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1. Introduction. A tensorial connexion of type (r, s) is a direct linear connexion
between tensors of type (r, s). Such a direct connexion is more general, than that
which is induced by the usual linear connexion between the vectors of the tangent
spaces of a manifold. In the case of tensors of type (2, 0) this tensorial connexion
is given by
(1 Dt = diV 4y, ¥ dx" = 0.

It reduces to the induced connexion

Dt = di'+ I} 1M dx"+ T, 1% dx" = 0
if and only if .
', = N2.6f + T/, 6.

Tensorial connexions have been studied in a number of papers.) A nonlinear
tensorial connexion is a direct connexion between the tensors, not necessarily linear
in the components of the tensor. Such a connexion occurs at H. FrRIESECKE [4] and
W. BARTHEL [I].

In this paper the curvature and equivalence theories of the nonlinear homogene-
ous tensorial connexions are discussed. Curvature quantities will be obtained through
the investigation of the equivalence. The results will show certain analogy to but also
some differences against the theory of linear tensorial connexions. For the sake of a
better lucidity we will confine ourselves to the case of tensors of type (2, 0).

2. Nonlinear tensorial connexion. Let t'/(x) be a tensor of type (2, 0) attached
to the point x of a differentiable manifold V,. A nonlinear connexion between
these tensors is defined by writing an absolute differential in the form

(2) Dl & geii 4 Bii (x, 1)dx",

where BY(x, 1) is continuously differentiable in all its variables. In order that
Dt be a tensor. B, has to have the following law of transformation:

€ " (x, )AL AL = — (A A} + AQ ALt + B (X, 1) AL,

') See for example [3], [5], [8].
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where x and x” are coordinates in two coordinate systems connected by

x" = xF(x)
and
ox” 0% x"
oy OE yola 4
4 = - Amk = ox™ ox*’
A tensor 1" is parallel displaced, if Dt"/ =0. (3) makes it obvious that the linearity
of B (x, t) in t* is invariant under transformations of coordinates. Thus (2) reduces
to (1) if and only if B is linear and homogeneous in o
Now we want to assume, that BY (x, ) is homogeneous of degree 1 in the ¥,
This means, that

AL AV =&,

0B -
— B apm = u
@) o 17 = B,

and this is equivalent to _

D (i) = ADt"
accodring to (2). A nonlinear tensorial connexion satisfying (4) will be called homo-
geneous. Nonlinear connexions will mean homogeneous ones throughout this paper.

3. Equivalence of two nonlinear tensorial connexions. We consider two nonlinear
tensorial connexions. One of them is given on the ¥, (x) by the B (x, 1), and the
other is given on the V,(x’) by the B/ ,.(x’, ). They are equivalent, if the system
of partial differential equations

) "o(x, )AL A = — (A AL + Ap A ™ + BT (¥, ) 4§

has an invertible solution for the x"(x).
First we want to bring this system to a form, more suitable for our investigation.
Differentiating (5) with respect to ™ we have

(6) — (A AL 85+ AV A3 05) + G oy Al A AL AL A5 — G e = 0,
where

B, .
(7) Py (%, 1) = G (x, ).

Conversely, contracting (6) by ™ we obtain (5) with respect to the homogenity
of degree 1 in ¢t of B.
Now we can express A", explicitly from (6) by contracting (6) with é?:

8) mk = F(C*7 yyr Apy Ak — G A5).
Using the notation
(9) % Gnmrl: =M rrrsk

(8) gets the form _ o
A:;uk _— M.."'J'A:; A{ —M.% Ai’-

Substituting this in (6) we obtain

Fo o A% A;' AL = g T AT Ay
where
(10) From = @y — M 05— M5,
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Now the partial differential equation system (5) gets the form

ox¥
85

:
(A1) b) O W A A M5 A

o 4
= A

o B el
The conditions of the integrability of (11, a, b) with respect to (11, b) are

(12) SStp AL AL —S, 545 =0 and (13) R",.;,,,A:,'A{ }" = R’,WAE,
where

AS AT AL = Frs, AT AV

we'l’

(14) Sm’k = Mmsk—Mksm
and
oM, oM.’ ; p .
(15) Ry = axfk — kT 2M M.
Differentiating (16, ¢), (12) and (13) with respect to x' and eliminating i;J: and

it by means of (11, a, b) we obtain the equations E,:

ox! _
Vo Sy v Am Ak AT = VS’ As
\‘?c’Ri’n’!‘p' A: AE AfJAS' - vd Ramkj A;'
Vo Fo¥ i A% AY AL AS =  F A AY,

where 7, denotes a covariant derivative with respect to the M,5,. Further derivations
with respect to the x7/ lead to relations similar to E,, but involving higher covariant
derivatives. They are denoted by E,, E;, ... . Now by making use of a well known
result of J. M. Thomas and O. Veblen ?) we obtain the following

Theorem 1. A necessary and sufficient condition for the equivalence of two
nonlinear tensorial connexions BV, (x, t) and B"7'\.(x’, 1) is the existence of an integer
N, such that (11, ¢),(12),(13)and E, , E,, ..., Ey are compatible considered as equations
Jor the x' and A, and that their solutions satisfy Ey., and Det |Aj|#0.

4. Curvature quantities and their geometrical meaning. We call S torsion tensor
and R and F curvature tensors. They have certain geometrical meaning.

Let us consider the nonlinear connexion btetween the vectors of the tangent
spaces of a V,, given by

(16) DrE = dB 4+ B (x5 de =0,
where H,', is homogeneous of degree zero in the &/, %)

2) J. MTTHOMAS—O. VEBLEN [9], or T. Y. THomas [10], p. 203.
3) See e. g. H. Friesecke [4), W. BarTHEL [2], or H. RunDp [7] p. 83. Connexions not linear

neither in the components of the vector nor in the differentials of the coordinates were studied by
A. Modr [6]. '
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We call the tensor 7"/ square-decomposable, if 7/ has a representation in the form
(17) th = §igl

where ¢ is a vector. y will denote the set of the square-decomposable tensors.
We can extend (16) to the elements of y by means of the definition

D*(& ) ED . g+ & DA

We get

(18) D*('¢)) = d(& &) +[H,)\(x, HEE + HJ\(x, § & Edx! = 0.
Let

(19) M/ (x, t) = H/(x, ),

where f and ¢ are related by (17). Then (18) gets the form
(20) dt' +[M 5 (x, )1+ M/ (x, t)t*]dx' = 0.

(20) is called the nonlinear tensorial connexion induced by (16) over the y.
Conversely, a nonlinear tensorial connexion reduces over y to a nonlinear vector-
connexion of tvpe (16), if it has the form (20) over y, and (19) and (17) hold. In this
case (20) is induced by (16).

Theorem 2. A nonlinear tensorial connexion is induced over y by a nonlinear
connexion of vectors, if and only if F vanishes over 7.
If the tensor F vanishes, then according to (2), (7) and (10)

Dt = dtV + Bidx' = dt' + Gl 1" dxt =
= dt'+ (M0 + M6 ) dx = dt' +[M(x, 1)t* + M J,(x, 1) t']dx'.

By (19) this determines a vector connexion of type (16) and then Dt (7€ 7)is iduced
by this nonlinear vector connexion.

Conversely, if our nonlinear tensorial connexion is induced over y by a non-
linear vector connexion, that is if

B, = H}jt" + HJ 1",

then

; B : ot
1) Gl = 50 = HA8+ Hd,
and

MJj, = 3G, = Y HS+HJ)=H)],.

In this case F vanishes over y according to (10) and (21).
As a corollary of the preceding theorem we have also

Theorem 3. If F vanishes, then R and S reduce to the curvature and torsion
tensor respectively, of the nonlinear vector connexion (16).
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~ We call the connexion (2) affine, if a coordinate system x' exists, where the
BV (x’, t') identically vanish.

Theorem 4. T/e connexion (2), (4) is affine if and only if F=R=S=0.

Let F=R=S=0. In this case the nonlinear tensorial connexion (2), (4),
given by BY/(x,7) and the connexion given by B'/,(x’,1")=0 are equivalent.
Namely (11) reduces in this case to

ox" g
oxi e
(22)
245 _
ox*
for M and F vanish because of B does so, and F=0 according to our condition.
Thus (22) is completely integrable since R=S=0.
Conversely, if B"/',=0, then we have from (7), (9), (10), (14) and (15) F=R=
=S8 =0 and this is true in every coordinate system because of their tensor character.
Finally we make two remarks: 4) If R=S=0 then a coordinate system x’
exists, in which

(23) M (¥, 1) = 0,

_MjskA;:

for in this case (22) has a solution. In this coordinate system F¥ . .. =G"" ...
-— Conversely, if (23) holds, then obviously R=S=0.

B) 1If F=0 and M does not depend from ¢, then BY, is induced by a linear
vectorial connexion on y, and conversely.

(20) means an expansion of (16) over y. But other expansions of (16) are also
conceivable, extending (16) to broader subsets of the tensors 7" than y. To these
problems we wish to return at another occasion.
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