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Intraduction

Let p(x) be a continuous increasing function in a<=x<f (—==a<fi==)
such that lirr_}_o,u(x) = —co and Iignop(x)=m. u(x) will be referred to as
X=-a X=p—-

a base function on (z, ). Let ¥*(a, ) be the linear space of continuous functions
on (x, f) which vanish in some right-sided neighbourhood of z. By means of u(x)
we define the generalized convolition in €*(x, f) as follows

I
(1) fxg = [l (@@ —p0) g du(t)  (f.ge%* (= P).

In the case of u(x)=x, (1) becomes the usual convolution

[ f(x—n)g(r) dt

in €% ( —oo, o). If u(x)=1log x, then (1) is limited to the multiplicative convolution

oo

f f[f]g(:)'?dr.

0

We prove that the space ¢ *(«, ) endowed with the multiplication (1) is a ring
without divisors of zero. This ring will be denoted by €,(a, ). Every €,(«, f) is
isomorphic to € ( —==, =). The quotient field of ¥, (a, p) will be denoted by .#,,
and it will be called the field of generalized convolution quotients. .#,, is the field
of Mikusinski operators. Every .#, is isomorphic to .#,,. §1 is devoted to the
definition and basic properties of the field .#,. In § 2 the embedding of the locally
Stieltjes integrable functions in .#, is given. In § 3 the properties of the shift operator
in .#, is investigated. In § 4 the convergence is defined. Finally, in § 5, linear trans-
formations of .#, are considered. Thus, it will be showed that every .#, gives
an operational calculus for the operator d/du(t).
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§ 1. The field .#,

Definition 1. 1. A real valued function u(x), defined in a=x<=f (—==a<
< f==0), is called a base function if

1°  p(x) is continuous in o <x<f,

2° u(x) is increasing in o <=x = f§,

3-,. x_l_l:]loﬂ(x} = —oo,

4 xll;llo;t(x) =co,

We shall show that every base function pu(x) determines a field .#,, which is
isomorphic to the field .# of the Mikusinski operators.

Definition 1.2. Let x = <f and let %4(x, ) be the class of the complex-
valued functions, defined on  <x <f such that every function f(x) of %(x. ) is
continuous in x<x-<f and vanishes in x<x=¢. Let

€t p)= U €5
a=§=p
Obviously, €*(x, f) is a vector space (under addition and multiplication by scalars).
It is well known ([1]) that the set ¥ (—e<=, =) forms a commutative ring with
respect to addition and multiplication in the following sense

(1. 1) f*g) = [ fx—ng@)dr, (/.86 (—e=, =)).

The absence of divisors of zero in the ring % *(—<=, ==) makes it possible to extend
this ring to a quotient field .# and the elements of the field .# are called Mikusinski
operators.

Definition 1. 3. Let u(x) be a base function in (x, f) and let p~'(z) be the
inverse function of u(x). The product of the functions f(x)€%€*(«, f) and g(x) €
E€*(a, p) let be defined as follows

]
(1L.2)  f@*e@ = [T (1@ —p0)]g@du@®)  (xe( p).

where the integral is understood in the sense of Stieltjes. The product (1. 2) is called
the generalized convolution of f and g.

Evidently, f, g€ ¢ *(«, ff) implies that /% g€ € *(«, ). The set €*(«, ) endowed
with the operations of addition and multiplication defined by (1. 2), forms an algebraic
system and it will be denoted by € (2, f).

The symbol {f(x)}, denotes that the function f(x)€%*(x, f) is regarded
as an element of the algebraic system &, («, f). Thus we may preserve the usual
notation of the algebraic operations in % ,(x, ) without misunderstandings:

(1.3) (/) +{g)}, = {/(¥) +g ()}
B
(1.4) (/g = { [ ST~ (0@ —n@)] &) du(0)},
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Remark 1.1, The function p(x)=x is a base function in (—e==, ==), In this
case the product (1. 2) reduces to the convolution (l.1). The term “generalized
convolution** is motivated by the above circumstance. In the case of u(x)=x
we shall preserve the original notations of Mikusiniski and we shall write simply

(1.5) {fOMe@} ={ [ ft-De(@)ds}

and € *(—==, =) will denote the convolution ring in which the multiplication is
defined by (1. 5).

Theorem 1. 1. Let u(x) be a base function in (a, p). Then the set € (x, B) forms
a commutative ring without zero divisors. Moreover, € (x, f8) is isomorphic to the
convolution ring €*(—e=, =) (see remark 1. 1).

Proor. It will be sufficient to prove that the mapping

(1. 6) L{f()}={/Tu(x)]},

of €*(—e=, =) onto € ,(x, p) is an isomorphism. It is clear that (I. 6) definies a
one-to-one correspondence between the elements of #*(—eo, =) and € (x, f).
We shall show that the mapping (1. 6) preserves the algebraic operations. In fact:

L({f(H}+{g(®)}) = LLA()+g®)} = {fIu()]+glu())}, =
= {/ N+ {glu (N} = LA} + L{e(0)},

and

LSO = L{ [ fe—9z@de) = { [ flu)—z() ds), =

B B
={ [ flu)— el du},={ [ el (1) —p)]elkGN du(»)}, =
= (N (g = LSO} L{g(1)}

Since % *(—<=, =) is a commutative ring which has no zero divisor, it follows
from the isomorphism, that % (x, f) is a commutative ring without zero divisors
too. Thus the theorem is proved.

Corollary 1. The ring €,(«, ) can be extended in the usual way to a quotient
field .#,. The elements of .#, will be called generalized convolution quotients
and denoted by

Ve
{g()},’
Corollary 2. Every element a of .#, has a representative

- {fo(x)}u
Py {go(x)}n

where {/f,(x)}, and {go(x)}, are functions of the class €*°(a, f) and x,¢(x f)
is the zero of u(x) : u(x,)=0.

etc.
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Corollary 3. The mapping

AL {/(x)}, {2(x)},
T C {g()},

defines an embedding of %,(x, f) in #,.
Corollary 4. Let X be the field of complex numbers. The mapping

(g€, (2 P)

{Af(X)}“ 1 -
1.7 A il LEX, f€ >
defines an embedding of 4" in .#,.

Corollary 5. The field .#, is isomorphic to the field .# of Mikusinski
operators. This isomorphism is the extension of the mapping (1. 6) in the following

manner:
@) _ (/e _ L(f) [I . ]
Vet L“[{gm} = ek, L g

Remark 1. 2. We may regard the numbers on the one hand as elements of .#,
on the other as elements of .#,. We show that L, preserves the numbers:

(1.9) L(A)=4 (Aex)
Indeed, let f(¢) be a function of €*(—==, =), then f(x)=f[u(x)] is a function
of €,(x, p) and we have
(HO)) _ L0} _ @k, _ WM _
{/(1)} Lif®}  {flu@l.  {f)}

L) = Lﬁ[

§ 2. The embedding of locally integrable functions

Let Z,(x, ) be the class of functions f(x) defined in & <x < f such that

(i) f(x) vanishes identically in a right-sided neighbourhood of «.

(i1) f(x) 1s integrable with respect to u(x) in every subinterval (x,, ;)
(x=ay <=f; <p) in the sense of Lebesgue—Stieltjes.

If p(x)=2x, then & (—ee, =) is the class of the locally Lebesgue-integrable
functions f vanishing in any interval (—eo, 1), where the number A depends on f.
We write in this case & *(—<o, ) instead of Z,(— o=, o).

Theorem 2. 1. f(x) isa function of %,(x.p) if and only if f[u~"(t)]is a function
of ZL*(—ee, ).

This theorem is an immediate consequence of the well known connection
between the Lebesgue and Lebesgue—Stieltjes integrals (see [2]).

By the embedding of Z,(«, p) in .#, we make use of the fact that & *(—oe, )
is embedded in #. Let f(x)e%,(a, f). Then, by theorem 2.1, {f[u"'(1)]}€4#.
We identify the element L,{f[u~'(¢)]} of .#, with the function f(x) and we write
in this case

2.1 (/@) = LSl (0]}
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For —ec =A<< let

0 if x=<i
@2 mo=-{) § ot

Obviously, H;(x) is a function of %,(x, f) and thus {H;(x)}, is an element of .#,,
provided o <=/4<p.

For the zero x, of u(x), the function I={H, (x)}, is called the operator of
integration with iespect to u(x). This definition is justified by

@.3) A = { [ /(Ddu@®)},

for fe %, (a, p). Indeed, we obtain from (2. 1) that
W = L{H [ O - LT (0O = L({Ho O} ST~ (O}) =

= L},{ fHo(t—t)ﬂ,u“(r)]dr} == Lﬂ{ ff[p"(r)]a‘t} =

ulx) .
={ [ s @nde), = { [ @) du)},.
) x

i
Let f(x) and g(x) be defined in the neighborhood of the point x. The derivative
of f with respect to g in the point x is the limit

lim J& M —1(x)

if it exists and it will be denoted by
) _ i fEEB =)
dg(x) jp-0g(x+h)—g)’
If f and g have derivatives in x, then, obviously,
)
W@ b [
dg(x) ~ dg(x) g ()’
dx

Theorem 2.2. Let f(x) be a function of €,(x, P). If f(x)is derivable with respect
to u(x) in all points of the interval »<Xx-=p, then the function

f(t) = flu=(1)]

is also derivable in —=s<1t-<=0o> and

df(x)
(2.5) 0 S ()]
holds.

(2.4)
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PROOF. Let #=pu(x). Since, by the continuity of u(x), 4t = pu(x+h) —p(x) -0
as h—-0, we get

df(x) _ . JeAR)—f) _ S+ D] = ()] _

du(x) ~ oA —p(x)  avo  p(+h)—p(x)

= g LERI I e pritnt

A1=0 At

and the theorem is proved.
The element

(2.6) §= ;

is called the operator of differentiation with respect to u(x). This definition 1is
motivated by the following theorem:

Theorem 2. 3. Let f(x) be a function of € ,(x, p). If jﬂ exists and j{; € 6., B),

then

@.7) 1), = {fff(?)} -

ProoF. It follows from theorem 2.2 that {f’(1)}€€*(—e=, =) for f(1)=
=f[u"*(r)] and thus, by a known result of the Mikusinski’s operational calculus.

(see [3] p. 192.),
s{f()} = {L (O} +STA(S)]e 4%,
It follows from the continuity of f in (—ee, =) that f[A(f)]=0. Therefore

2. 8) SR = (1),
Since
Wk TR SN (ATt 1 ]=
bt Sl 1 ) vl <177 Wl A - A 1) B [{Ho(:)} Lus),
we get 4
W = LOL) = L6 = L) = e, = {T9}

and the theorem is proved.

§ 3. The shift operator

Definition 3.1. Let

0 if g=x==Ak
{Hl(x)}"gg{l if A=x<p (x<Ai=<p).

The function
3.1) h(2) = ${H,(x)},

is called the shift operator in .4,.
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Theorem 3. 1.
(3.2) (i) = L (e"‘““‘)
PRroOF.

Ly(e7"*") = Ly(s{Hya)(1)}) = Lu(s) Lu{H, (D)} =
= §{H,u (0 = S{H,()} = h(2).
Theorem 3.2. The function h(1) satisfies the functional equation
3.3) h(p= '@ +p)) = h©hm) (& ne( p)).
Proor. It follows from theorem 3.1 that
h(p=[u @) +um)]) = Ly(e~#O+r0k) = [ (e#®se~rns) =
= L,(e” )L, (e @) = h(Oh(n).
Theorem 3.3. For Fe€€,(x, f) and L€ (a, f),
(3.4 hZ){F()}, = {F(u™"[u(x) —p(2)},
PROOF. If f€%*(—=, =), then e *{f(t)}={f(t —4)}. Thus
h(){F(x)}, = L(e "L, (L7 {F(x)},) = Ly "L {Flu~' ()]} =
= L, (e {Flu='(0)}) = L{Flu~" (1= p @)} = {(F(u~ ' [n(x) = 4 (@)}

§ 4. The convergence in .#,

In this section we shall define the notion of the convergence in .#, and we
shall show that the mapping L, is continuous.

Definition 4. 1. A sequence of functions f, € € *(x, p) is said to be convergent
in €*(x, f) to the function f€€%(x, ) (€ (2, B)), if f,€€*(a, p) for all n=1,2, .
and if the sequence f,, is convergent to the limit /" uniformly in any closed submterval
[E, n] of [£, B). We write in this case

4.1 fi=f In €' (¢, pf) as n—co,

Lemma 4. 1. Let u(x) be a base function in (x, p). If f,, = [ in €*(—==, =) as
n—oo, then L(f,) = L,(f) in €*(a, p) as n—-co.

PROOF. Let f€%* —oo, ). Then f,e€*( —, =) for all n=1,2,....

Consequently, L,(f,)={/flu(x)]},€€%(a, p) and L,(f)={f[u(x)]},€ €%z, p) for
E=pu"'(4). Fix e=0 and n such that ¢<n-<p. Since the sequence of functions
f, 1s convergent to f uniformly in the segment A=1= u(y) < -, therefore there is
an integer N so that | f,(t) —f(1)| <e¢ whenever n= N and 1=1= u(n). Consequently,

Suln ()] =S [u(x)]| <&

ehenever n= N and {=x=y. This proves the lemma.
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Definition 4.2. A sequence of elements A,€.#, is said to be convergent
in ., to the limit A€.#,, if there exist representatives

=4 (FGet@p n=12.)
and
F
== A (F, Ge€,(x )
such that
F in €*(x,f) as n—o
and

=
G,=G in €*(a,f) as n—o=.

Theorem 4.1. If a sequence of operators a, of the field M is convergent in M
to the limit ac.#, then the sequence of elements L,(a,)€.#, is convergent in .4,
to the limit L (a):
4.2) L(a)—~L(a) (n—o).

Jn =a, be a sequence of representatives such that f, = f and

' f

g, = gin €*( —o=, =) as n +==. Then % =g and, by lemma 4. 1, we have L,(f,) =
= L,(f)and L/(g,) = L,(g)in €*(a, f) as n—<=. Thus, by definition 4. 2,

fn.]_ééf_»_?_.ég(f): [f] s
"““[g.. i~ g v e 77 O e

and the theorem is proved.
Using theorem 4. 1, the basic properties of the limit of a sequence in .#, can be
easily deduced from the corresponding properties of the limit of a sequence in .#.
We remark that a similar theorem holds for L;'.

Proor. Let

§ 5. Linear transformations of .4,

We consider maps F of .#, into .#,. These are called transformations of .#,.

Definition 5. 1. Let F be an operator transformation of .# (see [3]). The
transformation

5. 1) F=LFL}?

of .#, is called the equivalent of F in .#,.
Theorem 5. 1. If F and G are transformations of #, then

T &

Il
= 5]

F

+
al &

]}

F
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ProoF. F+G = L,(F+G)L;' = L,(FL;'+GL;!) =
= LFL;'+L,GL;' =F+G

and similarly hacy =%
FG = L (FG)L,;' = (L,FL;")(L,GL;") = FG.
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