On bi-ideals and quasi-ideals in semigroups
By KENNETH M. KAPP (Milwaukee, Wis.)

The purpose of this paper is twofold: an examination of elementary properties
of bi-ideals and an investigation of the relationships between bi-ideals and quasi-
ideals. In the first section we define an equivalence relation # on a semigroup which
is finer than # and show that any bi-ideal is the union of Z-classes. An investigation
of O-minimal bi-ideals follows. We show that in a semigroup with O, a bi-ideal
is O-minimal if and only if it is a non-zero #-class union {0}.

In the second section we show that under certain conditions a O-minimal bi-
ideal is also a O-minimal quasi-ideal; this is not always true. We say that a semi-
group is in the class #2 whenever its sets of bi-ideals and quasi-ideals coincide.
Several sufficient conditions are found (eg. right O-simple, regular) for a semigroup
to be in this class. An example is given which sheds some further light on the charac-
terization of #2 semigroups. We conclude with a characterization of these semi-
groups announced by Calais at the Semigroup Symposium in Bratislavia, Czechos-
lovakia in Jure, 1968.

We follow the notation and terminology of [3]. We will always use < for
proper containment. Equivalence relations will be denoted by script letters with
the subscripted capital italic denoting the corresponding equivalence class. Thus
R, denotes the Z-class of a.

1. Bi-ideals

(1. 1) Definition. A (non-empty) subset B of a semigroup S is a bi-ideal if
BS'BC B. (Clearly a bi-ideal is a subsemigroup.)

We now define a relation on a semigroup which will be usefui in our investigation
of bi-ideals.

(1. 2) Definition. For a,b€ S, a given semigroup, we write aZb if 1) a=b
or 2) there exists u, v € S such that aua=5b and bvb=a.
The following two propositions can be readily verified:

(1. 3) Proposition. The relation B defined in (1. 2) is an equivalence relation;
indeed < K.

(1.4) Proposition. If A is a bi-ideal of a semigroup then A= ) B,, i..,

acA
any bi-ideal is the union of its #-classes.
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In what follows we will be concerned mainly with semigroups with O though
we could procede as in [8] for semigroups with proper Suschkewitsch kernel and
obtain more general resuits. With this in mind we recall the following:

(1. 5) Definition. A non-zero bi-ideal B of a semigroup S with O is said to
be O-minimal if there is no bi-ideal B of S with {0}c B’ c B.
The following result follows immediately from (1. 4):

(1. 6) Corollary. Let S be a semigroup with O. If a bi-ideal, B, is a non-zero
#-class union {0} then it is a O-minimal bi-ideal.
The converse of this corollary is also true as we show in the following:

(1. 7) Theorem. Let S be a semigroup with O. A bi-ideal is O-minimal if and
only if it is a non-zero #-class union {0O}.

PROOF. Let B be a O-minimal bi-ideal of S. Leta, b€ B\ {0}. Since {b, b*} U bSb
and {a, @’} UaSa are clearly non-zero bi-ideals contained in B we must have
B={b, b*}' JbSh = {a, a*} UaSa.

Now assume a #b. We can procede from the last equality by cases.

Suppose a =5h%. We have two sub-cases to consider.

1) If also b=a? then a=b*>=aa’a="b(ba’*h)b and also b=a®=al(ab*a)a.
It follows that a#b.

2) If b=a* we must have bcaSa and b=aua for some ucS. Then a=bh*=
=auaaua = b(buaaub)b. Again it follows that a#b.

Now if a#b and a #b* we must have a€bSh so that a=bvb for some v€ S.
Again we examine b by cases as above. If b=a? we have simply case 2) with the
roies of a and b interchanged. If b<aSa then b =aua for some u€ S. In either case
it follows that a#b.

By (1. 4) we may conclude that B= B,/ {0}.

The converse is just (1. 6).

We now remark, with thanks to Professor Otto Steinfeld and Mr. Bruce Mielke,
that the above proof suffices to show that a#b if and only if B(a)={a, a*}\aSa=
={b, b*}UbSh = B(b), ie., two elements are # related precisely when their principal
bi-ideals coincide. Thus # has the same relation to bi-ideals as & to left ideals,
A to right ideals.  to quasi-ideals [4] and .7 to two-sided ideals.

We now procede to investigate the structure of O-minimal bi-ideals. The reader
will recall that a null subsemigroup N is a subsemigroup with O in which ab=0
for any a, bEN.

(1. 8) Theorem. Let S be a semigroup with O. A O-minimal bi-ideal, B, of S is
either a null subsemigroup or a group with {O}.

Proor. From (1.7) we have B=B, ') {0} for any bé B\ {O}. We recall from
(1. 3) that Z< #. Thus if b> =0 we conclude h*’Zb and b>#b. It now follows
that H, is a group ([3] Theorem 2. 16). Now if a< H, we would also have a#b since
the equations @ = bvb and aua =b can be solved for u and v in the group H,. Thus
B is the group H, union {O}.

On the other hand if »* =0 for each bc BN\{O} and if ac B\ {0} we have
a#b, a#b and then abZbh* =0 by [3] Theorem 2. 4. Since it is clear that D, = {0}
we hav: ab=0 and B is a null subsemigroup.
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We now procede to investigate the relationship between 0-minimal left and
right ideals and O-minimal bi-ideals.

(1.9) Proposition. Let S be a semigroup with 0. If R is a O-minimal right
dieal and L is a O-minimal left ideal then either RL= {0} or RL is a 0-minimal
bi-ideal of S.

PrROOF. Suppose RL = {0} and that there is a bi-ideal B with {O}c Bc RL.
Since RLS R(L we have BS'S RS S R. It follows that RS'=R. Now BSL
so that we have BC RL=BS'BC B, a contradiction. Since RL is a bi-ideal ([3]
p 85 ex 18c) the proof is complete.

Unfortunately not every O-minimal bi-ideal in a semigroup with O can be obtained
as the product of a O-minimal right ideal and a 0-minimal left ideal as the following
simple example shows.

(1. 10) Example. Let S be the semigroup {a, a*, a*, 0} where a*=0. It is easy
to check that {a?, 0} is a O-minimal bi-ideal which is not the product of a 0-minimal
right ideal and O-minimal left ideal.

This also fails even when the 0-minimal bi-ideal is a group with {O} as in the
following:

(1. 11) Example. Let S be the semigroup consisting of those 22 matrices

[0 e :
of the form (; a) where i.j are non-negative integers and a=0, 1. One readily
checks that Bz{O, [g (])]} is a 0-minimal bi-ideal; indeed B is even a 0-minimal

left ideal. [0 = [g g) ) Moreover, Bis a group with {O}. Since there are no 0-minimal

right ideals in S we can not obtain B as the product of a 0-minimal right ideal
and 0-minimal left ideal. However we do have the following:

(I.12) Proposition. Let S be a semigroup with 0. If B is a 0-minimal
bi-ideal of S then for any right ideal R contained in BS* and any left ideal L contained
in S'B we have either RL= {0} or RL=B.

Proor. Let REBS' and LES'B. Then RLEBS'S'BEBS'BE B. Since
RL is a bi-ideal and B is 0-minimal it follows that RL = {O} or RL = B.
We note that the semigroup in example (1. 11) shows that RL may be {O} even

if B is a group with {0} if we take R={lg g]|j.""—:0} and L= B. (However SB=B.)
We now conclude this section with the following proposition which we are
informed can also be found in [5]:

(1. 13) Proposition. The product of two bi-ideals in a semigroup is always
a bi-ideal.

ProOOF. Let A4 and B be two bi-ideals of a given semigroup S. Then
(AB)S'(AB)=A(B(S'A)B)S A(BSB)S AB. It follows that 4B is a bi-ideal.
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2. Bi-ideals and quasi-ideals

In this section we examine the relationship between bi-ideals and quasi-ideals.
The desirable property of bi-ideals proven in (1. 13) and Steinfeld’s question [7]
as to whether quasi-ideals also had this property motivated much of the following
investigation. The reader will recall the following definition and proposition.

(2. 1) Definition. (A non-empty) subset Q of a semigroup S is called a quasi-
ideal if QSN SQSQ.

(2.2) Proposition. (3] p 85 ex 18). Every quasi-ideal of a semigroup is a
bi-ideal. In a regular semigroup every bi-ideal is also a quasi-ideal.

It is now natural to define the following class of semigroups. It is clearly non-
vacuous by (2. 2):

(2. 3) Definition. The class #2 of semigroups will consist precisely of those
semigroups whose sets of bi-ideals and quasi-ideals coincide.
Because of (1. 13) the following corollary is immediate:

(2.4) Corollary. The product of two quasi-ideals of a semigroup S€#2 is
always a quasi-ideal.

We now procede in two directions in an attempt to find the extent of the class #2.
First we try to determine large subclasses of #.2, then we will try to determine the
relationship between the minimal bi-ideals and quasi-ideals in a semigroup and
to see whether this has any determinabie effect on the total sets of bi-ideals and
quasi-ideals of the semigroup. Preliminary to this we quote the following theorem
of Steinfeld:

(2. 5) Theorem ([7] Theorem 1). The intersection of a left and right ideal of
a semigroup is a quasi-ideal. Conversely, every quasi-ideal of S can be obtained
as the intersection of a left and right ideal.

(2. 6) Proposition. If S is a left [right] simple semigroup then each bi-ideal of
S is a right [left] ideal.

PrOOF. Suppose S is left simple and let B be a bi-ideal of S. Since S'B is
a left ideal of S and S is left simple we must have S'B=S. Thus B2BS'B=
=B(S'B)=BS and it follows that B is a right ideal. The proof for a right
simple semigroup is dual.

The following corollary is now an immediate result of the above and (2. 5):

(2. 7) Corollary. If S is a left [right] simple semigroup then S€#2.
We can modify the above argument to prove:

(2.8) Proposition. Let S be a semigroup with 0. If S is a left [right] 0-simple
semigroup then S€RB2.

Proor. If B is a non-zero bi-ideal of S then O¢ BSBS B. Thus if SB={0}
we would be done since in this case B is a left ideal; otherwise SB=S§, since § is
by hypothesis left 0-simple. We can now procede as in (2. 6) and (2. 7).

We modify below the semigroup in example (1. 11) to obtain a semigroup
which is not in the class #2. Indeed this is a rather elementary semigroup in
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comparison to the construction in [1] and we also find a right ideal, R, and left
ideal L, whose product, RL, is not a quasi-ideal. Since right and left ideals are quasi-
ideals the product of two quasi-ideals is not always a quasi-ideal.

(2.9) Example. Let S be the multiplicative semigroup of 2 X2 matrices, of
the form (: ?] where a and b are positive real numbers. Let R = {[g ? [a{b}
!

|
and L = {[‘; ?)!q:- 5}. One can readily check that R is a right ideal and L a left
ideal. Moreover, we can directly verify from the defining conditions of R and L

that (1(5) ?]-:{ RL. But we have

(5 92 9007 96 20-16 9 e )

so that directly S[RL]N[RL]SE RL and RL is not a quasi-ideal.

Now in example (1.10) we can see that B={¢? 0} is a O-minimal bi-ideal
which is not a quasi-ideal since a®€BS() SB but a*¢ B. However, as the following
proposition shows, it is not necessary for a semigroup, S, to be in the class #2
in order for the product of two quasi-ideals of S to be a quasi-ideal.

(2.10) Proposition. In a commutative semigroup the product of two quasi-
ideals is a quasi-ideal.

PrROOF. In commutative semigroups the set of quasi-ideals and ideals coincide.
The result is thus immediate.

Thus we have seen that if a semigroup is either regular, right 0-simple, or
left O-simple it belongs to the class 22.

We now give one further result which is a partial characterization for the class
of quasi-regular semigroups. This class properly contains the class of regular semi-
groups. From Calais [1] we have the following definition and result:

(2. 11) Definition. A semigroup S is said to be quasi-regular if each right ideal
and each left ideal is idempotent.

(2. 12) Theorem. ([1] Proposition 2. 2). A semigroup S is quasi-regular if and
only if Q=(05)*N(SQ)? for each quasi-ideal Q of S.

We can now characterize those quasi-regular semigroups which belong to #2.
We note that Calais’ example shows that quasi-regular semi-groups do not in
general belong to the class #2.

(2. 13) Theorem. A semigroup S belongs to the class #2 and is quasi-regular
if and only if B=(BS)*(\(SB)? for each bi-ideal B of S.

ProoF. If we have B=(BS)?* N (SB)? for each bi-ideal B of S then S is clearly
quasi-regular by (2. 12) since by (2. 2) every quasi-ideal of S is also a bi-ideal.
But if S is quasi-regular then we have (BS)*=BS and (SB)? = SB since BS and
SB are right and left ideals respectively. Whence for any bi-ideal B we have
B=(BS)>*N(SB)>*=BS SB so that B is also a quasi-ideal. It is now immediate
that S€#2.
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Conversely if S is quasi-regular and S€#2 then each bi-ideal is a quasi-ideal.
The result follows immediately upon application of (2. 12).

We now turn to the problem of the relationship of O-minimal bi-ideals and
0-minimal quasi-ideals. We first give a theorem due to Steinfeld:

(2. 14) Theorem. ([8] Theorem 2). Let S be a semigroup with O and let R and
L be 0-minimal right and left ideals of S respectively. Then either RL is a null semi-
group or it is a group with O. In the latter case we have RL = R\ L and thus RL is
a 0-minimal quasi-ideal of S.

From this we may deduce the following:

(2. 15) Theorem. Let S be a semigroup with 0. If B is 0-minimal bi-ideal which
is a group with {O} and can be written as the product of a 0-minimal right ideal and
0-minimal left ideal then B is also a 0-minimal quasi-ideal.

Now if we return to the semigroup in example (1. 11) we see that B, a 0-minimal
bi-ideal, is a group with {O} which is also a 0-minimal quasi-ideal eventhough it
cannot be written as a product of a 0-minimal right ideal and a O-minimal left ideal.
Ttat 0-minimal bi-ideals which are groups with {O} are 0-minimal quasi-ideals is
shown in a note by Mr. Bruce Mielke submitted to thies Journal. :

When a semigroup S does not have a 0 or if we restrict outselves to minimal
bi-ideals and quasi-ideals the problem is much simpler. We conclude the paper
with a discussion of this case. First from (1. 12) we can deduce:

(2. 16) Proposition. Let S be a semigroup. If B is a minimal bi-ideal of S
then BS and SB are minimal right and left ideals of S respectively and we have
B=(BS)(SB), i.e. B is the product of a minimal right ideal and a minimal left ideal.

PrOOF. Let R be a right ideal and L a left ideal of § with REBS, LESB.
Since RL is a bi-ideal with RLE BSSBC BS'BCZ B we must have B=RL. But
RLERNL and thus BSE R. Hence we have BSC RS R so that Rc BS would
ley dia contradiction. It follows that BS is a minimal right ideal. Similarly SB is
a minimal left ideal. Since B is a minimal bi-ideal which contains (BS)(SB), itself
a bi-ideal, we must have B=(BS)(SB).

(2. 17) Lemma ([2] Lemma 3. 4). If R is a minimal right ideal and L a minimal
left ideal of a semigroup then RL=R(L.

(2. 18) Lemma ([7] Theorem 4a). Each minimal quasi-ideal of a semigroup is
a group.

(2. 19) Theorem. For any semigroup S the set of minimal bi-ideals and minimal
quasi-ideals coincide.

Proor. If B is a minimal bi-ideal then B= RL for some minimal right ideal
R and minimal left ideal L by (2. 16). Now RL=R()L by (2. 17). Thus B is also
a quasi-ideal by (2. 5) and it follows from (2. 2) that B is a minimal quasi-ideal.

Conversely let Q be a minimal quasi-ideal. By (2. 18) Q is a group. Now Q is
also a bi-ideal and any bi-ideal is the union of #-classes by (1. 4). Since a group
is clearly contained in but one #-class it follows immediately that Q is a minimal
bi-ideal.

Finally we have the characterization given by Calais:
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(2. 20) Theorem [Calais; Reims, France]. Ler S be a semigroup. Let B(x,y)
denote the smallest bi-ideal of S containing x, y€ S and let Q(x, y) denote the smallest
quasi-ideal of S containing x, y. Then Sc#2 if and only if B(x,y)=0(x,y) for
every x, y€ S.

Proof. The condition B(x, y)=Q(x, y) is clearly necessary.

Now let B be an arbitrary bi-ideal of S and let z€ BS(1 SB. Then we have
x,y€B such that zexSNSy. But xSNSy € O(x,y) = ({x, y}U {x, y}SHN
N({x, y}U S{x, ¥}). Since O(x,y)=B(x, y) we have z€B(x, y). Since B(x, y)=
={x, y)U{x, y}?U{x, y}S{x, y} is the smallest bi-ideal of S containing x, y we
can conclude z€ B(x, y)S B. Thus BS() SBS B and B is quasi-ideal. It now follows
from (2. 2) that S€#2.
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