

Theorem 2.1 If λ is an element of \mathcal{L} , and if α is normal to the scale r, then $\alpha + (p/q)\lambda + p_1/q_1$ is normal to the scale r, where p, q, p_1 , q_1 are integers.

PROOF. It is necessary to consider only the case when $\gamma = \alpha + \lambda$, since $\beta = (q/p)\alpha$ is normal. Thus, proving the theorem for $\beta + \lambda$ gives us the fact that

$$(p/q)(\beta + \lambda) = (p_{\nu}q)[(q/p)\alpha + \lambda] = \alpha + (p/q)\lambda$$

is normal. Further, we need only consider λ of the form when c is zero, since

 λ -.ccc... is in \mathcal{L} , with the dominant digit zero.

Let A_s be a given block of s digits to the scale r. We wish to classify the occurrences of A_s in α according to how many digits equal to r-1 follow A_s before a non-r-1digit occurs. Hence, define A_{s+j} to be a block of s+j+1 digits, equal to r-1, followed by a non-r-1 digit. Since, for each k, the fractional part of r^k is less than one, the part to be carried in adding α and λ will never exceed one. Thus, a non-zero digit from λ , added into α to the right of A_{s+i} does not change the A_s part. Further, any digit of λ , added into the block A_{s+i} can change no more than the one A_s block occurring in that A_{s+j} . Now, we fix $j \ge 0$ and A_s , and from the normality of α and a result of Niven-

ZUCKERMAN [6], we find that

$$\lim_{N\to\infty}\frac{N(A_{s+j})}{N}=\frac{1}{r^{s+j+1}},$$

for each A_{s+j} , where $N(A_{s+j})$ stands for the number of occurrences of the blocks A_{s+j} in the first N digits of α . But there are r-1 possible assignments to the nonzero digit terminating A_{s+j} ; hence

$$\lim_{N\to\infty}\frac{N(A_{s+j})}{N}=\frac{r-1}{r^{s+j+1}},$$

for all A_{s+j} .

Thus for any $\varepsilon > 0$ and t > 0, we may find an M, such that

$$\left|\frac{N(A_{s+j})}{N} - \frac{r-1}{r^{s+j+1}}\right| < \frac{\varepsilon}{2t},$$

if N > M; or, in particular, we have

$$-\frac{N\varepsilon}{2t} < N(A_{s+j}) - \frac{r-1}{r^{s+j+1}} N.$$

If $N'(A_{s+j})$ represents the number of these A_s blocks within A_{s+j} blocks that are preserved in the first N digits of $\gamma = \alpha + \lambda$, we have

$$N'(A_{s+j}) + f(N) \ge N(A_{s+j}),$$

and

$$-\frac{N\varepsilon}{2t}-f(N) < N'(A_{s+j}) - \frac{r-1}{r^{s+j+1}} N.$$

Thus

$$\sum_{j=0}^{t} \left[-\frac{N\varepsilon}{2t} - f(N) \right] < \sum_{j=0}^{t} \left[N'(A_{s+j}) - \frac{N(r-1)}{r^{s+j+1}} \right],$$

or

$$-\frac{N\varepsilon}{2} - tf(N) < \sum_{j=0}^t N'(A_{s+j}) - \frac{N(r-1)}{r^{s+1}} \sum_{j=0}^t \frac{1}{r^j} \leqq \sum_{j=0}^t N'(A_{s+j}) - \frac{N(r^{t+1}-1)}{r^{s+t+1}},$$
 or finally,

$$\sum_{i=0}^{t} \frac{N'(A_{s+j})}{N} - \frac{r^{t+1}-1}{r^{s+t+1}} > -\frac{\varepsilon}{2} - \frac{tf(N)}{N}.$$

Since $\lim_{N\to\infty} f(N)/N=0$, we may choose N so large that $f(N)/N < \varepsilon/2t$, or $-\varepsilon/2t < -f(N)/N$. We now define $N'(A_s)$ to be the number of occurrences of A_s blocks in the first N digits of γ . Then, since $N'(A_s) \ge \sum_{j=0}^t N'(A_{s+j})$, we have for some N,

$$\sum_{s=0}^{t} r' \frac{(A_{s+j})}{N} - \frac{1}{r^s} > -\frac{\varepsilon}{2} - t \left(\frac{\varepsilon}{2t}\right) - \frac{1}{r^{s+t+1}},$$

or

$$\frac{N'(A_s)}{N} - \frac{1}{r^s} > -\varepsilon - \frac{1}{r^{s+t+1}}.$$

Thus,

$$\lim_{N\to\infty}\inf\left(\frac{N'(A_s)}{N}-\frac{1}{r^s}\right)\geq -\frac{1}{r^{s+t+1}},$$

and the left member is independent of t, while the right is as small as one pleases, which implies that

$$\lim_{N\to\infty}\inf\left(\frac{N'(A_s)}{N}-\frac{1}{r^s}\right)\geq 0.$$

From lemma 8. 2 of [5], it follows that

$$\lim_{N\to\infty}\left(\frac{N'(A_s)}{N}-\frac{1}{r^s}\right)=0,$$

and using the Niven-Zuckerman result once more, it follows that $\gamma = \alpha + \lambda$ is normal.

A partial characterization of the class $\mathscr L$

We state two lemmas which are not difficult to prove.

Lemma 3.1. If p/q is a rational number such that (p, q) = 1, and if there exists a rational number p_1/q_1 , $(p_1, q_1) = 1$, satisfying the relationship

$$\frac{p}{q} < \frac{p_1}{q_1} < \frac{p}{q} + \frac{1}{mq},$$

where m is an integer $\geq q-1$, then $q_1 \geq q$. Further, the condition $m \geq q-1$ is necessary.

Lemma 3.2. If p|q is a rational number, (p,q)=1, satisfying

$$\frac{t \cdot 10^{s+1} + 1}{10^{2s+1}} < \frac{p}{q} < \frac{t \cdot 10^{s+1} + 1}{10^{2s+1}} + \frac{1}{q^n},$$

for integers n, s, and t such that $(t, 10^{2s+1}) = 1$, and $q^n > 10^{2s-1}$, then $q \ge 10^{s-2}$.

PROOF. There is some rational fraction p_1/q_1 such that

$$\frac{p}{q} = \frac{t \cdot 10^{s+1} + 1}{10^{2s+1}} + \frac{p_1}{q_1},$$

which gives us $p_1/q_1 < 1/q'' < 1/10^{2s-1}$, or $p_1 10^{2s-1} < q_1$. Further combining the right hand side of this equality, we get

$$\frac{p}{q} = \frac{q_1(t10^{s+1}+1) + p_110^{2s+1}}{q_110^{2s+1}}.$$

Now if q_1 contains a power of ten, not equal to 2s+1, we are done; for if $q_1 = 10^v q'$, where $10^{\uparrow} q'$, and v = 2s+1+r for r>0, then

$$\frac{p}{q} = \frac{10^{2s+1+r}q'(t10^{s+1}+1) + p_110^{2s+1}}{10^{2s+1}10^{2s+1+r}q'}$$
$$= \frac{10^rq'(t10^{s+1}+1) + p_1}{10^{2s+1+r}q'}.$$

But at most, we can divide 10^r out of both numerator and denominator of this last fraction, when $p_1 = 10^{r+u}p_2$ for some positive integer p_2 , and $u \ge 0$; and at least, this fraction is in lowest terms when $(p_1, 10) = 1$, since $(p_1, q_1) = 1$, and hence $(p_1, q') = 1$. Then we have $q \ge 10^{2s+1}q'$, and our result follows immediately.

Similarly, if $q_1 = 10^v q'$, where $10^{\frac{1}{2}} q'$, and v = 2s + 1 - r for some positive $r \le 2s + 1$, then

$$\frac{p}{q} = \frac{q'10^{2s+1-r}(t10^{s+1}+1) + p_110^{2s+1}}{10^{2s+1}10^{2s+1-r}q'}$$

$$=\frac{q'(t10^{s+1}+1)+p_110^r}{2^{s+1}q'}.$$

And the most that can happen to this fraction is its reduction by some power of two or some power of five, when and only when q' is a multiple of this common divisor. In any case, our power of ten in the denominator remains intact, and $q \ge 10^{2s+1}$, yielding the desired result.

We suppose, finally, that v = 2s + 1. Then

$$\frac{p}{q} = \frac{10^{2s+1} q'(t10^{s+1} + 1) + p_1 10^{2s+1}}{10^{2s+1} 10^{2s+1} q'} =$$

$$= \frac{q'(t10^{s+1} + 1) + p_1}{10^{2s+1} q'} =$$

$$= \frac{tq'10^{s+1} + (q' + p_1)}{10^{2s+1} q'}.$$

Now assume $q' < 10^{s-2}$. We have $p_1 10^{2s-1} < q_1$, and $q_1 = 10^{2s+1}q'$, so $p_1 < 10^2q'$. Then

$$q' + p_1 < q' + 10^2 q' = 101q' < 10^3 q' < 10^3 10^{s-2} = 10^{s+1}$$
.

Thus, with an argument analogous to those preceding, we find that not quite as much as 10^{s+1} could possibly be factored out of both numerator and denominator of our fraction, and hence,

$$q > \frac{10^{2s+1} \, q'}{10^{s+1}} = 10^s \, q',$$

and our result follows.

Assuming $q' \ge 10^{s-2}$, we find by an argument similar to that of the preceding lemma that the maximum divisor of both numerator and denominator is 10^{2s+1} , giving us $q \ge q' \ge 10^{s-2}$.

We are now ready to look closely at the class \mathcal{L} . First we make the following definition of E. MAILLETT [4]:

Definition 3. 1. A real number

$$x = A + \sum_{n=1}^{\infty} \frac{\delta_n}{q^{\psi(n)}},$$

(where δ_n is a positive integer $\leq q-1$, A and q are positive integers, and $\psi(n)$ is a monotone increasing function of n, taking on integral values), is a quasi-rational number iff x, when represented to the base q, contains after the $\psi(n)$ th digit, δ_n , followed by an increasing number of zeros. We will show, in the remainder of this paper:

Theorem 3.1. $\mathcal{L} \cap L \neq \emptyset$.

Theorem 3.2. $\mathcal{L} \subset L$.

Theorems 3.3. and 3.4. $L \subset \mathcal{L}$.

Note that $R \subset \mathcal{L}$, where R represents the rationals, and $R \supset$ quasirationals.

PROOF of Theorem 3.1. Take

It is clear that α is in \mathcal{L} , since $\lim_{N\to\infty} f(N)/N=0$, where f(N) is the number of occurrences of the digit "1" in the first N digits of α . It is also well known that α is Liouville.

PROOF of Theorem 3. 2. Consider
$$\alpha = .10100010000000100... = \sum_{n=1}^{\infty} 10^{-\sum_{i=1}^{n-1} 2^{i}}$$

Again, α is in class \mathscr{L} . The proof that α is not in L is by contradiction. Thus, we assume α is Liouville; hence that, for every positive integer n, there is a rational p/q, dependent upon n, q>1, such that $|\alpha-p/q|<1/q^n$. This equality may be further written as $p/q-1/q^n<\alpha< p/q+1/q^n$, and we will consider two cases: first if $p/q<\alpha< p/q+1/q^n$ for some $n\geq 3$, and second, when $p/q-1/q^n<\alpha< p/q$.

In both of these cases, we will use the following notation: We wish to keep track of the digits in equalling "1". Thus

(i) the k^{th} occurrence of a one will be in the q_k^{th} digit $= 10^{e_k}$, where $e_k = \sum_{i=0}^{k-1} 2^i$. Notice that

$$e_k = \sum_{i=0}^{k-2} 2^i + 2^{k-1} =$$

$$= 2 \sum_{i=1}^{k-2} 2^{i-1} + 2^{k-1} + 1 =$$

$$= 2 \sum_{i=0}^{k-3} 2^i + 2 \cdot 2^{k-2} + 1 =$$

$$= 2 \sum_{i=0}^{k-2} 2^i + 1 = 2e_{k-1} + 1.$$

(ii) α_k is the partial representation of α up to and including the k^{th} occurrence of a one, followed only by zeros.

(iii) $\alpha_k = p_k/q_k$.

Using this notation, we see that $\alpha_1 < \alpha_2 < ... < \alpha$ for all k and $\lim_{k \to \infty} \alpha_k = \alpha$.

Case 1. Here, $p/q < \alpha < p/q + 1/q^n$. We may restrict our consideration to $n \ge 3$. Since p/q is less than α , and p/q is rational, we find that p/q and α agree in representation, digit by digit, until the q_k^{th} digit, where α contains a "1", but p/q contains a "0", and is followed by any sequence of digits. Thus, using the notation above, we have

(1)
$$\alpha_{k-1} \leq p/q < \alpha_k$$
, for some integer k .

But, if $\alpha_{k-1} = p_{k-1}/q_{k-1} = p/q$, since both are reduced to their lowest terms, it follows that $q_{k-1} = q = 10^{\sigma_{k-1}}$, and $p_{k-1} = p$, and recalling that $e_k = 2e_{k-1} + 1$, the only way for $p/q + 1/q^n$ to exceed α is for $n \le 2$.

(This is true, since p_{k-1}/q_{k-1} agrees with α for the first q_{k-1} digits, and one can multiply by at most $10^{e_{k-1}}$ and add a one in order to exceed α . That is, the least addition to p_{k-1}/q_{k-1} will be a string of zeros, than a one, the digital length of which equals that of p_{k-1} , which is equivalent to squaring the base.)

This equality is impossible under our assumption that $n \ge 3$, and (1) becomes

$$\alpha_{k-1} < p/q < \alpha_k$$

or

(2)
$$p_{k-1}/q_{k-1} < p/q < p_k/q_k.$$

Now $q_k = 10^{e_k} = 10^{2e_{k-1}+1} = 10^{e_{k-1}} \cdot 10^{e_{k-1}+1}$, and $p_k = p_{k-1} \cdot 10^{e_{k-1}+1} + 1$, which implies

$$\frac{p_k}{q_k} = \frac{p_{k-1} \cdot 10^{e_{k-1} + 1} + 1}{10^{e_{k-1}} \cdot 10^{e_{k-1} + 1}}$$
$$= \frac{p_{k-1}}{q_{k-1}} + \frac{1}{q_{k-1} \cdot 10^{e_{k-1} + 1}}.$$

Letting $m = 10^{e_{k-1}+1}$ and using the above equality, we may write (2) as

$$\frac{p_{k-1}}{q_{k-1}} < \frac{p}{q} < \frac{p_{k-1}}{q_{k-1}} + \frac{1}{q_{k-1}}.$$

It is evident that m>q, so we apply lemma 3.1 to the above inequality to obtain $q \ge q_{k-1}$. Then

 $1/q^n \le 1/q_{k-1}^n \, .$

Further, we have $n \ge 3$, so (3) becomes, after expansion:

$$1/q^n \le 1/q_{k-1}^n \le 1/q_{k-1}^3 = 1/10^{3e_{k-1}}$$
.

And this implies that $-1/q^n$ affects at most, the $10^{3e_{k-1}-1}$ digit in the expansion of α . That is, adding $1/q^n$ to p/q cannot affect the digits before the one containing the k^{th} "1", since this occurs in the $10^{2e_{k-1}-1}$ digit. But, the only way p/q can be made to exceed α is to change one of the zeros in the first q_k digits of p/q to a one.

Therefore, $1/q'' + p/q < \alpha$, which contradicts the assumption that α is Liouville, and $\alpha < p/q + 1/q''$. Thus α is not Liouville in this case.

Case 2. We now consider $p/q - 1/q^n < \alpha < p/q$. But case 1 implies that for all $n \ge 3$, if α lies in the right half of the interval $(p/q - 1/q^n, p/q + 1/q^n)$, we do not have α Liouville; so if α is Liouville, α must lie in the left half of the above interval for all $n \ge 3$. It is then necessary to find only one n implying a contradiction to deny our assumption that α is Liouville.

Using the notation as before, we find there is some integer k, such that

$$\alpha_{k-1} \leq p/q - 1/q^n < \alpha_k$$

Now, if $\alpha_{k-1} = p/q - 1/q^n$, then $q_{k-1} = q^n = 10^{e_{k-1}}$, since $(pq^{n-1} - 1, q^n) = 1$. But, adding $1/q^n = 1/10^{e_{k-1}}$ to α_{k-1} changes α_{k-1} only in the last non-zero digit, which becomes a two, and so the sum, equal to p/q, is not in lowest terms, since (p, q) = 2. (One cannot reduce p and q further, for there is no way for $(q/2)^n$ to equal $10^{e_{k-1}}$.)

Hence, we have the inequality

$$\alpha_{k-1} < p/q - 1/q^n < \alpha_k$$

or

(4)
$$\alpha_{k-1} < \alpha_{k-1} + 1/q^n < p/q < \alpha_k + 1/q^n.$$

By the construction of α , the only way for p/q to exceed α is for $1/q^n$ to exceed $1/10^{e_k}$, or more appropriately, for the inequality

$$\frac{1}{q^n} > \frac{1}{10^{2e_k - 1}}$$

to hold. Then we may apply lemma 3.2 to (4), and let

$$q \ge 10^{e_k-2} = 10^{2e_{k-1}-1}$$

and the conclusion follows exactly as that of case 1.

Thus we have shown a not Liouville.

To demonstrate a Liouville number that is not in class \mathcal{L} , we consider the number

$$\alpha = .1100011...110...011...110...$$

$$= \lim_{n \to \infty} p_n/q_n,$$

where

$$q_n = 10^{n!},$$

$$p_1 = 1,$$

$$p_{2k} = p_{2k-1} 10^{(2k)! - (2k-1)!} + \sum_{i=0}^{(2k)! - (2k-1)! - 1} 10^i$$

$$p_{2k+1} = p_{2k} 10^{(2k)! - (2k-1)!} + 1.$$

We wish to show first that

Theorem 3.3. a is Liouville.

PROOF. This is not difficult to show.

Theorem 3. 4. The α in theorem 3. 3 is not in class \mathcal{L} .

PROOF. Since α is the limit of a sequence of rationals, we may write α independently as the limit of two subsequences,

$$\alpha = \alpha_1 = \lim_{k \to \infty} \frac{p_{2k-1}}{q_{2k-1}},$$

and

$$\alpha = \alpha_2 = \lim_{k \to \infty} \frac{p_{2k}}{q_{2k}}.$$

If we count the number of occurrences of the non-zero digit one in the first q_{2k} digits of α_2 , we find this frequency has a superior limit = 1. But, counting this frequency in the first q_{2k-1} digits of α_1 gives us an inferior limit = 0. Thus, in α ,

$$\lim_{N\to\infty} \sup \frac{f(N)}{N} \neq \lim_{N\to\infty} \inf \frac{f(N)}{N},$$

where f(N) is the number of non-zero digits occurring in the first N digits of α ; and hence,

$$\lim_{N \to \infty} \frac{f(N)}{N}$$
 does not exist.

We have shown that α is not in class \mathcal{L} .

In passing, we remark that the number α , just defined, is also a quasi-rational number.

References

- [1] E. Borel, Rend. Circ. Mat. Palermo, 27 (1909), 247-271.
- [2] D. G. CHAMPERNOWNE, The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254-260.
- [3] A. H. COPELAND and P. ERDŐS, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857-860.
- [4] E. Maillett, Sur les nombres quasi-rationnels et les functions arithmetiques ordinaires ou continues quasi-periodiques. C. r. Acad. Sci. Paris. 138 (1904), 410—411.
 [5] IVAN NIVEN, Irrational Numbers. New Jersey, 1956.
- [6] I. NIVEN and H. S. ZUCKERMANN, On the definition of normal numbers. Pacific J. Math. 1 (1951), 103-109.
- [7] TH. SCHNEIDER, Einführung in die transzendenten Zahlen. Berlin, Springer-Verlag, 1957.

(Received January 11, 1968.)