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Introduction

There are several equivalent definitions of distributions. These definitions
have as a common characteristic the following steps:

(I) As a basic material, a linear space % is constructed and the elements of
& are called distributions. :

(IT) The linear space % of continuous functions is embedded in .%.

(I1T) The notion of the derivative is defined in . such that if a distribution
i1s a function with a continuous derivative, then its derivative in the distributional
sense coincides with its derivative in the ordinary sense.

(IV) There are put other notions, as much as possible, into distributions. For
example there are defined the multiplication of distributions by infinitely derivable
functions, the definite integral of a distribution, the limit of a distribution at a point,
the convolution of two distribution, etc.

In the theory of distributions of L. Schwartz % is the dual space of certain
space formed of infinitely differentiable functions with compact carriers. In the
Mikusinski—Sikorski sequential theory of distributions & is the space of abstraction
classes of certain equivalent fundamental sequences ([1]).

The equivalence of the different notions of distributions is based on the fact
that (in a case of one variable) for every distribution and for any closed subinterval
there exists an integer k such that the distribution is the k-th derivative of a continuous
function in this interval.

The concept of Mikusinski’s convolution quotients provides a further possibility
to obtain a generalization of functions. Indeed, if % =.# is the field of Mikusinski
operators, the properties (I), (II) and (III) are fulfilled. According to the book of
Erdélyi ([2] p. 25): “The embedding of continuous and locally integrable functions,
and of the delta function, in .# suggests that convolution quotients be regarded
as generalized functions.” It is known that the notion of generalized functions
in the above sense is a generalization of distributions with left-sided bounded
carriers (see e.g. Wloka [3]). We have recently introduced some notions for generalized
functions enumerated in (IV). ([4]).

In the paper [5] is introduced the notion of generalized convolution quotients.
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The starting point of this theory is a linear space ¢*(x, f) formed of continuous
functions in a fixed interval a<x<f (—~=a<pf=-<). Every function f(x) of
€ . (2, ) vanishes identically in a right-sided neighbourhood of «. The interval
of vanishing depends on f. A continuous increasing function u(x) is referred to as

a base function on (2, f) if linl 0;,:(.\-)= —oo and ]i;n 0;:(x)= . By means of u(x)
is defined the generalized convolution in %*(«, f) in the following manner:

g
(1 fxg = [fIn 1 (n(x)— ()] g () du(z)

where p~!(¢) is the inverse function of u(x) and the integral is understood in the
Stieltjes sense.

The space € *(« f) endowed with the multiplication (1) is a commutative
ring without divisors of zero, and it is denoted by % ,(a, f). The quotient field of
% ,(a, p) is denoted by .#, and .#, is called the field of generalized convolution
quotients. .# is the field .# of Mikusinski operators. In [5] is proved, that every
M, is isomorphic to ..

The purpose of the present paper is to show that every .#, provides a genera-
lization of the concept of a function. Since .#, is a linear space, and the continuous
functions of % ,(x, f) are embedded in .#,, the properties (I) and (II) are fulfilled
for ¥ =.#,. In the present work we shall introduce the concept of the derivative
in .#, such that also the property (ILI) will be fulfilled. Thus we may regard the
elements of .#, as generalized functions. In general it is impossible the elements
of .#, identify with distributions. Therefore, we make a convention, that the ele-
ments of .#, and only these will be referred to as generalized functions.

Moreover, we shall define the multiplication of generalized functions by some
kind of infinitely derivable functions. We will introduce the notion of the limit of
a generalized function f(x) as x-—+f. We define the indefinite and the definite
integral of a generalized function of .#,. It will be showed that the notion of the
definite integral may be extended for functions too, which are not elements of .#,.
It will be proved that every Lebesgue integrable function is integrable in the genera-
lized sense given here, and the generalized integral is equal to the Lebesgue integral.
However, it may happen, that an in the usual sense divergent integral is convergent
in the generalized sense.

Though every .#, provides a generalization of the concept of a function, these
different generalizations are not equivalent. We shall show namely, that, for example,

the integral f t™dt (b =0) does not exist in .#, for the integer m =1.
b

However, if u(x)=log x, the integral exists in .#, and
bv\-l- 1
- —_— —— =
f t*dt I (b=0)
b

for all complex numbers A+ —1. This result coincides with the result obtained in
the theory of distributions ([6]). Furthermore, not only the existence but also the
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value of the integral may depend on the choice of the base function u(x). Namely,
it will be showed that

& 3 (_ l)w'l-l
f: d:-_——ﬁﬁm_'_l (m=0),
0

provided p(x)=log (x+1).
In the quantum theory of radiation is raised the following divergent integral:

f lda'. This integral does not exist in .#, neither in .#, if u(x)=log x, nor if
ik
u(x) =log (x +1). However it will be proved that

oo

fldt=0,
f

1

provided u(x)=log log x.

Summarized our results, it may be established, that every regularization of
a divergent integral is connected with a base function u(x). If there are raised divergent
integrals in some kind of a theory, as there are raised divergent integrals for instance
in the quantum theory of radiations, then it may happen that there exists a base
function pu(x), such that certain, in the usual sense divergent integrals are convergent
in the generalized sense in .#,. However, in order to elimeinate the contradictions,
it is not allowed to make a change in g, once for all throughout the theory.

§ 0. Preliminary notions

In this section we shall summarize the results which are proved in the paper [3].

Let €, (x, f) be the ring, in which the multiplication is defined by means of
a base function pu(x) by the formula (1). The symbol {f(x)}, will denote that the
function f(x)€%*(x p) is regarded as an element of the ring %, (x, ). Thus we
can preserve the usual notations of the algebraic operations in %, (a, f) without
misunderstandings:

.1 (O} + {0} = {f(0)+8(0)},.
B
(0.2) (e = { [ 1T (0(x) — n (@) () du()}, .

In the case of u(x)=x we shall observe the original notations of Mikusinski and we
shall write simply

0.3) (rO}e@y ={ [ ft—0g@dr}

and the ring €( —==, ==) will be denoted simply by €*( —eo, ). €, (2 p) is
a commutative ring without zero divisors. Thus € ,(x, f) can be extended to a quotient
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field .#,. My is the field .# of Mikusinski operators. The elements of .#, will
be denoted by the symbols

)
(g0}, (. 2€%,(2 B)).

In the case of u(x)=x, the elements of .# are the Mikusinski operators, and these
will be denoted usually by

{/(1)}

{g@)}”
Every .#, is isomorphic to .#. This isomorphism is given by the mapping L,
defined as follows:

L{f@) = (M@ if [0+ (==, =),
VO _ U@, _ L0 U0,

g0} = el ~ L)’ " (g0} ©

The field  of complex numbers is embedded in .#, and the following equatlon
holds:

_ (M)
) . {/(x)},

(f; gEg"'(—m, oo)),

(0.4) L, [

for all A€ and f€€,(x, ), f=0.
It may be easily shown that
(0. 6) L\A) =i,

Let .#,(x B) be the class of functions f(x) defined in & <x<f such that (1)
f(x)=0 almost everywhere with respect to the measure u(x) in a right-sided neigh-
bourhood of «. This neighborhood depends on £, (ii) f(x) is integrable with respect
to p(x) in every subinterval (x,, f8,) (x=a, <fi, <f) in the sense of Lebesgue —
Stieltjes. The functions Z,(x, f) are embedded in .#, and holds

0.7) (/@=L (D]}
for f(x)€.%,(a, B). Thus, the function

0 if x<4

©.8) Hy(x) = {1 if A=x

is an element of .#, for every fixed Z¢€(«, ﬁ) For the zero x, of u(x), the function
I={H, (x)},is called the operator of integration with respect to u(x), namely we have

(0.9) 1Uum={fﬂn@mh
for all f€ Z,(x, p). ’
The derivative of f(x) with respect to u(x) is defined by the limit
i T+ =)
w0 (X +h)— p(x)
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if it exists and it will be denoted by df((_)) Since u(x) is a monotonic function,
it follows that
dfx) _ 1)
du(x) — W' (x)
RS 6] : : ’
almost everywhere, if ° exists everywhere, provided u'(x)#0. The element

du(x)
':-;- €.#, is the operator of differentiation with respect to u(x). In[5] is proved that

df(x)}

(0.10) /() = { el

provided both / and ‘1’: are functions of %, (x, f).
Every value of the function
(0.11) h(d) = L,(e=*4%)

is a shift operator in .#, and the following equation holds:

0. 12) hG){ S} = T (u(x) —p(4))]],

for all Z€(x, B) and f€ Z, (x. P).
It follows from u(x,)=0 by (0. 6) and (0. 11) that

(0. 13) h(xg)=1.

Let f(x) be a function with a continuous derivative in respect to u(x). As a
generalization of (0. 10), the following formula holds:

df(x)
dp(x)

A sequence of functions f,€%€*(a f) is said to be convergent in €*(x ff)
to the function fc‘b”(az p), if the following properties (i) and (i1) are fulfilled.
(i) There exists an interval o <=x-=¢-<f in which the functions f,,f,.

and f vanish identically.
(i) The sequence f, is convergent to the limit f uniformly in any closed sub-
interval [¢, n] of [£, B). We write in such a case

(0. 15) =S In €*(2,f) as n-—»oo.

(0. 14) S{f()H, ()}, = { H;(x )} +f(Dh(2)  (Ze(x, p))

A sequence of elements A,€.#, is said to be convergent in .#, to the limit
Ae€.#,, if there exist representatives

{ ()}

oy =4 Ue&€6a@p. n=1.2.)
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and
VM _ (f:g€%,.( B)

such that
h=/f 8=8
in €*(a, f) as n—oo.

In [5] is proved that the mapping L, is continuous, i.e. if a sequence of Mikusinski
operators a,€.# is convergent to the limit a€.#, then the sequence L,(a,) is con-
vergent to the limit L, (@) in .#,.

Let F be an operator transformation of .#. Then

(0. 16) F=LFL}

is a transformation of .#,. The map F is called the equivalent of Fin .#,. It follows
from (0. 16) that iend gual 8 S OK wer 4
(0.17) F+G=F+G, FG=FG.

§ 1. Linear transformations of .#,

Let .#, be the field of generalized convolution quotients determined by a base
function pu(x) on a<x<§p.

Definition 1. 1. A map F, of .#, into .#, is called a linear transformation
of .#, if
(i) F.(f+8) = F.(f)+F.(g)

(ii) F.(4f) = F,(f)
for all f, g€.#, and A€ X"

Let 7, be the set of all linear transformations F, of .#,. Obviously, 7, forms
a ring with respect to the usual operations of addition and multiplication of trans-
formations. We denote by 7 the ring of all linear transformations of . (i.e.

T =Jy). Let 7 be the set of all equivalent transformations of 7 in M, ic.
7 is the set of all transformations

(1.1) F=LFL!

where F€ 7.

Theorem 1.1. 7, = 7.
Proor. Let fand g be elements of .#,, and F€7. Then
F(f+8) = L,FL;'(f+8) = L,FIL;' () +L; ' (8)] =
= L,[FL;' (/) +FL; ' (g)] = L,[FL; ' (f)]+L,[FL;'(g)] =

= (L,FL; ) (f)+(L,FL; ") (g) = F(f) +F(g).
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Furthermore, by (0. 6), we get
F(f) = LFL;' () = LFIL;* (DL ()] = LFIL; ()] =
= L,[*F(L;* (/)] = L.AL,[F(L;'(f))] = AL, FL;Y)(f) =
= JF(f).

Thus, we have proved that 7 £7,. It may be similarly seen that 7 2.7,, if we
put F,=L;'F,L,, and the theorem is proved.

Definition 1. 2. A transformation F, of .#, is said to be continuous if the
transformation F=L;'F,L, of .# is continuous in the sense of the paper [7],
(i.e. F is continuous, if for every interval .# and every continuous operator function
f(2) on S, the operator function F[f(A)] is continuous on J).

It follows from a theorem of [7], by the continuity of L,, that every continuous
transformation F, of .#, has the following property: if a,—~a in .#, as n— <=,
then F,(a,) ~F,(a) in .#, as n—-eo.

We denote by 4.7 the set of all continuous linear transformations of .#.
Let €7 be the set of all continuous linear transformations of .#,. Then,

(1.2) €T = €T

where €7 is the set of equivalent transformations of all FE 47 in .#,,.

We shall now give a few examples for equivalent transformations in .4, of
some important continuous linear transformations of .#.

1°. The algebraic derivation D is defined in .# as follows: ([1]).

D) ={-tft) o Je¥ (~ =)

(1. 3) D[g] =%g:°(3)f if geﬁ{!‘

The equivalent of D in .#, is 'I_)=L,,DL;‘, consequently, if F€%,(x, f), then

D(F) = L,DL; ' (F) = L,D{Flu~ ' (O} = L{~tFlu~ ' (O]} = {~p() F(x)},..

Let 7 €.4, (F,GEG,(x B), then
b|f| = Lor-t|E| = p|E B _
D[G-] = L,DL;! [Z;"] = L,,D[L;l(g) =
_ ; DIL;'(PIL; ' (G)-DIL; ' GIL; ' (F) _

L' (G)F

_ LDL;'(F)L,L;'(G)—L,DL; " (G)L,L;'(F) _ D(F)G—D(G)F
B [L.L;*G)F . G? -
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It can be easily shown the following basic properties of D:

(1.4) D(A+B) = D(A)+D(B) (A, BeM,),
(1.5) D(AB) = D(A) B+ AD(B).
(1.6) D(5) =

2°. The transformation T? is defined in .# for o .4 as follows:

T() ={e"/(t)} if fc€*(—=,=)

G f]_'E(f) o
T [.g = T°(g) if ge..ﬁ.

Therefore, the equivalent of T in .#, is
T°(F) = L,T°L;'(F) = {¢""WF(x)}, if Fec%,(x p)
[ ] T (F) o F

T°(G) el
The basic properties of To: If A, Bc .#,, then

{(.7) T°(A+B) = T°(4)+T°(B)
(1.8) T?(AB) = T°(A)T*(B)
(1.9) T°Te =T°*¢ (0,06 X)

3°. The transformation U, is defined in the following manner. Let k=0, then
U, (f) = {kf(kt)) if fEE*(—oo, o),

g U (g)
It may be easily seen that

Ui(F) = {(kFlu=" (kp()l}, if  FE%,(x p)

(1.10) U,‘[f]:”*(f’ if ;ﬁeb#; 1, e (o, ).

— [F U(F) i I
1. 11) U[ ] & #, if —cM,; F GeE,(aPp).
( k U“(G) 1 G j-l( ﬁ

The basic properties of U,:

(1.12) U,(A4+B) = U, (A)+U,(B), (A, Be.&,)
(1.13) U,(A4) = AU, (A) (e X))
(1.14) U, (4B) = Uy (A)Uy(B)

(1.15) U,0,=U,,, (k1. k,€(0, =))
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Theorem 1. 2. Let A be an element of M, such that
(1.16) IimU,(4)=¢ (=1,2,..)

n-s oo

exists. Then the limit ¢ is always a number.

PrOOF. In the case of u(x)=x, the theorem is proved in the paper [7]. It follows
from the continuity of L, ' that the limit

lim U, L;(4) = lim L' L,U,L;'(4) = lim L;1U,(4) = L; ' ()

n—- oo n—~oo n—~oo

in 4 exists. Consequently, according to the quoted theorem of the paper [7],
the operator L; !(¢) is a number. Thus, by (0. 6), ¢ =L,[L;'(¢)] is a number too.

4°. Since .# is embedded in 4.7 ([7]), we can consider the equivalent trans-
formation ¢=L,cL;"' of an operator ¢ of .#. If we denote the element L,(c) of
M, somewhat inexactly, by ¢=L,(c), then we get

E(F) = (LycL;Y)(F) = L[c-L; (F)) = Ly(c)-LL;'(F)] = L,(¢)-F=¢-F

for all FE.#,. Thus, the equivalents of the operators of .#, (regarded as trans-
formations) are the elements of .#, (regarded as transformations).

We have defined in [7] the derivative F” of a transformation F of €7 in the
following manner:

(1.17) F' = sF —Fs.

We introduce here, similarly, the following definition: By the derivative F, of the
transformation F,€%J we understand the transformation

(1.18) F, = §F,—F,3,
where §=L,sL;'. '

Theorem 1.3. Let F€%7 and let ¥=L,FL;' and ¥ =LJF'L;' be the
equivalents of F and F’, respectively. Then

(1.19) (Fy =F.
ProoF. This theorem is an immediate consequence of (0. 17). Indeed
(FYy =5F—F5=sF—Fs=sF—Fs=F,

Theorem 1. 4. Let 7P be the set of all transformations F of €7 Jor which the
equation holds: FD =DF. Let TP be the set of all rransformations F= | A A
where F€ TP, Then (i) 7P is a commutative subring of €7 (i) if FeTP, » then
Fegp,

PrOOF. It is clear that 72 is a subring of ¥7. Thus, in consequence of the
equations (0. 17), FP is a subring of €. Moreover, since Ds = 1+sD, for

18 D



274 E. Gesztelyi

Fe 7P, we get
= (sSF—Fs)D = sFD—FsD = sDF—-F(Ds—1) =
= (Ds—1)F—(FD)s +F = (Ds)F—F—(DF)s+F =
= D(sF)—D(Fs) = D(sF —Fs) = DF’

Consequently, F'€ 7”. Hence, according to theorem 1. 3,
(Fy = FegP,

The commutativity of 72 is a consequence of theorem 2.4 which will be proved
in § 2.

& Remark 1. 1. Let 7,2 be the set of all transformations F, of 47, for which
F,D =DF,. Then, obviously, 7,0 =77,
Theorem 1.5. Let F be a transformation of FP. Then the function
F[h(4)
h(2)

is a numerical function defined on the interval o< i< . Moreover, @(A) is derivable
with respect to () in (x, B) and the derivative of ¢(1) with respect to u(4) is given by

do(2)  F[h(A)
d,u (2 h(h)

PrOOF. According to a theorem of the paper [7] (p. 191) the function

(1.21) V@) = (_h) (F = L;'FL,)

(1.20) () =

is a derivable numerical function on the interval —e <1 <-<> and the derivative
of Y(4) is given by

¢ (oA
(1.22) vy ="

Consequently, the function Y[u(2)] is a numerical function which is derivable with
respect to u(4) in (a, f). Since Y[u(4)] is a number for every A€ (2, ff), we get, by
(0. 6), and (0. 11),

—u(i)s = u(d)s
V1 = L] = 1, [0 | < BEEEN

_ (LFL) (Ll ) _ Flh)
' — Ln [e—ﬂ(i.ls] o h(l)
1.e.

(1.23) Ylu(A)] = (4),
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and similarly, by (1. 22),

F'[h(2)]
h(7)

de (7 : _
D = VGl = LW ) =

Thus the theorem is proved.

Remark 1. 2. It follows from theorems 1.4 and 1.5 by induction that the
function ¢(2), defined by (1. 20), is infinitely derivable with respect to u(4) and the
derivative of order n of ¢ with respect to u is given by

d"g _ FW[h()]

di” — h(2)
where F™ is the derivative of order n of F defined in the following manner:
F® = (F*)y  =1,2,..., FO =F),
Theorem 1.6. Ler F be a transformation of 7,P and let

o(}) = Fgg;ﬂ .

F(f) = {p(x)f(¥)},

Then

for all f€ %,(a, p).

Proor. Let F=L;’f£u. Since Fe7 7P, it follows from a theorem of [7]
(p. 191) that

(1.24) F(u) = {(t)u()}

- A5
for all u€%*(—==, =), where llf(fl)=F£(,e_.u ) .

valid for u€ Z*(— ==, =). It follows from the embedding of £ *(— ==, =) in . that

We shall prove that (1. 24) remains

(1.25) {f@y = s{ [ 1@ dr}

for all fe % (— <, «). We obtain, by (1. 17), that

#(70) = F[s{ froa] = @[ froa] =

= (sF—F) [{_ ;{ f@d}] = sF [{_ £ f() dz}] - F [{- £ f@ar}].
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Since j f(r)drc € * (==, =), from (1.22) and (1.24) we get
F(/) =s{y@) [r@d}—{y'@) [f@)de} =

— sy [rod)-s{ [v© [rodod).
Integration by parts gives B 4 g
[¥@ [roydsd=v) [rorde— [oer@s
and thus we h_a:e - ¢ o

(1.26) F()=s{w@) [f@d—s{p@) [r@do— [y f@ i) =

=s{ [Vv@f@di} = PO/ @)}.

Now we shall prove that the equation

(1.27) LAS(t)}={fu()]},

is valid not only for functions of €*( —e=, =) but also for f€.Z*(—ee, ==). Since

t
f f(R)dr € €% (—-==, ==), it follows from the definition of L, that

t pix) x
L [r@d}={ [ f@add},={[ flu@)dp®)},.

Therefore, by the formula (0. 9), we get

L{f(0} = L, [s{ f f@dt}] = L,(s)L, { [ @ as} =

u(x) x
=§{ [ f@dd}, = s{ [ fk®)du®)},= {/Te@)]},.

Let now {f(x)},€ %, (2 B). Then {f[u~1(1)]}€ £ *(—=, =), and thus, by
(1. 26), (1. 27) and (l. 23) we obtain

F(f) = L,FL;'(f) = LF{fln ' O} = LY Oflk ' @)} =
= W} = {0 ()}

this proves the theorem.
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§ 2. The product of a generalized function by infinitely derivable functions

The elements of .#, will be called generalized functions. We shall denote
generalized functions by symbols { f(x)},; {g(x)}, etc. This notation is purely symbolic
and, in general it is not allowed to substitute numbers for the variable x. Sometimes
we shall write simply f(x), g(x) etc. instead of {f(x)},, {g(x)}, etc. if it leads no
to misunderstanding.

1. The “ordinary** sum of two generalized functions
and the "ordinary* rroduct of a generalized function by a number

Since the generalized functions are elements of the field .#,, there is no need
to define the algebraic operations on generalized functions. These operations are
called, temporarily, field operations. Thus, the field sum {f,(x)}, + {f2(x)}, of

the generalized functions {fi(x)}, = f”'?‘;g" and {f,(x)}, = {Ifzg;i" (where
{v,
Uy, Uy, Uy, v, are functions of % ,(x, f)) is the generalized function &

{/i}+{2(x)} =
{ f [ () — p(0))] 2 (1) dp+ f oy [ () — ()] u (1) du},

{f:,[u u(x)— H(!))]lz(f)dn}

Similarly, the field product {f,(x)},{/f>(x)}, is the generalized function

{ful[ﬂ"‘(u(x)w(:))]uz(r)dp}

{fl (x)}n{fz(r)},u
{f [0 ()= )]sV ),

Now we shall introduce the notion of the “ordinary’” sum of two generalized
functions and of the “ordinary” product of a generalized function by a number.

Definition 2. 1. By the “ordinary” sum {f,(x)+/f5(x)}, of the generalized
functions {f,(x)}, and {/f(x)}, we understand the generalized function

2.1 (D) +L0} = (N3} +{L2(2)},.-

By the “ordinary” product {4 f(x)}, of a generalized function {f(x)}, by a
number 4 we understand the generalized function

(2.2 (A1)} =2{F(X) }e

The adjective “ordinary” refers to the circumstance that in the case of functions
the sum (2. 1) and the product (2. 2) becomes the sum and product, respectively,
of functions in the ordinary sense.
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In the general case the field product of two generalized functions defines the
generalized convolution of the generalized functions:

Definition 2.2. By the generalized convolution {fj(x)*f5(x)}, of the
generalized functions { f,(x)}, and {f5(x)}, we understand the generalized function

(2-3) {fl(x) *fz(v")}n = {fl(x)}u X {fz(x)}n-

The definition of the ““ordinary™ product of a generalized function by a function
is somewhat complicated and it will be given in the next section.

2. The ““ordinary™ product of a generalized function by
an infinitely derivable function

Definition 2.3. We denote by %.™'(2, f) the set of all functions

'(2.4) @A) = —F%{;’-n— (A€, B))s

where F €70, By the “ordinary” product {¢(x)f(x)}, of a generalized function
{f(x)}, by the function ¢(x)€ €. )(«, f) we understand the generalized function

@.5) {o ()}, = F({/()},)

where F € 7,7 is determined by (2. 4).

Theorem 2. 1. If ¢(x)=1y is a constant function and {f(x)}, is an arbitrary
generalized function, the product {¢(x)f(x)}, coincides with the ordinary product
defied by (2. 2).

PROOF. Let F,(4)=y4 for all A¢.#4,. Obviously, F,€7,, moreover F,€7,7,
since yD = Dy by the linearity of D. Furthermore

F,[h(2 h(i ?
"f[,(il)] 3 ]:a(fn) =)= ea) (exi<f)

and hence, by (2. 5) and (2. 2), we get

{o (\)f(f)}‘, = Fs({f(“)]n) = }‘{f(.\‘]},, = {]”f(\),u ’

which proves the theorem.
In the following theorems, if it leads no to misunderstanding, we shall write
simply f(x) for the generalized function {f(x)},.

Theorem 2. 2. If @(x)€%€'~(«. B) and f(x), g(x)€.#,, then

(2.6) P)f(x) +g(x)] = o(x) f(x) + @(x) g (x).
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F[h(2))
h(%)
(0f(¥)+g ™), = F{S)+g()}] = FI{/(0)}, + {g(¥)}] =
= F{ W+ Fl{g(}] = {000}, + {0 g ()}, = {9 () (x) + 0 () g(x)),.

Theorem 2. 3. If ¢(x) and y(x) are functions of €')(x, B) then @(x)-+y(x)e
€ €“Na, p) and holds
(2.7 [p(x) +¥(x)] [(x) = @(x) f(x) +Y(x) f(x)
for all f(x)€M,.

PrOOF. Let ¢ (/) = . Then, by the linearity of F, we obtain

ProoFf. Let ¢ (1) = L ,E}Efj ) and Y (1) = G}:;E;')—] where f“.éeﬂ;ﬁ.
Then p B - L
) _ Fl)  Ghh) _ FIh)+Glh) _ (F+G)h@)]
eA+yA) == h(i) * h(Z) h(2) T | T

Since 7, is a ring, it follows that F+GeZP. Consequently o(x)+W(x)€ €= (a, B)
and

{lo()+¥ O} = F+G) ({f(0}) = F{/()}) +G({ f()},) =
= {@ () ()}, + Y () ()} = {@ (X)) + Y (x)f(x)},
for each f(x)€.#,. This proves the theorem.

Theorem 2. 4. If ¢(x) and Y(x) are functions of €=(x, f) then (x)(x)€ €=(x. B)
and
(2.8) ()Y (x) F(x)] =[x (x)] f(x)
Jor all f(x)e.,.

PROOF. Let ¢(4) = %"(g)] and Y(}) = %J, where F, G¢ 7,5, Since
Y(%) is a number, it follows from the linearity of F that
e ot F [h(i)(—;-g—'()ﬂ] "
FC)h() _ F[G(h()] _ hy | _ RG] _
T D 7 | Tl h(k) = My :
_Fh@y @) _

and thus @(x){(x) € €“)(x, p), since FGE€T P, because 7P is a ring. Using the
definition 2. 3 we obtain

oY@/}, = FG) ({f()}) = F[G({/()},)] =

= FI{y /()] = (W /™)),
for all f(x)€.#,, and the theorem is proved.
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§ 3. Derivation of generalized functions

Let u(x) be a base function on (a, f) which is derivable in (a, ). We
shall suppose that u’(x)€%5™(x, f), as it happens for example in the case of
u(x)=x, or else in the case of u(x)=Ilog x, etc. Then, by definition, there exists

a linear transformation M of .7;? such that
Gy = MIEG)]
(3.1) W) = "0 (x<i=<p).
Definition 3. 1. Let {/(x)}, be a generalized function of .#,. By the derivative

of a generalized function {f(x)}, we understand the generalized function ﬁ[.?{ S(x)}]
We write in this case

(3.2 {f" ()} = M[{f(0)},].

Theorem 3. 1. If a generalized function of .#, is a function of €,(a,p) with
a continuous derivative in (x, p) then its derivative in the sense of definition 3.1
coincides with its derivative in the ordinary sense, provided p'(x)#0 in (a, p).

Proor. Let {f(x)},€%,(a B) such that f’(x) is continuous in a<x<§.

Then, obviously, 3‘%'3 ={%83—6@,(a, p) and thus, by (0. 10), we have

w5,

It follows from theorem 1. 6 that

MU = M{EO e O = e,

and the theorem is proved.
Theorem 3. 2. If f(x) and g(x) are generalized functions of .#,, then

(3.3) /() +g@)] = /(x)+g'(x).
Proor. It follows from the linearity of M that
{[/)+8(N ) = MIE{/(x) +2()}] = MIS{ (%)}, + 5{g(*)},] =
= M[5{/()}]+M[5{g()}] = {/ )} +{& )} = () +& s

which proves the theorem.

Theorem 3.3. Let p'(x)€%, ™ (a, f) and p'(x)=0 in (o, f). If @(x)€ 6o, f)
and f(x)€.M,, then

3.9 [p(x) /(X)) = ¢"(x) f(x) +@(x) f(x).
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Proor. Let F be a transformation of 7P such that

F[h
o) =1 e ).
We show that o
M) RG]
(3.5) T D=em (e p)

It follows from theorem 1. 5 that

FlhQ)] _de() _ ¢'(A)
h(G) — du() T WHG)

Hence, from the linearity of M by (3. 1), we obtain

(MF)[h@) _ M M_["(’" o) ) _
h(2) h(7) h(2) .

=l @A
= M[W) n’(f-)] _M@k@)] o' _

- e F'(h(2))
ME)h() _ MIF (h)] _

o' (A) _

T I T IR 1 B i (/N i
Thus is (3. 5) valid. Since MF’ €7D, it follows that
(3.6) M) (/) = {0 f (),

for every generalized function f(x). Then
o ()f()]'}, = M[3{e(x)f(x)},] = M[SF(/)] =
= M[F —F3) (/) +F(5/)] =
= M[F'(f)]+MF(5f) = (MF) () +(FM) (§f) =
= {0’ ()f ()}, + FIM()] = {0’ S} +F{f )}, =
= {0’ )} +{e ) ()}, = (@ )X) + 0 (X)f (X))},

The theorem is proved.

§ 4. The limit of a generalized function as x —~ f

281

Definition 4.1. Let {f(x)} be a generalized function of .#,. If the limit

lim U,(5{f(x)},) = ¢

H=s o0

exists in .#,, then the number ¢ is called the limit of {f(x)}, as x —~p. We write

in this case

@.1) lim U,(5{/(x)},) = Lim f(x).

n-=oo x-ﬁ
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Theorem 4, 1. Let f(x) be a function of € (x, p). If

4.2) iin;f(.\')
exists in the usual sense, then I;in;f (x) exists in the sense of definition 4. 1 and
(4.3) lef(\) = iin; S(x).
Proor. It follows from the dcﬁnmon of u(x) and (4. 2) that
4.4 lim f{u="(1)] = llmf(\)

===

Then, by a theorem of the paper [4] (Theorem 1.),') the sequence U,(sf) is convergent

in .# and
lim U, (s{/[u""(D]}) = 1lm Sl (0]

n—-e

Thus, by the continuity of L,, we obtain

Lim f(x) = lim U,(5{f(x)},) = llm LML () - L Lo *EA(x)),) =

X"ﬂ n-=oca

= "1_12‘: LU L!L(s{/le"t(OR)] = lim :'_'.,u [G.(s{ /T~ ()] =
= L,[limflp='()]] = limf[u~"(1)] = llmf(\)

The theorem is proved.
It follows from the linearity of U, that

Lil}) (f()+g) = Lil}:f (x)+ Lir;l g(x)

Lim Af(x) = 2 le f(x) (LX)
x~f

§ 5. The Stieltjes integral of a generalized function

We have seen in §0 that

(5.1) I?{f @} = { f f@)du(n)},

for {f(x)}.€ Z(x ). If {f(x))}, is a generalized function, which is not a function,
we make use of the left side of (5. 1) for the definition of the right side. We denote

1) See also [8].
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the indefinite Stieltjes-integral of a generalized function {f(x)} with respect to

u(x) “from « to x° by {ff'(!)or:’,u(lr)}‘I and

([ 10du®},= L ()

Definition 5. 1. By the Stieltjes-integral of a generalized function f(x)
with respect to u(x) from « to f we understand the number

Li (t)du(e),
xl_t});ff(f) u(t)

if the limit exists in the sense of definition 4. 1. We write in this case
x ]
(5.2 Lim [ /() du@) = [ 1@ du().
According to the definition of the indefinite Stieltjes-integral, we may write also

b s i
(5.3) [ f@ du() = 1imT, [l {f(x)}n] = 1im T, { ()},

n—+es n-=oo

Theorem 5. 1. Let f(x) be a function defined in (x, B) such that f(x) vanishes
B 2

in some interval o <x<¢. If f f(t)du(t) exists as a Lebesgue—Stieltjes integral,
x

then the limit lim U,{ f(x)}, exists in .#, and holds?)

n—ca

o B
(5.4) lim U, { ()}, = [ /() du(0).
Proor. It follows from the continuity of u(x) that
(i) [ fdu() e, p)
x B
(i) lim [ f@)ydu(t) = [ f(e)du(r).

Hence, by theorem 4. 1, we obtain
B

im 0,700}, = im0, (5{ f 10 du(0),) = Lim [ 10ty = [ 70t

x

2) It is clear that f(x)¢ 2, (x, ).
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Remark. The above theorem goes to show that the notion of the integral,
given by definition 5. 1, is a generalization of the Lebesgue—Stieltjes integral.

p
Theorem 5.2 Let f(x) and g(x) be generalized functions of .#,. If f f(t)du(r)

]
and f g(0)du(t) exist then

p p /]
(5.5) [ lesf()+e2g@du(t) = ¢, [ f(O)du(t)+c, [2() du(r)
for all numbers c,,c,€ K.

s B 3 B
Proor. Since U,(f)~ [f(t)du and U,(g)~ [ g(t)du as n—eo it fol-

lows that

-~ - = B i
U,(e:/+¢28) = e, Uy () + e Up(@) ~cy [ () du+e, [g(t) dp.

§ 6. Change of variable

Definition 6. 1. Let {f(z)} be a generalized function of .#. Let u(x) be
a base function in (x, ). By the generalized function {f[u(x)]}, of .#, we under-
stand the generalized function L,{f(r)}, i.e.

(6. 1) {f G}, =L f(1)}.
Theorem 6. 1. Let { f(2)} be a generalized funcnon of #. Let u(x) be a base
Sfunction in (x, p). If f f(t)dr exists in M, then f Su(2)ldu(r) exists in M, and

e [
(6.2) [ f@de = f ST du ().

PrOOF. Since f S()dr = lim U,(f), it follows from the continuity of L, that

n-—=ca

U {fle@h, = U,L,(f) = LU LS L(f) =
=LU(N-L( [ f@d)= [f@d @)

This shows the validity of (6. 2).
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§ 7. The definite integral of a generalized function

It is clear from the classical definition of the integral that if ¢(x) is a numerical
function with a continuous first derivative and f(x) is continuous in a=x=f, then

g 8
J ) do(x) = [ 1(x) ' (x)dx

In this section we shall derive an analogous result for the generalized integral.
Definition 7. 1. The base function u(x) is called normal if both x’(x) and
1
——— are functions of €.")(x, B).
K ks
Theorem 7._}. Let u(x) be a normal base function and let M and N be trans-
Sformations of 7P such that

. (1))
and g
1 _ N[h@)

W@ k@)
for all A€(a, B). Then M has an inverse M~ and
(7. 1) M-! =N.

Proor. It follows from theorem 1. 6 that

M) = {i (x)u(x)},
and |

~ 1
%0 = i "),
1

for all we%,(x, f). Since both {u'(x)u(x)}, and {mu(x)} are functions of
€, (2, B), we have i

(7.2) (NM) () = N{e’ (x)u(x)}, = L:]W ;e’(x)u(x)} = {u(x)},
and . '

: S 3 B T N YTy O e
(7.2) MN)(v) =M {u'(.\‘) u(,\)}#— [,u (x) 7 (x)u(x)}a— {u(x)},.

It follows from a theorem of the paper [7] (p. 182.),_by the ¢ continuity of L,
that € ,(x, p) is dense in .#,. Since the transformations M and N are continuous,
we obtain from (7. 2) that .

ONM)(f)=f
and

MN)(f) =f
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for every element f of .#,. That is

NM = MN = |
which shows that the inverse of M is N.
In the following theorems we shall suppose that u(x) is a normal base function. *)

Definition 7.2. Let u(x) be a normal base function, and let {f(x)}, be a
generalized function of .#,. By the definite integral

']
[ r@a

of {f(x)}, we understand the integral of the generalized function {H;(l;)- f(x)}
H
with respect to pu(x), if it exists. We write in this case

B g
7.3) [ 1wy = [ 70 duco).

The principal properties of the integral are summarized in the following theorem.

8 8
Theorem 7.2. If f f(t)de and f g(t)dt exist for the generalized functions

g
f(x) and g(x) of .#,, then f [f(¢)+g(1)]dt exists too and

4 [ i
(7.4) JUr®+gwide = [ f(ydi+ [g(o)ar.

i p
3 f f(t)dt exists, then f cf(t)drt exists too and

14 g
(7.5) [ef@yde = c [ f(t)dt,

where ¢ is an arbitrary number.
This theorem follows immediately from theorems 5. 2, 2. 3 and 2. 4.
Definition 7.3. By the indefinite integral { [ f(r)d:}ﬁ of the generalized
function {f(x)}, we understand the generalized function
f(@) }
o du(t
. 7 Ml

3) In § 8 we shall show that, for example, u(x)=1log x is a normal base function. It is trivial
that g(x)=x is normal.
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Remark. It is easily to show that
[ £ @)de = f(x)

for every f(x)€.#,. Indeed, by definition 3. 1,
(/' () = MG{/()},)

and thus, by definition 2. 3 according to theorem 7. 1, we get

PO _ 17 o), = B IGUN = 7
(LN -1 ), = M RGN = 5

Consequently, by definition 7. 3,

Hroal <1 [ 2O ol = O 2 Loy, = (1o

W) W(x), 5

Theorem 7. 3. Let f(x) be a generalized function of .#,. The existence of the
I

integral f f(t)dt in the sense of definition 7.2 is equivalent to the existence of the
(- §

generalized limit Lim f f(t)dt and the following equation holds:
x=p8 .
Lim [ f(t)dt = | f(t)dt
Lim / f
This theorem is an immediate consequence of definitions 7.2, 7.3 and 5. 1.

Theorem 7.4. Let f(x) be a numerical function defined on % < x < p and vanishing
in some right-sided neighbourhood of «. Let p(x) be a normal base function on (x, f).

p
If f J(t)dt exists as an improper Lebesgue integral, i.e.
@

I x
(7.6) [ f(ydr =lim [ f(t)dt
x *+f o

then f(x) is integrable in the sense of definition 7.2, and the generalized integral of
f(x) is equal to the improper Lebesgue integral (7. 6).

Proor. We prove first that f(x) is a function of Z,(a, f). Since f(x) vanishes
in some right-sided neighbourhood of «, we have only to show that f S(t)du(r)

exists as a Lebesgue—Stieltjes integral for all o <o, <f, <f. Since ,u(x) 1s a normal

base function on («, f), both x’(x) and — are continuous in (o, f). Thus, the

(x)
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functions f(x) and f(x)u’(x) are both Lebesgue integrable. Moreover, by a familiar
connection between the Stieltjes and Lebesgue integrals ([9]), we have

B B
J f@w@dr = [ 1) du(),

that is f(x) is inegrable with respect to u(x) in every interval (x,, f,)(x, p) and
thus f(x) is a function of Z,(x, B).

We prove now that the indefinite integral of f(x) in the Lebesgue sense coincides
with the indefinite integral in the sense of definition 7. 3. We have to show that

(1.7 IM~'(f) = {ff(r)dr}“

where the integral of the right side of (7. 7) is undestood as a Lebesgue integral.
It follows from theorem 1. 6 that

o f(r)}
M 1
where f(( )) €Z,(z, ). Since u(x) is a normal base function, u’(x) is continuous

in («, f). Therefore the Stieltjes integral with respect to u(x) reduces to a Lebesgue
integral. Consequently,

=10 - {"_fm }{f(r) }—{f ks
IM-1(f) l{ ") #,(I)d,u(t)“ oL ‘(t)dty =1 | f(t)dt

and thus (7. 7) is proved.
Since f f(t)dt€€,(x, P), it follows from (7. 6), by theorem 4. 1, that

Lim f f(t)dt = nm f f()dt = f 1) dt.

x=f 5

Thus, by theorem 7.3, we have established that the generalized integral of f(x)
is (7. 6) and the proof of the theorem is completed.

§ 8. Extension of the concept of the generalized integral for functions
which are not elements of the field .7,

Till now we have ourselves restricted to functions which vanish identically
in some right-sided neighbourhood of «. Namely, if a function f(x) does not vanish
identically in the right-sided neighbourhood of «, then f(x) cannot be an element
of .#,. For example, the constant function {c} =0 cannot be a generalized function
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of .#,. Let us suppose, on the contrary, that ¢ =0 and {c},€.#,. Then there exist
functions u(x) and v(x) of €,(«, f) such that

[
{[ev()du®)},= {}{r@}, = )}

Thus the function u(x) should be a constant function of %, (x, f). Hence u(x)=0
in (%, f), and thus we have the contradiction

o < = o8
{c}.u {t(x)}” e

Nevertheless we shall show in this section, that the results, established in the
previous sections, may be used to extend the notion of the generalized integral
for functions, which are defined on (, f§), and these are not assumed to be necessarily
vanishing in the neighbourhood of «.

Definition 8 1. A numerical function f(x) is said to be locally integrable
on the interval a<x<f if (i) f(x) is defined on (2, f) almost everywhere, (ii) the
integral of f(x) over any closed subinterval of (x, f) exists as a Lebesgue integral.
The class of locally integrable functions on (x, ) will be denoted by Z(x, f).

If pu(x) is a normal base function, then clearly

Z(, By Z (=, p).
Moreover. if fe%(x, f) and a<C<pf then

f(x)H{(x) € "gp(aa ﬂ)r
where
) & x-=f

mm:Lif&L

Definition 8.2. The function f(x), defined on (x, ), is said to be integrable
&
in the neighbourhood of « if f f(t)dt exists as a Lebesgue integral for all x <& <§p.

do
If f€%(x p) and if the Lebesgue integral f f(t)dt exists for some a<¢&p<p,

a
then, obviously, f(x) is integrable in the neighborhood of .
Every function of Z,(z, p) is integrable in the neighbourhood of «, provided
u(x) is a normal base function.

Definition 8. 3. Let f(x) be a function of Z(x, f) and let « <¢ <f. By the
B
integral of f(x) from & to f we understand the integral f S(t)H(t)de, if it exists

in the sense of definition 7. 2. In such a case we write
4 g
ff(l)H:(?)dt =.ff(t)dr.
. ¢

19 D
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Definition 8.4, Let f(x)€.2(x, p) be integrable in the neighbourhood of =.
g
f(x) is said to be integrable on (z, f) if f f(t)dt exists in the sense of definition

g
8. 3 for some ¢€(a, f). The integral of f(x) from « to f§ is given by
/] - ]
3.1) [ f@yde = [ f(ryde+ [ fe)
x x $
g
where f f(t)dt exists as a Lebesgue integral.
B
Theorem 8. 1. (i) f f(2)dt, if it exists in the sense of definition 8.4, is unique.

f f
(ii) If [ f(t)dt exists in the sense of definition 8.4, then [ f(t)dr exists in the sense
of deﬁm’n’on 8.3 for every o=y <P and the following Jquation holds:

4 7 [
[r@wyae = [ fyde+ [ ftyat

PrOOF. (i) Suppose that there exist numbers &, and &, (x<¢&, <, <f), such

# 4 B
that [ f(1)dr and [f(r)dt exist in the sense of definition 8. 3. Then [ f(t)He()dt
1 §2 a

B
and f Sf(t)He,(2)dt exist in the sense of definition 7. 2. Thus, by theorem 7. 2, also

S (x)}flh(x) —f(x)H.,(x) i1s integrable in the sense of definition 7. 2 and

[ [ 4 [ B
Jrwydi— [fyde = [f@)He, () di— [ () He, (1) dt = [ f(6)[Hy, (1) — He, (0] dt.
a1 [+ s L @

Since the function f(x)[H;(x) —H;(x)] is integrable on («, f) in the Lebesgue
sense too, it follows from theorem 7. 4 that

B §2
(8.2 ff(f)[H:l(f)—H;,(f}] dt = [ f(0)dt,

$2
where f f(t)dt is understood in the Lebesgue sense. Thus we have
1

&2 4 $1 B
[ff(f)df+ ff(f)dl]-—[f f(0)dr + ff(’)d!] -
e §a o 1

&2 < B f &2 &2
=[[ rwydi— [ f@yde)—[ [ f@yde— [ f@yde] = [ f@yde— [ fe)de = o.
a a 1 §1 st 1
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#
(ii) It will be sufficient to prove that, if ff(.')dt exists in the sense of definition 8. 3
S

']
for a number o —=¢, = p, then the integral f S(t)dt exists for every number a<y<p,
’ g
too. Since f(x)[H (x)— H;(x)] is integrable in the sense of Lebesgue, it follows
I

from theorem 7.4, that [f(1)[H,(r) —Hg(1)ldr exists in the sense of definition

f 4
7.2. Since ff(t)d:=ff(! )H (1)dt exists by hypothesis, it follows from theo-

s

B
rem 7.2 that ff(t)dr exists, for,
Y

i 4 I B
[ FOUH, )= He (Ddi+ [ f()H, (1) dt = [ f(O)H,(t)dt = [ f(2) .

Thus the result 1s established.
Theorem 8.2. If f(x) is integrable on (x, B) in the Lebesgue sense, then f(x)

is integrable in the sense of definition 8. 4, and the generalized integral of f(x) is equal
to the Lebesgue integral of f(x).

Proor. Since f(x)H.x) is Lebesgue integrable, it follows from theorem
7. 4, that

p 4
8.3) [fwdi= [ foH0dt  (x<E<P)
g 2

exists in the sense of definition 8. 3. Moreover, since f(x) is obviously integrable
in the neighbourhood of z, f(x) is integrable in the sense of definition 8. 4 and the
equation (8. 1) holds. Since, in this case, (8. 3) is equal to the Lebesgue integral
of f(x) from ¢ to B, it follows that the integral in (8. 1) is equal to the Lebesgue
integral of f(x) from a to f. The theorem is proved.

It should be remarked, that the validity of theorem 8. 2 does not depend on the
choice of the base function u(x) on (=, f). However, as the following examples
show, the integral, in general, depends on the choice of the base function.

Example 1. To prove that f t"dt(b=0) does not exist for the integer m=1,
b

if the base function is p(x)=x.

In this case .#,=.# is the field of Mikusinski operators. Suppose, on the
contrary, that

(8.4) fr"‘ dt = f‘r"'H,,(r) dv = lim U, {t™ Hy(1)}.
b ey 3



292 E. Gesztelyi

Since
Um0} = (o) = bty = ST L

it follows from (8. 4) that

U (" H, (0} = U, [e S [']b . ] -
k=0 k s

£+1

= e_bj'- Zk [’;:]b"' k—-—-«-f‘r dt (n—e=),

k=0
Thus, necessarily

(8.5) U {i"Hy (1)} =0 as n—-os,

nm+1

| ; s %
for, i -0 as n ==, In order to obtain a contradiction, we observe that

1 17 1
prESY — U {H,0)=¢ " 2 ___k![';:]bm e [m]_wr"

e

i

=]

= |
3

as n—oo, This shows that f t™dt does not exist in ..
b

Example 2. To prove that

- b
(8.6) !r"dt =—3 (b=0)

131

for every complex number 43 —I1, provided u(x)=Ilog x.
Let .#, be the field determined by the base function u(x)=Ilogx. We show
first that the base function log x is normal. We have to prove that

(8.7) wx) = -—6@1( (0, =)
and

g, RO
(8.8) L) = x4~ (0, =).

Let T° be the transformation defined in § 1, 2°. This transformation is the equivalent
of T°. Since ([7]) T”D = DT, the transformation T is an element of 7 . Consequently,
T° is a transformation of I} D — =Tk D Since

L

e":”‘ = ¢*? (—m-ﬂ:)_-::cx::)
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it follows that

Th@] _ (LT L)L) _ L[T(e-¥s%)] _

h(2) L(e™ " L (e7™s% )
Tc' - log is h
i [%——’ = L(e*") = L) = ¥

for 2=0. Thus we have proved that
8.9 x* €€~ (0, =)

for every number o, and (8. 7) and (8. 8) are both special cases of (8. 9). Consequently,
log x is a normal base function.

Now let 4 be an arbitrary fixed complex number. Since, by (0. 13) and (0. 14),

i__{fL]H = Ax G+ 1,

1

g{.\.":' Hl (X)}; =

we obtain

1
{x*H, ()}, = i
It follows from (0. 12) that

1 1 | .
h(b) {(x*Hy(x)}, = h [‘5] {x*H,(x)}; = {(bx)* Hy(bx)}, = b*{x*H,(x)},
for b=0. Consequently {x*Hy(x)}, = h(b) s—}f I
Let now 4 # —1. Then we get

L==]

[ trdt = [ *Hy(0)dt = [ t**1 Hy(r)dlogt = lim U, {x**+* H,(x)}; =
b 0

0 R
e S hAt1 L A 2 A1
A ["(b)is—uﬂ) =.'L‘11[U"”’“’””" [s_—'mn” 3
e ) b+t pi+1
= :T,U"[h(b)] lim — sl 6

n-- oo S
;—U+U
for, by the continuity of L,

lim U, [A(b)] = lim (L, U,L; ")[L,(e~"%")] = lim L, U, (e~1o%) =

"= oo N> co n— oo

=tim L, () = £ (1im e o) 8 L(1)=1.

n— oo n-oa

Thus (8. 6) is proved.
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Since, x* is obviously integrable in the neighbourhood of 0, we obtain by
definition 8. 4,

oo b os .

b4+] b}.-l'l
A == 4 A == — =
(8. 10) of: dr—afr dt-l—bfr i gl

for A # —1. Thus we have obtained the same result which is deduced in the theory
of distributions (see [6] p. 97.).

Example 3. To prove that

bt z o (_l}m-i-l -
(8.11) Of: dt = TS (m=1,2,...)

if u(x)=log(x+1). Let .#, be the field determined by the base function u(x)=
=log (x+1). It can be shown, similarly to the case of log x, that log(x+1) is
a normal base function.

1
Let m be a positive integer and let s=-———. We prove by induction that
p g {Ho()h, p y
) H m!
3.12) " Ho(¥)} = (s—m)y(s—m+1)...(s— 1)
Since
1 1
s{xHo(x)};, = =3 Hy(x)| = {xHo ()}, + {Ho(x)};, = {xH,(x)} +_s
x+1 N
we obtain

{xHO(x)}.[, (3 -1 = ;

and hence
(KH ), = (-S--_‘—l)?.
Thus (8. 12) is true for m=1. Let us suppose that (8. 12) is valid for m=1. Since
s{x"* 1 Ho(x)}, = m+ D) {x™* ' Hy(x)}y, + (m + 1) {x™ Hy (x)},, ,

we obtain from (8. 12) that

(m+1)!
—(m+D)(s—m)...(s—1)s’

(ent L Ho (O, = ¢ ol

s—(fﬂ'f' l)] {'\'mHD('r)}h = [S

and the proof of (8. 12) is completed.
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On the basis of definition 8. 3 we get
[imdt = [t"Ho@0)dt = [ 1™(1+1)Ho(t)dlog (t+1) =
0 -1 -1

— llm Un{('\.m‘#l +xm)H0(x)}h =

n—oo

2 il (m+1)! m! s
_,,]'_TU" '['s—(m+1)](3-—m)...(s—1)s+ (s—m)...(s—l)s] =

! __1ym+1
Y [ — ML e

S [-s—-—(m+1)] [-; —m]...[s -1] — om+l
" n "

and (8. 11) is established.
Example 4. In the quantum theory of radiation is raised the following divergent

oo

integral: f —:dr. We shall show that
1

(8.13) 3 : dt =0
1

in .#, if p(x)=1loglog x is the base function on (I, =). In this case we shall denote
M, by M;,. The zero of p(x)=loglog x is x,=e. For the sake of simplicity we
shall write {f(x)} instead of {/f(x)H,.(x)}, for f(x)€.2(l, =). Thus, for instance,

4 R 1
1} = {H.(x)},,. Moreover, we shall write simply s=—— instead of §= —
{ } .{ e( )}[1 py {l} {He(-t)}fz
Since
%
s{log x} = + +loge = {logx}+1
xlogx
we have
{log x} = L
B et

and

U, {log x} = ;l___

-1
n
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Thus, by definition 8. 3, we get

o o - 1
1 1 . S
f—;d‘ =f7H¢(f)df =f f”e(f)dloglogf =
" : ' tlogt
flong,(:)dloglogr = limU, {log x} = lim 2 AP 1.
n—eco n-c-:___]
+ n

Since —le is inte'grable in the neighbourhood of 1, it follows from definition 8. 4 that

e e e
fidtzfid;+f—l dt=1-1=0,
t t t
1 1 e
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