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A sharp inequality for Bergman-Nevanlinna
functions

By G. A. CAMERA (Caracas)

Abstract. In this note we prove inequalities, one for harmonic functions in the
unit disc A which are representable as the Poisson integral of a finite measure on 0A,
and another one for Bergman-Nevanlinna functions. These are used to characterize
those entire functions f whose associated autonomous nonlinear superposition operator
transforms Nevanlinna functions into Bergman-Nevanlinna functions.

1. Introduction

Let f be an entire function and H(A) the space of analytic functions
in the unit disc A. By h! we mean the Banach space of harmonic functions
in A which are equal to the difference of two positive harmonic functions.
The nonlinear superposition operator Fy is defined by Ff(u) = f o u,
whenever v € H(A). General information about this operator may be
found in [1]. About the action of Fy between Bergman spaces the reader
may consult [5]. We shall denote by N the well known Nevanlinna space of
functions u in H(A) such that log™|u(z)| has a harmonic majorant. The
symbol BN will denote the Bergman-Nevanlinna space of functions u in

H(A) such that
// logt|u(z)|dzdy < oco.
A

It is natural to ask what are the entire functions f such that FY
transforms N into BN. In other words, characterize those entire functions
f for which f ou € BN whenever u € N. In this paper we solve this
problem. To do this we need an inequality for functions in h' which may
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be of independent interest. We shall also need an inequality for functions
in BN which, in a certain way, sharpens the usual one.
We shall use the following notation: for 0 < p < oo

1
1 2m . D
M,(r.h) = — h(re®)|[Pde
s = (5 [ mrepas)
|Allp = sup My (r, h).
r<l

When p = oo we shall denote by M (r, h) the usual maximum modulus
of h on the circle of radius r.

In [4] I proved the following inequality
Theorem A. Ifh € h' then

1
/ M2=(r, )dr < Cl[B|2~5, 0<e<1.
0

For € = 0 the inequality is no longer true as showln by the function
2
h(z) = 12|

1=z~

We shall improve this inequality by changing the function 2~ to a
convex nondecreasing function ¢(¢) which grows more slowly than ¢2. More
precisely we have

Theorem 1. If h = hy — hy, where hy; and hsy are two positive har-
monic functions in A, and ¢ : [1,00) — RT is a non-decreasing convex

function such that -
/ @dt < 00,
t3
1

then

/ /A B(|h(2)|)dzdy < .

This theorem sharpens the result h! C by, Vq < 2, where b, is the
Banach space of Bergman harmonic functions ([2], page 167).

The subharmonicity of log™|u(z)| for u € BN easily implies the well
known inequality

¢
(1—lz)*

We shall improve this inequality in the following manner.

log™ |u(z)| <



A sharp inequality for Bergman-Nevanlinna functions 79

Theorem 2. Let uw € BN. Then there exists a non-decreasing convex
function ¢ : [1,00) — RT with

/OO @dt< 0,
P

such that

1
log™ < — .
el <6 (=)
As an application of Theorems 1 and 2 we characterize those entire

function f for which the nonlinear operator Fy acts from N to BN.

Theorem 3. Let f be an entire function. Then Fy acts from N to BN

if and only if there exists a non-decreasing convex function ¢ : [0, 4+00) —

Rt with
/ @dt < 00
t3
1

and log* Mo (r, f) < ¢(log™r).

The way we have followed to prove Theorem 3 has forced us to state
it in terms of a convex function ¢. Actually we can get rid of ¢ and state

Theorem 3 in the following equivalent form.

Theorem 3°. Let f be an entire function. Then F; acts from N to
BN if and only if

dt < oo.

/°° log Moo (€', f)
1

t3

This result follows easily from Theorem 3 by the convexity (as a func-
tion of t) of the function log M. (€', f) (Hadamard’s Three Circles Theo-
rem).

I would like to thank Prof. WALTER K. HAYMAN for his valuable
comments, and Prof. ALBERT BAERNSTEIN II [3] for his simplification of
the proof of Theorem 1. The referees have made possible a finer version

of this paper.
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1. Proof of Theorem 1

Set A = ffB(O 1 o(|h(2)])dzdy. By the Harnack inequality A is boun-
ded above by C1 = Z¢(C(h1(0)+h2(0))), where C' is an absolute constant.

Therefore
[ otmendsay< [[  oqnz)hdsay+ cn
A A\B(0,3)

By the Riesz-Herglotz Theorem ([6], Theorem 1.1) there is a function pu(t)
of bounded total variation ||u|| = ||k||1 shuch that

1 [7 1 — 72 '
h(z) = —/ ;dﬂ(t), z=re% € A

27 J_ . |ett —rei?|2

Using Jensen’s inequality at the appropriate step we can write

J[ - sin@Ndady
A\B(0,3%)
™ 2
S// ¢<i/ ||Ht||(1 7;2) d|u|(t)>d:cdy
ABO,4) \2m J_ o |e —re? 2 |p
" el (1 =12) ) d|M\(t)>
< qﬁ( . . dxdy
//A\B(o,;) (/w 2mleit —rei®|2 )|l
(1 = 7?)
= (;5<— dxdy.
//A\B(o,;) 2|1 — ret?|?

f [f o (W=D g,

it suffices to prove that

If we set

I <C(¢)|ull
Let z = “=1 with w = ¢ + is. Then

w—+1
dtds
I = 4/ Rew S ———
s i )|1+wl4

ds > o(llplit)
_4/ Al dt/ (1+0)? +32]2:27r/0 a+ep®

L [ o)
< 2l / Tl + 34 <o

as required.
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Remark. This results is sharp in the following sense. If 6 : [0,00) —
RT is a non-decreasing function such that

"0

1

L. (|1—'Z'2)dmy—

The exponent 2 on the right hand side of the inequality cannot be im-
proved.
In [4] I proved the following lemma.

Lemma 2. If u € N then

1 27
/ dr/ (log™ |u(7“ei9)\)2_6 df < oo, 0<e<l.
0 0

As an application of Theorem 1 we have the following corollary which
sharpens this result.

then

Corollary. Ifu € N and ¢ : [0,00) — R™ is a non-decreasing convex
function which satisfies

(1.1) /°° %ds<oo
1
then
1 27
1.2 d log™ ©))) do .
(1.2) /07“7"/0 ¢(og lu(re )D < 00

PROOF. We assume first that u # 0 in A. Then log|u| € h'. There-
fore

1 27 1 27
/Tdr ¢(log+|u(rew)|)d«9§/ rdr #(|log |u| |)dd < oo

in view of Theorem 1. For a general u € N we take v = g, where is the

Blaschke product associated to the zeroes of u. Then v € N, v £ 0 in A
and |u| < |v]. Thus

27

1 2 1
/ rdr P(log™ [u(re?®)])dh < / rdr d(log™ |v(re?)|)df < oo
0 0 0 0

by means of what was proved first.

Remark. This corollary is sharp in the sense that if ¢ : [0,00) — R

is a non-decreasing function which satisfies (1.1) then (1.2) diverges when
142z

u(z) =e-= € N.
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3. Proof of Theorem 2

We shall need the following fundamental lemma.
Lemma 3. If u(z) is analytic in {|z| < R} then

1 27
(31)  logt Ma(s,u) < 8 L

log™ [u(Re™)|df, 0<s<R.

R —s 21 J,
A proof of this can be found in [7, pag. 18].
PROOF of Theorem 2. Let ¢y (r) = logt M, (1 — 1. u). Clearly

log™ |u(2)] < ¢n (1 _1|Z|) '

Now we define

2r 1
gb(r):4/1 T(l—%,u>dt,
where Lo |
T(s,u) = %/0 log™ |u(se?)|df

is the Nevanlinna characteristic function of w. Since T'(s,u) is a positive

non-decreasing function of s then ¢(r) is an increasing convex function
« _ 1

of r. We also have that ¢1(r) < ¢(r). In fact, if we set R = 1 — 5~ and

s=1—1in (3.1) we obtain

1 1
log™ M (1— ;,u) < (4r—3)T(1— gu)

Hence
¢(t)>4/2rT 1 ! dt > 4rT (| 1 1
I 2t’u == QT’U
4r 1
> log™ 1— - > )
> ——log Moo( r,u)_asl(r)
Finally,

[e%e) [e%e} 2r
/ﬁg)drzllf d_;“/ T(l—l,u>dt
1 T 1 T 1 2t
:2/ T(1-=u dt/ @:8/ T =3y
1 2t %7’3 1 t2
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1
= 16/ T(s,u)ds < o0,

-

2

since u € BN.

4. Proof of Theorem 3
First of all let us assume that v € N and
log® Moo(r, f) < ¢p(log" r) + C, 1 >0,

for a function ¢ satisfying the conditions stated in the theorem. Then

//A log™ | Fy(u)(2)|dxdy = /01 rdr (/027r ’f(u(rew))|d9>

1 27
rdr + u(re®
g/o d (/ log™ Moo (Ju( >|,f>d0)

< /1 rdr ( 0% é(log™ |u(reif’)|)d9) +o(1)

~Jo
://A¢(log+ lu(2)])dzdy + O(1) < oo,

in view of the corollary to Theorem 1. Therefore, F; acts from N to

BN. Next, let us suppose thet Fy acts from N to BN. The function
w = u(z) = exp {%} belongs to N. Thus f o u belongs to BN. As a
consequence of Theorem 2 we have a function ¢ : [1,00) — RT, convex
and non-decreasing which satisfies

/der<oo
o

and

(41) g )] < 0 (1= ).

1—|z]

We shall confine ourselves to those z in the Stolz angle S = {z : |1 — z| <
Ci(1—1z]), Rez > ¢} NA. If S is big enough then u(S) D {w: |w| > R},

. 1—|z|? .
for some R > 1. Since |w| = exp { |1_|j}2} we can write

1 11— 2|

(4.2) T—[z] — (X —[[)2(1+ )

log |w| < C?log|w|, z€ 8.
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Since ¢; is non-decreasing we obtain from (4.1) and (4.2) that
log" |f(w)| < ¢1(CTlog|w])  |w] > R.
The desired result is obtained by choosing ¢(r) = ¢1(C3r).
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