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Stability of the Cauchy
equation on a restricted domain

By JACEK TABOR (Cracow)

Abstract. Let G be a commutative semigroup, F a Banach space and D C GxG.
Let € > 0 be given and let f : G — E satisfy the inequality

[f(a+B) — fla) = F(B)|| < & for (o, B) € D.

We prove that under certain assumptions on D and G there exists a unique additive
function A : G — FE such that

£ () — A(a)|| < € for ar € G.

By R4 we understand the set [0,00), by N the set of all positive
integers and by P(X) the family of all subsets of X. By a vector space
we mean a real vector space. Let G be a semigroup. According to the
tradition, we will use the additive notation (even in the case when G is
noncommutative). When G is a semigroup without zero G\{0} denotes
G. If D C G x G then we write

Dx = {z[(z,y) € D}, Dy ={yl|(z,y) € D}, Dx+y ={z+y | (z,y) € D}.

The set D is called a Pexider domain of stability if there exists a constant
K > 0 such that whenever three functions f : Dx — R, g : Dy — R,
h: Dx1y — R satisfy the inequality

|f(z) +g(y) — h(z +y)| < e for (x,y) € D,
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then there exists an additive function A : G — R and two constants
a,b € R such that

|f(x) — A(x) — a| < Ke for x € Dy,
l9(y) — A(y) — b < Ke for y € Dy,
|h(z) — A(z) —a—b]| < Kefor z € Dx.y.
To our knowledge this definition was introduced by Zs. PALES.
We say that a set D is a Cauchy domain of stability if there exists a

constant K > 0 such that whenever f : Dx U Dy U Dx,y — R satisfies
the inequality

|f(x+y) — f(z) — f(y)] < e for (x,y) € D,

then there exists an additive function A : G — R such that
|f(:L‘) - A(I)| < Keforallz € Dx UDy UDxy.

On the 32-nd International Symposium on Functional Equations
Zs. PALES posed the following problem [4]: Is the set D = {(z,y) : y > 2°}
a Pexider domain of stability? The answer to this question is negative
(c.f. [6]). We take f(x) =0, g(z) = h(z) =In(1 + |z|).

One may ask a closely related question. Is the same set a Cauchy
domain of stability? We will show (see Example 1) that the answer is
positive. This paper was inspired by this problem.

Definition 1. Let G be a commutative semigroup and let B C G x G.
We say that W C G is B-bounded if
(i) Va e G\{0} Fko e NVk > ko : ka ¢ W,
(ii)) Va, 8 € G\{0}, (o, B) € B Fkg € NVky > kg, ko > 1:
kia+ kof ¢ W.

One can easily notice that the family of B-bounded subsets of a semi-
group forms an ideal of sets.

Definition 2. Let G be a semigroup. We say that B C G x G is full
in G if for every group H, and every function A : G — H such that

(1) Afa+B) = A(a) + A(B) for (a, ) € B,
A is additive.

For a broader study and the literature concerning full sets see [1], [2]
or [3].
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Proposition 1. Let G be a semigroup and let B C G x G satisfy the
following condition:

(2) V(.)€ (GXGN\BIveG:(B,7),(a,B+7), (a+B,7) € B.
Then B is full in G.

Proor. Consider an arbitrary group H and an arbitrary mapping
A : G — H satisfying (1). We have to show that A is additive. Let
(o, B) € (G x G)\B. Then by (2) there exists a v € G such that

(B,7), (, B+7),(a+B,7) € B,

SO

A(B+7) = A(B) + A7),
Ala+B+7) = Ala) + A(B +1),
Ala+ B +7) = Ala+B) + A(v).

This implies that
Ala+B)+A(y) = Ala+8+7) = Ala) + A(B+7) = A(a) + A(F) + A7)
As H is a group we obtain that A(a + ) = A(a) + A(B). O
Definition 3. Let E be a vector space, and let S C E. We define
B(S) :={(zx,y) € SxS:y#rzforalreR_}.

Proposition 2. Let E be a vector space such that dim E > 2. Then
B(FE) is full.

PrROOF. We are going to show that (2) holds. Let (z,y) € E x
E\B(E). Then y = rz for a certain r € R_. Since dim E' > 2 we can find
a z € F, such that z # rz for every r € R. Then obviously (y, z) € B(E),
(x,y+ z) € B(E), (x +y,z) € B(E). Proposition 1 completes the proof.

[

Let E be a vector space, and let W C E. One can easily notice
that if the intersection of W with any two-dimensional subspace P of F is
bounded in P then W is B(FE)-bounded. This implies that every bounded
subset of a topological vector space is B(E)-bounded.

Suppose that any three elements of W are linearly independent over
the field Q. Then W is B(E)-bounded. Condition (i) of the Definition 1 is
obvious. Suppose that condition (ii) does not hold. Then we can find x,y €
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E\{0}, (z,y) € B(F) and {k;},{l;} C N, {k;} an increasing sequence, such
that
zi = kjx + l;y € W for ¢ € N.

Since = # 0 and {k;} is increasing, we can find ny,n9,n3 such that
Zny F Zngs Zng F Zngs Zny F Zns. DBut obviously z,,, zn,, Zn, are lin-
early dependent over Q. We obtain a contradiction.

The above observations and the fact that the finite union of B(E)-
bounded sets is still a B(E)-bounded set shows that the family of B(E)-
bounded subsets of a vector space is quite large.

Theorem 1. Let G be a nontrivial commutative semigroup and let

B C G x G be full in G. Let W : G — P(G) be a mapping such that
G\W («) is a B-bounded set for every a € G. Let E be a Banach space
and let € > 0. Suppose that f : G — E satisfies the following inequality:

[f(e+B) = fle) = fF(B) < e for € G, e W(a).

Then there exists a unique additive function A : G — FE such that

I|f(a) — A(a)|| <€ for a € G.

PrOOF. Let @ € G\{0}. Since G\W («) is B-bounded, there exists
n € N such that ia € W(«) for i > n. Then we have for k > n

f(ka) _ [ £k0) = (k=) /(@)
|52 - o] <[

nf(a)
k

- 1)

k—1 . .
1f (G + D) = flie) = fa)]]
< ; -

1 1
+ Ll ma)] + 2 nf(@)]

k — 1 1
< ——c+ LI (na)l| + L [mnf(@)].
Thus
(3) lim sup ‘f(l;a) — f(a)H < ¢ for a € G\{0}.
k—o0

Replacing in this inequality a by na and dividing both sides by n we

obtain
‘ f(kna) — f(na)
kn

lim sup
k—oo

IS
- )
n n

E
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and inserting [ instead of k and m instead of n

lim sup f(mla) — f(ma) ‘ < &,
| — 00 ml m m
Thus
flna)  fma)|| _ e e
n m ~n + m’

This proves that {Jc(%a)} is a Cauchy sequence for « € G\{0}. If G is a

semigroup with zero then obviously {@} is convergent. We define

A(a) := lim Jlna) for a € G.
n— oo n
Due to (3) and the definition of A we have | f(a) — A(a)| < € for
a € G\{0}. In the case when G is a semigroup with zero there exists a
B & W(0). Then we have [|f(0+ 5) — f(0) = fF(B)| < e, so [[f(0)] <.

Hence

I|f(a) — A(a)|| < e for a € G,

and replacing o by na and dividing by n we obtain

H f(na)

We prove the additivity of A. Let «, 8 € G. Suppose that (o, 3) € B. As
A(0) = 0 we may assume that o, 3 € G\{0}. Consider an arbitrary § > 0
and take an n € N such that = < §. Then, as G\W(n3) is B-bounded,
there exists k£ € N\{0} such that

ia+ j(nB) € W(np) for i > nk, j > 1.

—Af)]| < £ foracd.
n

Hence

|A(a+8) - Afe) - )] < | FEEEED L

fnk(a+ ) _ flnka)  f(nB), , o5

k—1

<> %Ilf((i + 1)nB +nka) — f(inB + nka) — f(nB)|| + 36
1=0

< £8+35 < 46.
nk

Since 0 was chosen arbitrarily, we obtain that A(a + §) = A(a) + A(B).
As B is full, this proves that A is additive. Because A(«a) = lim fna) = 4

is a unique additive approximation of f. O
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Corollary 1. Let G be a semigroup, and let H be a nontrivial subsemi-
group of the centre of G. Let B C H x H be full in H. Let W : G — P(H)
be a mapping such that H\W («) is B-bounded for « € H. We assume
the following condition:

(4)  for every a € G there exists a § € W(«) such that o+ € H.

Let F be a Banach space, and let € > 0. Suppose that f : G — F satisfies
the inequality

[f(e+B) = fle) = fF(B) <€ for e € G, e W(a).

Then there exists a unique additive function A : G — F' such that

| f(a) — A(e)|| < 3e for a € G,
| f(a) — A()|| < e for o € H.

Proor. Making use of Theorem 1 for the function f|H we obtain
that there exists a unique additive function A : H — F' such that

|f(a) — A()|| < e for « € H.

We will show that A has a unique additive extension onto G. Let a € G.
Then by (4) there exists a § € W(a) C H such that o+ € H. We define
A(a) == A(a + ) — A(B). Now we prove that A is well defined. Suppose
that o + 81, a4+ (B € H for certain 31,32 € H. Then

(Ala+ B1) — A(B1)) — (Al + B2) — A(B2))
=Ala+p1+B2) — Ala+ B2+ 1) =0

Making use of the fact that H is contained in the center of G one can
easily prove that A is additive. The way of defining A shows that it is a
unique additive extension of A.

Let a € G. Then by (4) there exists a 5 € W(«) such that a+ 5 € H.
Then

1f (@) = A(@)]| < |lf(a+B) = Ala+ B) + A(B) - f(B)]
+fla+6) = fla) = FB)I < 3e. O



Stability of the Cauchy equation on a restricted domain 75

Corollary 2. Let E be a vector space, let C C E be a convex cone
such that CN—C = {0}, C —C =E. Let V : E — P(F) be a mapping
such that C\V (z) is a B(E)-bounded set for x € E. Let F' be a Banach
space and let ¢ > 0. Suppose that f : E — I satisfies the inequality

If(@+y) = fx) = fly)| <eforze E, ycW(x).

Then there exists a unique additive function A : E — F' such that

|f(z) — A(z)|| < 3¢ for z € E,
|f(x) — A(z)|| < e for x € C.

PrOOF. We are going to show that the assumptions of Corollary 1
are satisfied. Let W(x) := C N V(x). Because C is a cone such that
CnNn-C={0}, B:=B(E)Nn(C x(C)=C x(C\{0}). Hence B is full in
C and C\W (z) is B-bounded for x € C. Let z € E. Because C —C = E,
there exists an a € C such that a+x € C. Since C\W (z) is B(E)-bounded
there exists a b € C such that a4+b € W(z). Then obviously (a+b)+z € C.
Corollary 1 completes the proof. O

Ezample 1. Let g: R - R. Weput E=F =R, C =Ry, V(z) =
(9(x),+00). Now by Corollary 2 we obtain that the set

D ={(z,y):y>g(x)}
is a Cauchy domain of stability.

Corollary 3. Let E be a vector space, let F' be a Banach space and
let € > 0. Suppose that W : E — P(F) is a mapping, such that E\W (x)
is a B(E)-bounded set for x € E. Suppose that f : E — F satisfies the
following inequality

If(z+y) = flx) = fy)| <eforze B, ycW(x).

Then there exists a unique additive function A : E — F such that
|f(x) — A(z)|| < e forx € E.
PROOF. Suppose that E = R. Let g(z) = —f(—z). Then

1f(z+y) — f(x) = f(y)l| <efory e W(z),
lg(z +y) — g(x) — g()|| < e for y € —W(-2z).
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Obviously the set —W (—z) is B(R)-bounded for every z € R. Now due
to Corollary 2 we can find additive functions Ay, As : E — F such that

|f(z) — A1 (z)| < 3¢ for z € R,

| f(x) — Ai(x)|| < e for x € Ry
llg(x) — Ax(2)|| < 3¢ for z € R,
llg(z) — Az(2)|| < e for = € Ry.

One can easily notice that then A; = Ay =: A. Hence

|f(z) — A(x)]| < e for =€ Ry,
| — f(—z) — A(z)|| <e for z €Ry.
The last two inequalities mean that
|f(x) — A(z)|| <e for z €R.

Suppose that dim £ > 2. Then by Proposition 2 B(E) is full, so
Theorem 1 completes the proof. O

Putting £ = R, W(z) := [—1, 1] we obtain a generalization of Theo-
rem 3 [5]. Moreover we get the best possible constant K (instead of K =9
we have K =1).

Acknowledgements. 1 would like to thank the referee for his valuable
remarks.
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