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Stability of the Cauchy
equation on a restricted domain

By JACEK TABOR (Cracow)

Abstract. Let G be a commutative semigroup, E a Banach space and D ⊂ G×G.
Let ε > 0 be given and let f : G → E satisfy the inequality

‖f(α + β)− f(α)− f(β)‖ ≤ ε for (α, β) ∈ D.

We prove that under certain assumptions on D and G there exists a unique additive
function A : G → E such that

‖f(α)−A(α)‖ ≤ ε for α ∈ G.

By R+ we understand the set [0,∞), by N the set of all positive
integers and by P(X) the family of all subsets of X. By a vector space
we mean a real vector space. Let G be a semigroup. According to the
tradition, we will use the additive notation (even in the case when G is
noncommutative). When G is a semigroup without zero G\{0} denotes
G. If D ⊂ G×G then we write

DX = {x|(x, y) ∈ D}, DY = {y|(x, y) ∈ D}, DX+Y = {x+y | (x, y) ∈ D}.

The set D is called a Pexider domain of stability if there exists a constant
K > 0 such that whenever three functions f : DX → R, g : DY → R,
h : DX+Y → R satisfy the inequality

|f(x) + g(y)− h(x + y)| ≤ ε for (x, y) ∈ D,
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then there exists an additive function A : G → R and two constants
a, b ∈ R such that

|f(x)−A(x)− a| ≤ Kε for x ∈ DX ,

|g(y)−A(y)− b| ≤ Kε for y ∈ DY ,

|h(z)−A(z)− a− b| ≤ Kε for z ∈ DX+Y .

To our knowledge this definition was introduced by Zs. Páles.
We say that a set D is a Cauchy domain of stability if there exists a

constant K > 0 such that whenever f : DX ∪DY ∪DX+Y → R satisfies
the inequality

|f(x + y)− f(x)− f(y)| ≤ ε for (x, y) ∈ D,

then there exists an additive function A : G → R such that

|f(x)−A(x)| ≤ Kε for all x ∈ DX ∪DY ∪DX+Y .

On the 32-nd International Symposium on Functional Equations
Zs. Páles posed the following problem [4]: Is the set D = {(x, y) : y ≥ x2}
a Pexider domain of stability? The answer to this question is negative
(c.f. [6]). We take f(x) = 0, g(x) = h(x) = ln(1 + |x|).

One may ask a closely related question. Is the same set a Cauchy
domain of stability? We will show (see Example 1) that the answer is
positive. This paper was inspired by this problem.

Definition 1. Let G be a commutative semigroup and let B ⊂ G×G.
We say that W ⊂ G is B-bounded if

(i) ∀α ∈ G\{0} ∃k0 ∈ N ∀k ≥ k0 : kα /∈ W ,
(ii) ∀α, β ∈ G\{0}, (α, β) ∈ B ∃k0 ∈ N ∀k1 ≥ k0, k2 ≥ 1 :

k1α + k2β /∈ W .

One can easily notice that the family of B-bounded subsets of a semi-
group forms an ideal of sets.

Definition 2. Let G be a semigroup. We say that B ⊂ G × G is full
in G if for every group H, and every function A : G → H such that

(1) A(α + β) = A(α) + A(β) for (α, β) ∈ B,

A is additive.

For a broader study and the literature concerning full sets see [1], [2]
or [3].
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Proposition 1. Let G be a semigroup and let B ⊂ G×G satisfy the
following condition:

(2) ∀(α, β) ∈ (G×G)\B ∃γ ∈ G : (β, γ), (α, β + γ), (α + β, γ) ∈ B.

Then B is full in G.

Proof. Consider an arbitrary group H and an arbitrary mapping
A : G → H satisfying (1). We have to show that A is additive. Let
(α, β) ∈ (G×G)\B. Then by (2) there exists a γ ∈ G such that

(β, γ), (α, β + γ), (α + β, γ) ∈ B,

so

A(β + γ) = A(β) + A(γ),

A(α + β + γ) = A(α) + A(β + γ),

A(α + β + γ) = A(α + β) + A(γ).

This implies that

A(α+β)+A(γ) = A(α+β +γ) = A(α)+A(β +γ) = A(α)+A(β)+A(γ).

As H is a group we obtain that A(α + β) = A(α) + A(β). ¤

Definition 3. Let E be a vector space, and let S ⊂ E. We define

B(S) := {(x, y) ∈ S × S : y 6= rx for all r ∈ R−}.
Proposition 2. Let E be a vector space such that dim E ≥ 2. Then

B(E) is full.

Proof. We are going to show that (2) holds. Let (x, y) ∈ E ×
E\B(E). Then y = rx for a certain r ∈ R−. Since dim E ≥ 2 we can find
a z ∈ E, such that z 6= rx for every r ∈ R. Then obviously (y, z) ∈ B(E),
(x, y + z) ∈ B(E), (x + y, z) ∈ B(E). Proposition 1 completes the proof.

¤

Let E be a vector space, and let W ⊂ E. One can easily notice
that if the intersection of W with any two-dimensional subspace P of E is
bounded in P then W is B(E)-bounded. This implies that every bounded
subset of a topological vector space is B(E)-bounded.

Suppose that any three elements of W are linearly independent over
the field Q. Then W is B(E)-bounded. Condition (i) of the Definition 1 is
obvious. Suppose that condition (ii) does not hold. Then we can find x, y ∈
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E\{0}, (x, y) ∈ B(E) and {ki}, {li} ⊂ N, {ki} an increasing sequence, such
that

zi = kix + liy ∈ W for i ∈ N.

Since x 6= 0 and {ki} is increasing, we can find n1, n2, n3 such that
zn1 6= zn2 , zn2 6= zn3 , zn1 6= zn3 . But obviously zn1 , zn2 , zn3 are lin-
early dependent over Q. We obtain a contradiction.

The above observations and the fact that the finite union of B(E)-
bounded sets is still a B(E)-bounded set shows that the family of B(E)-
bounded subsets of a vector space is quite large.

Theorem 1. Let G be a nontrivial commutative semigroup and let

B ⊂ G × G be full in G. Let W : G → P(G) be a mapping such that

G\W (α) is a B-bounded set for every α ∈ G. Let E be a Banach space

and let ε > 0. Suppose that f : G → E satisfies the following inequality:

‖f(α + β)− f(α)− f(β)‖ ≤ ε for α ∈ G, β ∈ W (α).

Then there exists a unique additive function A : G → E such that

‖f(α)−A(α)‖ ≤ ε for α ∈ G.

Proof. Let α ∈ G\{0}. Since G\W (α) is B-bounded, there exists
n ∈ N such that iα ∈ W (α) for i ≥ n. Then we have for k > n

∥∥∥∥
f(kα)

k
− f(α)

∥∥∥∥ ≤
∥∥∥∥

f(kα)− (k − n)f(α)
k

∥∥∥∥ +
∥∥∥∥

nf(α)
k

∥∥∥∥

≤
k−1∑

i=n

‖f((i + 1)α)− f(iα)− f(α)‖
k

+
1
k
‖f(nα)‖+

1
k
‖nf(α)‖

≤ k − n

k
ε +

1
k
‖f(nα)‖+

1
k
‖mnf(α)‖.

Thus

(3) lim sup
k→∞

∥∥∥∥
f(kα)

k
− f(α)

∥∥∥∥ ≤ ε for α ∈ G\{0}.

Replacing in this inequality α by nα and dividing both sides by n we
obtain

lim sup
k→∞

∥∥∥∥
f(knα)

kn
− f(nα)

n

∥∥∥∥ ≤
ε

n
,



Stability of the Cauchy equation on a restricted domain 73

and inserting l instead of k and m instead of n

lim sup
l→∞

∥∥∥∥
f(mlα)

ml
− f(mα)

m

∥∥∥∥ ≤
ε

m
.

Thus ∥∥∥∥
f(nα)

n
− f(mα)

m

∥∥∥∥ ≤
ε

n
+

ε

m
.

This proves that
{

f(nα)
n

}
is a Cauchy sequence for α ∈ G\{0}. If G is a

semigroup with zero then obviously
{

f(n0)
n

}
is convergent. We define

A(α) := lim
n→∞

f(nα)
n

for α ∈ G.

Due to (3) and the definition of A we have ‖f(α) − A(α)‖ ≤ ε for
α ∈ G\{0}. In the case when G is a semigroup with zero there exists a
β 6∈ W (0). Then we have ‖f(0 + β) − f(0) − f(β)‖ ≤ ε, so ‖f(0)‖ ≤ ε.
Hence

‖f(α)−A(α)‖ ≤ ε for α ∈ G,

and replacing α by nα and dividing by n we obtain

‖f(nα)
n

−A(α)‖ ≤ ε

n
for α ∈ G.

We prove the additivity of A. Let α, β ∈ G. Suppose that (α, β) ∈ B. As
A(0) = 0 we may assume that α, β ∈ G\{0}. Consider an arbitrary δ > 0
and take an n ∈ N such that ε

n ≤ δ. Then, as G\W (nβ) is B-bounded,
there exists k ∈ N\{0} such that

iα + j(nβ) ∈ W (nβ) for i ≥ nk, j ≥ 1.

Hence

‖A(α + β)−A(α)−A(β)‖ ≤ ‖f(nk(α + β))
nk

− f(nkα)
nk

− f(nβ)
n

‖+ 3δ

≤
k−1∑

i=0

1
nk
‖f((i + 1)nβ + nkα)− f(inβ + nkα)− f(nβ)‖+ 3δ

≤ k

nk
ε + 3δ ≤ 4δ.

Since δ was chosen arbitrarily, we obtain that A(α + β) = A(α) + A(β).
As B is full, this proves that A is additive. Because A(α) = lim

n→∞
f(nα)

n , A

is a unique additive approximation of f . ¤
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Corollary 1. Let G be a semigroup, and let H be a nontrivial subsemi-

group of the centre of G. Let B ⊂ H×H be full in H. Let W : G → P(H)
be a mapping such that H\W (α) is B-bounded for α ∈ H. We assume

the following condition:

(4) for every α ∈ G there exists a β ∈ W (α) such that α + β ∈ H.

Let F be a Banach space, and let ε > 0. Suppose that f : G → F satisfies

the inequality

‖f(α + β)− f(α)− f(β)‖ ≤ ε for α ∈ G, β ∈ W (α).

Then there exists a unique additive function A : G → F such that

‖f(α)−A(α)‖ ≤ 3ε for α ∈ G,

‖f(α)−A(α)‖ ≤ ε for α ∈ H.

Proof. Making use of Theorem 1 for the function f |H we obtain
that there exists a unique additive function A : H → F such that

‖f(α)−A(α)‖ ≤ ε for α ∈ H.

We will show that A has a unique additive extension onto G. Let α ∈ G.
Then by (4) there exists a β ∈ W (α) ⊂ H such that α+β ∈ H. We define
Ã(α) := A(α + β)− A(β). Now we prove that Ã is well defined. Suppose
that α + β1, α + β2 ∈ H for certain β1, β2 ∈ H. Then

(A(α + β1)−A(β1))− (A(α + β2)−A(β2))

= A(α + β1 + β2)−A(α + β2 + β1) = 0.

Making use of the fact that H is contained in the center of G one can
easily prove that Ã is additive. The way of defining Ã shows that it is a
unique additive extension of A.

Let α ∈ G. Then by (4) there exists a β ∈ W (α) such that α+β ∈ H.
Then

‖f(α)− Ã(α)‖ ≤ ‖f(α + β)−A(α + β) + A(β)− f(β)‖
+ ‖f(α + β)− f(α)− f(β)‖ ≤ 3ε. ¤
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Corollary 2. Let E be a vector space, let C ⊂ E be a convex cone
such that C ∩ −C = {0}, C − C = E. Let V : E → P(E) be a mapping
such that C\V (x) is a B(E)-bounded set for x ∈ E. Let F be a Banach
space and let ε > 0. Suppose that f : E → F satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε for x ∈ E, y ∈ W (x).

Then there exists a unique additive function A : E → F such that

‖f(x)−A(x)‖ ≤ 3ε for x ∈ E,

‖f(x)−A(x)‖ ≤ ε for x ∈ C.

Proof. We are going to show that the assumptions of Corollary 1
are satisfied. Let W (x) := C ∩ V (x). Because C is a cone such that
C ∩ −C = {0}, B := B(E) ∩ (C × C) = C × (C\{0}). Hence B is full in
C and C\W (x) is B-bounded for x ∈ C. Let x ∈ E. Because C −C = E,
there exists an a ∈ C such that a+x ∈ C. Since C\W (x) is B(E)-bounded
there exists a b ∈ C such that a+b ∈ W (x). Then obviously (a+b)+x ∈ C.
Corollary 1 completes the proof. ¤

Example 1. Let g : R → R. We put E = F = R, C = R+, V (x) =
(g(x), +∞). Now by Corollary 2 we obtain that the set

D = {(x, y) : y > g(x)}
is a Cauchy domain of stability.

Corollary 3. Let E be a vector space, let F be a Banach space and
let ε > 0. Suppose that W : E → P(E) is a mapping, such that E\W (x)
is a B(E)-bounded set for x ∈ E. Suppose that f : E → F satisfies the
following inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε for x ∈ E, y ∈ W (x).

Then there exists a unique additive function A : E → F such that

‖f(x)−A(x)‖ ≤ ε for x ∈ E.

Proof. Suppose that E = R. Let g(x) = −f(−x). Then

‖f(x + y)− f(x)− f(y)‖ ≤ ε for y ∈ W (x),

‖g(x + y)− g(x)− g(y)‖ ≤ ε for y ∈ −W (−x).
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Obviously the set −W (−x) is B(R)-bounded for every x ∈ R. Now due
to Corollary 2 we can find additive functions A1, A2 : E → F such that

‖f(x)−A1(x)‖ ≤ 3ε for x ∈ R,

‖f(x)−A1(x)‖ ≤ ε for x ∈ R+

‖g(x)−A2(x)‖ ≤ 3ε for x ∈ R,

‖g(x)−A2(x)‖ ≤ ε for x ∈ R+.

One can easily notice that then A1 = A2 =: A. Hence

‖f(x)−A(x)‖ ≤ ε for x ∈ R+,

‖ − f(−x)−A(x)‖ ≤ ε for x ∈ R+.

The last two inequalities mean that

‖f(x)−A(x)‖ ≤ ε for x ∈ R.

Suppose that dimE ≥ 2. Then by Proposition 2 B(E) is full, so
Theorem 1 completes the proof. ¤

Putting E = R, W (x) := [−1, 1] we obtain a generalization of Theo-
rem 3 [5]. Moreover we get the best possible constant K (instead of K = 9
we have K = 1).
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