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A sharp inequality for Bergman-Nevanlinna
functions

By G. A. C�AMERA (Caracas)

Abstract. In this note we prove inequalities, one for harmonic functions in the
unit disc ∆ which are representable as the Poisson integral of a finite measure on ∂∆,
and another one for Bergman-Nevanlinna functions. These are used to characterize
those entire functions f whose associated autonomous nonlinear superposition operator
transforms Nevanlinna functions into Bergman-Nevanlinna functions.

1. Introduction

Let f be an entire function and H(∆) the space of analytic functions
in the unit disc ∆. By h1 we mean the Banach space of harmonic functions
in ∆ which are equal to the difference of two positive harmonic functions.
The nonlinear superposition operator Ff is defined by Ff (u) = f ◦ u,
whenever u ∈ H(∆). General information about this operator may be
found in [1]. About the action of Ff between Bergman spaces the reader
may consult [5]. We shall denote by N the well known Nevanlinna space of
functions u in H(∆) such that log+|u(z)| has a harmonic majorant. The
symbol BN will denote the Bergman-Nevanlinna space of functions u in
H(∆) such that ∫∫

∆

log+|u(z)|dxdy < ∞.

It is natural to ask what are the entire functions f such that Ff

transforms N into BN . In other words, characterize those entire functions
f for which f ◦ u ∈ BN whenever u ∈ N . In this paper we solve this
problem. To do this we need an inequality for functions in h1 which may
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be of independent interest. We shall also need an inequality for functions
in BN which, in a certain way, sharpens the usual one.

We shall use the following notation: for 0 < p < ∞

Mp(r, h) =
(

1
2π

∫ 2π

0

|h(reiθ)|pdθ

) 1
p

,

‖h‖p = sup
r<1

Mp(r, h).

When p = ∞ we shall denote by M∞(r, h) the usual maximum modulus
of h on the circle of radius r.

In [4] I proved the following inequality

Theorem A. If h ∈ h1 then
∫ 1

0

M2−ε
2−ε (r, h)dr ≤ C‖h‖2−ε

1 , 0 < ε < 1.

For ε = 0 the inequality is no longer true as showln by the function
h(z) = 1−|z|2

|1−z|2 .

We shall improve this inequality by changing the function t2−ε to a
convex nondecreasing function φ(t) which grows more slowly than t2. More
precisely we have

Theorem 1. If h = h1 − h2, where h1 and h2 are two positive har-
monic functions in ∆, and φ : [1,∞) → R+ is a non-decreasing convex
function such that ∫ ∞

1

φ(t)
t3

dt < ∞,

then ∫∫

∆

φ(|h(z)|)dxdy < ∞.

This theorem sharpens the result h1 ⊂ bq, ∀q < 2, where bq is the
Banach space of Bergman harmonic functions ([2], page 167).

The subharmonicity of log+|u(z)| for u ∈ BN easily implies the well
known inequality

log+|u(z)| ≤ C

(1− |z|)2 .

We shall improve this inequality in the following manner.
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Theorem 2. Let u ∈ BN . Then there exists a non-decreasing convex

function φ : [1,∞) → R+ with

∫ ∞

1

φ(t)
t3

dt < ∞,

such that

log+|u(z)| ≤ φ

(
1

1− |z|
)

.

As an application of Theorems 1 and 2 we characterize those entire
function f for which the nonlinear operator Ff acts from N to BN .

Theorem 3. Let f be an entire function. Then Ff acts from N to BN

if and only if there exists a non-decreasing convex function φ : [0, +∞) →
R+ with ∫ ∞

1

φ(t)
t3

dt < ∞

and log+M∞(r, f) ≤ φ(log+r).

The way we have followed to prove Theorem 3 has forced us to state
it in terms of a convex function φ. Actually we can get rid of φ and state
Theorem 3 in the following equivalent form.

Theorem 3’. Let f be an entire function. Then Ff acts from N to

BN if and only if ∫ ∞

1

log M∞(et, f)
t3

dt < ∞.

This result follows easily from Theorem 3 by the convexity (as a func-
tion of t) of the function log M∞(et, f) (Hadamard’s Three Circles Theo-
rem).

I would like to thank Prof. Walter K. Hayman for his valuable
comments, and Prof. Albert Baernstein II [3] for his simplification of
the proof of Theorem 1. The referees have made possible a finer version
of this paper.
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1. Proof of Theorem 1

Set A =
∫∫

B(0, 1
2 )

φ(|h(z)|)dxdy. By the Harnack inequality A is boun-
ded above by C1 = π

4 φ(C(h1(0)+h2(0))), where C is an absolute constant.
Therefore ∫∫

∆

φ(|h(z)|)dxdy ≤
∫∫

∆\B(0, 1
2 )

φ(|h(z)|)dxdy + C1.

By the Riesz-Herglotz Theorem ([6], Theorem 1.1) there is a function µ(t)
of bounded total variation ‖µ‖ = ‖h‖1 shuch that

h(z) =
1
2π

∫ π

−π

1− r2

|eit − reiθ|2 dµ(t), z = reiθ ∈ ∆.

Using Jensen’s inequality at the appropriate step we can write∫∫

∆\B(0, 1
2 )

φ(|h(z)|)dxdy

≤
∫∫

∆\B(0, 1
2 )

φ

(
1
2π

∫ π

−π

‖µ‖(1− r2)
|eit − reiθ|2

d|µ|(t)
‖µ‖

)
dxdy

≤
∫∫

∆\B(0, 1
2 )

(∫ π

−π

φ

( ‖µ‖(1− r2)
2π|eit − reiθ|2

)
d|µ|(t)
‖µ‖

)
dxdy

=
∫∫

∆\B(0, 1
2 )

φ

( ‖µ‖(1− r2)
2π|1− reiθ|2

)
dxdy.

If we set

I :=
∫∫

∆

φ

(‖µ‖(1− |z|2)
|1− z|2

)
dxdy

it suffices to prove that
I ≤ C(φ)‖µ‖2.

Let z = w−1
w+1 with w = t + is. Then

I = 4
∫

Re w>0

φ(‖µ‖Re w)
dtds

|1 + w|4

= 4
∫ ∞

0

φ(‖µ‖t)dt

∫ ∞

−∞

ds

[(1 + t)2 + s2]2
= 2π

∫ ∞

0

φ(‖µ‖t)
(1 + t)3

dt

≤ 2π‖µ‖2
∫ ∞

0

φ(t)
(‖µ‖+ t)3

dt < ∞,

as required.
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Remark. This results is sharp in the following sense. If θ : [0,∞) →
R+ is a non-decreasing function such that

∫ ∞

1

φ(t)
t3

dt = +∞

then ∫∫

∆

φ

(
1− |z|2
|1− z|2

)
dxdy = ∞.

The exponent 2 on the right hand side of the inequality cannot be im-
proved.

In [4] I proved the following lemma.
Lemma 2. If u ∈ N then

∫ 1

0

dr

∫ 2π

0

(
log+ |u(reiθ)|)2−ε

dθ < ∞, 0 < ε < 1.

As an application of Theorem 1 we have the following corollary which
sharpens this result.

Corollary. If u ∈ N and φ : [0,∞) → R+ is a non-decreasing convex
function which satisfies

(1.1)
∫ ∞

1

φ(s)
s3

ds < ∞

then

(1.2)
∫ 1

0

rdr

∫ 2π

0

φ
(
log+ |u(reiθ)|) dθ < ∞.

Proof. We assume first that u 6= 0 in ∆. Then log |u| ∈ h1. There-
fore ∫ 1

0

rdr

∫ 2π

0

φ(log+ |u(reiθ)|)dθ ≤
∫ 1

0

rdr

∫ 2π

0

φ(| log |u| |)dθ < ∞

in view of Theorem 1. For a general u ∈ N we take v = u
Bu

, where is the
Blaschke product associated to the zeroes of u. Then v ∈ N , v 6= 0 in ∆
and |u| ≤ |v|. Thus

∫ 1

0

rdr

∫ 2π

0

φ(log+ |u(reiθ)|)dθ ≤
∫ 1

0

rdr

∫ 2π

0

φ(log+ |v(reiθ)|)dθ < ∞

by means of what was proved first.
Remark. This corollary is sharp in the sense that if φ : [0,∞) → R+

is a non-decreasing function which satisfies (1.1) then (1.2) diverges when
u(z) = e

1+z
1−z ∈ N .
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3. Proof of Theorem 2

We shall need the following fundamental lemma.

Lemma 3. If u(z) is analytic in {|z| ≤ R} then

(3.1) log+ M∞(s, u) ≤ R + s

R− s

1
2π

∫ 2π

0

log+ |u(Reiθ)|dθ, 0 ≤ s < R.

A proof of this can be found in [7, pag. 18].

Proof of Theorem 2. Let φ1(r) = log+ M∞(1− 1
r , u). Clearly

log+ |u(z)| ≤ φ1

(
1

1− |z|
)

.

Now we define

φ(r) = 4
∫ 2r

1

T

(
1− 1

2t
, u

)
dt,

where

T (s, u) =
1
2π

∫ 2π

0

log+ |u(seiθ)|dθ

is the Nevanlinna characteristic function of u. Since T (s, u) is a positive
non-decreasing function of s then φ(r) is an increasing convex function
of r. We also have that φ1(r) ≤ φ(r). In fact, if we set R = 1 − 1

2r and
s = 1− 1

r in (3.1) we obtain

log+ M∞

(
1− 1

r
, u

)
≤ (4r − 3) T

(
1− 1

2r
, u

)
.

Hence

φ(t) ≥ 4
∫ 2r

r

T

(
1− 1

2t
, u

)
dt ≥ 4rT

(
1− 1

2r
, u

)

≥ 4r

4r − 3
log+ M∞

(
1− 1

r
, u

)
≥ φ1(r).

Finally,
∫ ∞

1

φ(r)
r3

dr = 4
∫ ∞

1

dr

r3

∫ 2r

1

T

(
1− 1

2t
, u

)
dt

= 2
∫ ∞

1

T

(
1− 1

2t
, u

)
dt

∫ ∞

t
2

dr

r3
= 8

∫ ∞

1

T (1− 1
2t , u)

t2
dt
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= 16
∫ 1

1
2

T (s, u)ds < ∞,

since u ∈ BN .

4. Proof of Theorem 3

First of all let us assume that u ∈ N and

log+ M∞(r, f) ≤ φ(log+ r) + C, r ≥ 0,

for a function φ satisfying the conditions stated in the theorem. Then
∫∫

∆

log+ |Ff (u)(z)|dxdy =
∫ 1

0

rdr

(∫ 2π

0

|f(u(reiθ))|dθ

)

≤
∫ 1

0

rdr

(∫ 2π

0

log+ M∞(|u(reiθ)|, f)dθ

)

≤
∫ 1

0

rdr

(∫ 2π

0

φ(log+ |u(reiθ)|)dθ

)
+ O(1)

=
∫∫

∆

φ(log+ |u(z)|)dxdy + O(1) < ∞,

in view of the corollary to Theorem 1. Therefore, Ff acts from N to
BN . Next, let us suppose thet Ff acts from N to BN . The function

w = u(z) = exp
{

1+z
1−z

}
belongs to N . Thus f ◦ u belongs to BN . As a

consequence of Theorem 2 we have a function φ : [1,∞) → R+, convex
and non-decreasing which satisfies

∫ ∞

1

φ(r)
r3

dr < ∞

and

(4.1) log+ |f(w)| ≤ φ

(
1

1− |z|
)

.

We shall confine ourselves to those z in the Stolz angle S = {z : |1− z| ≤
C1(1− |z|), Re z ≥ c0}∩∆. If S is big enough then u(S) ⊇ {w : |w| > R},
for some R > 1. Since |w| = exp

{
1−|z|2
|1−z|2

}
we can write

(4.2)
1

1− |z| =
|1− z|2

(1− |z|)2(1 + |z|) log |w| ≤ C2
1 log |w|, z ∈ S.
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Since φ1 is non-decreasing we obtain from (4.1) and (4.2) that

log+ |f(w)| ≤ φ1(C2
1 log |w|) |w| > R.

The desired result is obtained by choosing φ(r) = φ1(C2
1r).
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IVIC–MATEMÁTICAS
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