On bi-ideals and quasi-ideals in semigroups

By KENNETH M. KAPP (Milwaukee, Wis.)

The purpose of this paper is twofold: an examination of elementary properties of bi-ideals and an investigation of the relationships between bi-ideals and quasi-ideals. In the first section we define an equivalence relation \mathcal{B} on a semigroup which is finer than \mathcal{H} and show that any bi-ideal is the union of \mathcal{B} -classes. An investigation of O-minimal bi-ideals follows. We show that in a semigroup with O, a bi-ideal is O-minimal if and only if it is a non-zero \mathcal{B} -class union $\{O\}$.

In the second section we show that under certain conditions a O-minimal biideal is also a O-minimal quasi-ideal; this is not always true. We say that a semigroup is in the class $\mathcal{B}2$ whenever its sets of bi-ideals and quasi-ideals coincide. Several sufficient conditions are found (eg. right O-simple, regular) for a semigroup to be in this class. An example is given which sheds some further light on the characterization of $\mathcal{B}2$ semigroups. We conclude with a characterization of these semigroups announced by Calais at the Semigroup Symposium in Bratislavia, Czechoslovakia in June, 1968.

We follow the notation and terminology of [3]. We will always use \subset for proper containment. Equivalence relations will be denoted by script letters with the subscripted capital italic denoting the corresponding equivalence class. Thus R_a denotes the \mathcal{R} -class of a.

1. Bi-ideals

(1.1) Definition. A (non-empty) subset B of a semigroup S is a bi-ideal if $BS^1B\subseteq B$. (Clearly a bi-ideal is a subsemigroup.)

We now define a relation on a semigroup which will be useful in our investigation of bi-ideals.

(1.2) Definition. For $a, b \in S$, a given semigroup, we write $a\mathcal{B}b$ if 1) a = b or 2) there exists $u, v \in S$ such that aua = b and bvb = a.

The following two propositions can be readily verified:

- (1.3) Proposition. The relation \mathcal{B} defined in (1.2) is an equivalence relation; indeed $\mathcal{B} \subseteq \mathcal{H}$.
- (1.4) Proposition. If A is a bi-ideal of a semigroup then $A = \bigcup_{a \in A} B_a$, i.e., any bi-ideal is the union of its B-classes.

In what follows we will be concerned mainly with semigroups with O though we could procede as in [8] for semigroups with proper Suschkewitsch kernel and obtain more general results. With this in mind we recall the following:

(1.5) Definition. A non-zero bi-ideal B of a semigroup S with O is said to be O-minimal if there is no bi-ideal B' of S with $\{O\} \subset B' \subset B$.

The following result follows immediately from (1.4):

(1. 6) Corollary. Let S be a semigroup with O. If a bi-ideal, B, is a non-zero \mathcal{B} -class union $\{O\}$ then it is a O-minimal bi-ideal.

The converse of this corollary is also true as we show in the following:

(1.7) **Theorem.** Let S be a semigroup with O. A bi-ideal is O-minimal if and only if it is a non-zero \mathcal{B} -class union $\{O\}$.

PROOF. Let B be a O-minimal bi-ideal of S. Let $a, b \in B \setminus \{O\}$. Since $\{b, b^2\} \cup bSb$ and $\{a, a^2\} \cup aSa$ are clearly non-zero bi-ideals contained in B we must have $B = \{b, b^2\} \cup bSb = \{a, a^2\} \cup aSa$.

Now assume $a \neq b$. We can procede from the last equality by cases.

Suppose $a=b^2$. We have two sub-cases to consider.

- 1) If also $b=a^2$ then $a=b^2=aa^2a=b(ba^2b)b$ and also $b=a^2=a(ab^2a)a$. It follows that $a\mathcal{B}b$.
- 2) If $b \neq a^2$ we must have $b \in aSa$ and b = aua for some $u \in S$. Then $a = b^2 = auaaua = b(buaaub)b$. Again it follows that $a\mathcal{B}b$.

Now if $a \neq b$ and $a \neq b^2$ we must have $a \in bSb$ so that a = bvb for some $v \in S$. Again we examine b by cases as above. If $b = a^2$ we have simply case 2) with the roies of a and b interchanged. If $b \in aSa$ then b = aua for some $u \in S$. In either case it follows that $a\mathcal{B}b$.

By (1.4) we may conclude that $B = B_b \cup \{O\}$.

The converse is just (1.6).

We now remark, with thanks to Professor Otto Steinfeld and Mr. Bruce Mielke, that the above proof suffices to show that $a\mathcal{B}b$ if and only if $B(a) = \{a, a^2\} \cup aSa = \{b, b^2\} \cup bSb = B(b)$, i.e., two elements are \mathcal{B} related precisely when their principal bi-ideals coincide. Thus \mathcal{B} has the same relation to bi-ideals as \mathcal{L} to left ideals, \mathcal{R} to right ideals, \mathcal{L} to quasi-ideals [4] and \mathcal{L} to two-sided ideals.

We now procede to investigate the structure of O-minimal bi-ideals. The reader will recall that a null subsemigroup N is a subsemigroup with O in which ab = O

for any $a, b \in N$.

(1.8) **Theorem.** Let S be a semigroup with O. A O-minimal bi-ideal, B, of S is either a null subsemigroup or a group with $\{O\}$.

PROOF. From (1.7) we have $B = B_b \cup \{O\}$ for any $b \in B \setminus \{O\}$. We recall from (1.3) that $\mathcal{B} \subseteq \mathcal{H}$. Thus if $b^2 \neq 0$ we conclude $b^2 \mathcal{B}b$ and $b^2 \mathcal{H}b$. It now follows that H_b is a group ([3] Theorem 2.16). Now if $a \in H_b$ we would also have $a\mathcal{B}b$ since the equations a = bvb and aua = b can be solved for u and v in the group H_b . Thus B is the group H_b union $\{O\}$.

On the other hand if $b^2 = 0$ for each $b \in B \setminus \{0\}$ and if $a \in B \setminus \{0\}$ we have $a\mathcal{B}b$, $a\mathcal{H}b$ and then $ab\mathcal{D}b^2 = 0$ by [3] Theorem 2. 4. Since it is clear that $D_0 = \{0\}$

we have ab = 0 and B is a null subsemigroup.

We now procede to investigate the relationship between 0-minimal left and right ideals and 0-minimal bi-ideals.

(1.9) Proposition. Let S be a semigroup with 0. If R is a 0-minimal right dieal and L is a 0-minimal left ideal then either $RL = \{O\}$ or RL is a 0-minimal bi-ideal of S.

PROOF. Suppose $RL \neq \{O\}$ and that there is a bi-ideal B with $\{O\} \subset B \subset RL$. Since $RL \subseteq R \cap L$ we have $BS^1 \subseteq RS^1 \subseteq R$. It follows that $RS^1 = R$. Now $B \subseteq L$ so that we have $B \subset RL = BS^1B \subseteq B$, a contradiction. Since RL is a bi-ideal ([3] p 85 ex 18 c) the proof is complete.

Unfortunately not every 0-minimal bi-ideal in a semigroup with 0 can be obtained as the product of a 0-minimal right ideal and a 0-minimal left ideal as the following

simple example shows.

(1. 10) Example. Let S be the semigroup $\{a, a^2, a^3, 0\}$ where $a^4 = 0$. It is easy to check that $\{a^2, 0\}$ is a 0-minimal bi-ideal which is not the product of a 0-minimal right ideal and 0-minimal left ideal.

This also fails even when the 0-minimal bi-ideal is a group with $\{O\}$ as in the

following:

- (1.11) Example. Let S be the semigroup consisting of those 2×2 matrices of the form $\begin{pmatrix} i & 0 \\ j & a \end{pmatrix}$ where i, j are non-negative integers and a = 0, 1. One readily checks that $B = \left\{0, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right\}$ is a 0-minimal bi-ideal; indeed B is even a 0-minimal left ideal. $\left(0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\right)$ Moreover, B is a group with $\{O\}$. Since there are no 0-minimal right ideals in S we can not obtain B as the product of a 0-minimal right ideal and 0-minimal left ideal. However we do have the following:
- (1.12) Proposition. Let S be a semigroup with 0. If B is a 0-minimal bi-ideal of S then for any right ideal R contained in BS^1 and any left ideal L contained in S^1B we have either $RL = \{0\}$ or RL = B.

PROOF. Let $R \subseteq BS^1$ and $L \subseteq S^1B$. Then $RL \subseteq BS^1S^1B \subseteq BS^1B \subseteq B$. Since RL is a bi-ideal and B is 0-minimal it follows that $RL = \{O\}$ or RL = B.

We note that the semigroup in example (1.11) shows that RL may be $\{O\}$ even if B is a group with $\{O\}$ if we take $R = \left\{ \begin{pmatrix} 0 & 0 \\ j & 0 \end{pmatrix} | j \ge 0 \right\}$ and L = B. (However SB = B.)

We now conclude this section with the following proposition which we are informed can also be found in [5]:

(1.13) Proposition. The product of two bi-ideals in a semigroup is always a bi-ideal.

PROOF. Let A and B be two bi-ideals of a given semigroup S. Then $(AB)S^1(AB) = A(B(S^1A)B) \subseteq A(BSB) \subseteq AB$. It follows that AB is a bi-ideal.

2. Bi-ideals and quasi-ideals

In this section we examine the relationship between bi-ideals and quasi-ideals. The desirable property of bi-ideals proven in (1.13) and Steinfeld's question [7] as to whether quasi-ideals also had this property motivated much of the following investigation. The reader will recall the following definition and proposition.

- (2. 1) Definition. (A non-empty) subset Q of a semigroup S is called a quasi-ideal if $QS \cap SQ \subseteq Q$.
- (2.2) Proposition. ([3] p 85 ex 18). Every quasi-ideal of a semigroup is a bi-ideal. In a regular semigroup every bi-ideal is also a quasi-ideal.

It is now natural to define the following class of semigroups. It is clearly non-vacuous by (2. 2):

(2.3) Definition. The class $\mathcal{B}2$ of semigroups will consist precisely of those semigroups whose sets of bi-ideals and quasi-ideals coincide.

Because of (1.13) the following corollary is immediate:

(2.4) Corollary. The product of two quasi-ideals of a semigroup $S \in \mathcal{B}2$ is

always a quasi-ideal.

We now procede in two directions in an attempt to find the extent of the class $\mathcal{B}2$. First we try to determine large subclasses of $\mathcal{B}2$, then we will try to determine the relationship between the minimal bi-ideals and quasi-ideals in a semigroup and to see whether this has any determinable effect on the total sets of bi-ideals and quasi-ideals of the semigroup. Preliminary to this we quote the following theorem of Steinfeld:

- (2.5) **Theorem** ([7] Theorem 1). The intersection of a left and right ideal of a semigroup is a quasi-ideal. Conversely, every quasi-ideal of S can be obtained as the intersection of a left and right ideal.
- (2. 6) Proposition. If S is a left [right] simple semigroup then each bi-ideal of S is a right $\lceil left \rceil$ ideal.

PROOF. Suppose S is left simple and let B be a bi-ideal of S. Since S^1B is a left ideal of S and S is left simple we must have $S^1B = S$. Thus $B \supseteq BS^1B = B(S^1B) = BS$ and it follows that B is a right ideal. The proof for a right simple semigroup is dual.

The following corollary is now an immediate result of the above and (2.5):

- (2.7) Corollary. If S is a left [right] simple semigroup then $S \in \mathcal{B}2$. We can modify the above argument to prove:
- (2.8) Proposition. Let S be a semigroup with 0. If S is a left [right] 0-simple semigroup then $S \in \mathcal{B2}$.

PROOF. If B is a non-zero bi-ideal of S then $O \in BSB \subseteq B$. Thus if $SB = \{O\}$ we would be done since in this case B is a left ideal; otherwise SB = S, since S is by hypothesis left 0-simple. We can now procede as in (2.6) and (2.7).

We modify below the semigroup in example (1.11) to obtain a semigroup which is not in the class 32. Indeed this is a rather elementary semigroup in

comparison to the construction in [1] and we also find a right ideal, R, and left ideal L, whose product, RL, is not a quasi-ideal. Since right and left ideals are quasi-ideals the product of two quasi-ideals is not always a quasi-ideal.

(2.9) Example. Let S be the multiplicative semigroup of 2×2 matrices, of the form $\begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}$ where a and b are positive real numbers. Let $R = \left\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} \middle| a < b \right\}$ and $L = \left\{ \begin{pmatrix} p & 0 \\ q & 1 \end{pmatrix} \middle| q > 5 \right\}$. One can readily check that R is a right ideal and L a left ideal. Moreover, we can directly verify from the defining conditions of R and L that $\begin{pmatrix} 5 & 0 \\ 10 & 1 \end{pmatrix} \notin RL$. But we have

$$\begin{pmatrix} 5 & 0 \\ 10 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 \\ 6 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1/2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 6 & 1 \end{bmatrix} \begin{pmatrix} 1/4 & 0 \\ 1 & 1 \end{pmatrix}$$

so that directly $S[RL] \cap [RL] S \subseteq RL$ and RL is not a quasi-ideal.

Now in example (1.10) we can see that $B = \{a^2, 0\}$ is a 0-minimal bi-ideal which is not a quasi-ideal since $a^3 \in BS \cap SB$ but $a^3 \notin B$. However, as the following proposition shows, it is not necessary for a semigroup, S, to be in the class $\mathcal{B}\mathcal{D}$ in order for the product of two quasi-ideals of S to be a quasi-ideal.

(2.10) Proposition. In a commutative semigroup the product of two quasi-ideals is a quasi-ideal.

PROOF. In commutative semigroups the set of quasi-ideals and ideals coincide. The result is thus immediate.

Thus we have seen that if a semigroup is either regular, right 0-simple, or left 0-simple it belongs to the class $\mathcal{B}2$.

We now give one further result which is a partial characterization for the class of quasi-regular semigroups. This class properly contains the class of regular semigroups. From Calais [1] we have the following definition and result:

- (2.11) Definition. A semigroup S is said to be quasi-regular if each right ideal and each left ideal is idempotent.
- (2. 12) **Theorem.** ([1] Proposition 2. 2). A semigroup S is quasi-regular if and only if $Q = (QS)^2 \cap (SQ)^2$ for each quasi-ideal Q of S.

We can now characterize those quasi-regular semigroups which belong to $\mathcal{B}2$. We note that Calais' example shows that quasi-regular semi-groups do not in general belong to the class $\mathcal{B}2$.

(2.13) **Theorem.** A semigroup S belongs to the class $\mathcal{B}2$ and is quasi-regular if and only if $B = (BS)^2 \cap (SB)^2$ for each bi-ideal B of S.

PROOF. If we have $B = (BS)^2 \cap (SB)^2$ for each bi-ideal B of S then S is clearly quasi-regular by (2.12) since by (2.2) every quasi-ideal of S is also a bi-ideal. But if S is quasi-regular then we have $(BS)^2 = BS$ and $(SB)^2 = SB$ since BS and SB are right and left ideals respectively. Whence for any bi-ideal B we have $B = (BS)^2 \cap (SB)^2 = BS \cap SB$ so that B is also a quasi-ideal. It is now immediate that $S \in \mathcal{B}2$.

Conversely if S is quasi-regular and $S \in \mathcal{B}\mathcal{Q}$ then each bi-ideal is a quasi-ideal. The result follows immediately upon application of (2.12).

We now turn to the problem of the relationship of 0-minimal bi-ideals and 0-minimal quasi-ideals. We first give a theorem due to Steinfeld:

(2. 14) **Theorem.** ([8] Theorem 2). Let S be a semigroup with O and let R and L be 0-minimal right and left ideals of S respectively. Then either RL is a null semigroup or it is a group with O. In the latter case we have $RL = R \cap L$ and thus RL is a 0-minimal quasi-ideal of S.

From this we may deduce the following:

(2.15) **Theorem.** Let S be a semigroup with 0. If B is 0-minimal bi-ideal which is a group with $\{O\}$ and can be written as the product of a 0-minimal right ideal and

0-minimal left ideal then B is also a 0-minimal quasi-ideal.

Now if we return to the semigroup in example (1.11) we see that B, a 0-minimal bi-ideal, is a group with $\{O\}$ which is also a 0-minimal quasi-ideal eventhough it cannot be written as a product of a 0-minimal right ideal and a 0-minimal left ideal. Ttat 0-minimal bi-ideals which are groups with $\{O\}$ are 0-minimal quasi-ideals is shown in a note by Mr. Bruce Mielke submitted to this Journal.

When a semigroup S does not have a 0 or if we restrict outselves to minimal bi-ideals and quasi-ideals the problem is much simpler. We conclude the paper

with a discussion of this case. First from (1.12) we can deduce:

(2.16) Proposition. Let S be a semigroup. If B is a minimal bi-ideal of S then BS and SB are minimal right and left ideals of S respectively and we have B = (BS)(SB), i.e. B is the product of a minimal right ideal and a minimal left ideal.

PROOF. Let R be a right ideal and L a left ideal of S with $R \subseteq BS$, $L \subseteq SB$. Since RL is a bi-ideal with $RL \subseteq BSSB \subseteq BS^1B \subseteq B$ we must have B = RL. But $RL \subseteq R \cap L$ and thus $B \subseteq R$. Hence we have $BS \subseteq RS \subseteq R$ so that $R \subset BS$ would ley dia contradiction. It follows that BS is a minimal right ideal. Similarly SB is a minimal left ideal. Since B is a minimal bi-ideal which contains (BS)(SB), itself a bi-ideal, we must have B = (BS)(SB).

- (2. 17) **Lemma** ([2] Lemma 3. 4). If R is a minimal right ideal and L a minimal left ideal of a semigroup then $RL = R \cap L$.
- (2.18) Lemma ([7] Theorem 4a). Each minimal quasi-ideal of a semigroup is a group.
- (2. 19) **Theorem.** For any semigroup S the set of minimal bi-ideals and minimal quasi-ideals coincide.

PROOF. If B is a minimal bi-ideal then B = RL for some minimal right ideal R and minimal left ideal L by (2. 16). Now $RL = R \cap L$ by (2. 17). Thus B is also a quasi-ideal by (2. 5) and it follows from (2. 2) that B is a minimal quasi-ideal.

Conversely let Q be a minimal quasi-ideal. By (2.18) Q is a group. Now Q is also a bi-ideal and any bi-ideal is the union of \mathcal{B} -classes by (1.4). Since a group is clearly contained in but one \mathcal{B} -class it follows immediately that Q is a minimal bi-ideal.

Finally we have the characterization given by Calais:

(2. 20) **Theorem** [Calais; Reims, France]. Let S be a semigroup. Let B(x, y)denote the smallest bi-ideal of S containing $x, y \in S$ and let Q(x, y) denote the smallest quasi-ideal of S containing x, y. Then $S \in \mathcal{B}2$ if and only if B(x, y) = Q(x, y) for every $x, y \in S$.

PROOF. The condition B(x, y) = Q(x, y) is clearly necessary.

Now let B be an arbitrary bi-ideal of S and let $z \in BS \cap SB$. Then we have $x, y \in B$ such that $z \in xS \cap Sy$. But $xS \cap Sy \subseteq Q(x, y) = (\{x, y\} \cup \{x, y\}S\}) \cap$ $\bigcap (\{x,y\} \cup S\{x,y\})$. Since Q(x,y) = B(x,y) we have $z \in B(x,y)$. Since B(x,y) = $= \{x, y\} \cup \{x, y\}^2 \cup \{x, y\} S\{x, y\}$ is the smallest bi-ideal of S containing x, y we can conclude $z \in B(x, y) \subseteq B$. Thus $BS \cap SB \subseteq B$ and B is quasi-ideal. It now follows from (2. 2) that $S \in \mathcal{B}2$.

References*

- [1] J. CALAIS, Demi-groups quasi-inversifs, C. R. Acad. Paris 252 (1961), 2357-59.
- [2] A. H. CLIFFORD, Semigroups containing minimal ideals, Amer. J. Math. 70 (1948), 521—526.
- [3] A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups, Vol. 1 Providence,
- [4] K. M. KAPP, Green's relations and quasi-ideals, Czech. Math. J. 19 (94) (1969), 80-85,
- [5] S. LAJOS, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 11 (1961), 57—61 (in Hungarian).
 [6] S. LAJOS, On quasi-ideals of regular ring, Proc. Japan Acad. 38 (1962), 210—211.
- [7] O. STEINFELD, Über die Quasideale von Halbgruppen, Publ. Math. Debrecen 4 (1956), 262-275.
- [8] O. Steinfeld, Über die Quasiideale von Halbgruppen mit eigentlichem Suschkewitsch-Kern, Acta Sci. Math. Szeged 18 (1957), 235-242.

(Received May 13, 1967.)

 ^{*} The author received partial research support from NSF GP 3993, WARF No. 161—4854 and Graduate School Research Fund 101-8365.