On generalized convolution quotients

To Professor B. Gyires on his 60th birthday By E. GESZTELYI and Á. SZÁZ (Debrecen)

Intraduction

Let $\mu(x)$ be a continuous increasing function in $\alpha < x < \beta$ $(-\infty \le \alpha < \beta \le \infty)$ such that $\lim_{x \to \alpha + 0} \mu(x) = -\infty$ and $\lim_{x \to \beta - 0} \mu(x) = \infty$. $\mu(x)$ will be referred to as a base function on (α, β) . Let $\mathscr{C}^+(\alpha, \beta)$ be the linear space of continuous functions on (α, β) which vanish in some right-sided neighbourhood of α . By means of $\mu(x)$ we define the generalized convolition in $\mathscr{C}^+(\alpha, \beta)$ as follows

(1)
$$f * g = \int_{\alpha}^{\beta} f \left[\mu^{-1} \left(\mu(x) - \mu(t) \right) \right] g(t) d\mu(t) \qquad (f, g \in \mathcal{C}^{+}(\alpha, \beta)).$$

In the case of $\mu(x) = x$, (1) becomes the usual convolution

$$\int_{-\infty}^{\infty} f(x-t)g(t) dt$$

in $\mathscr{C}^+(-\infty, \infty)$. If $\mu(x) = \log x$, then (1) is limited to the multiplicative convolution

$$\int_{0}^{\infty} f\left(\frac{x}{t}\right) g(t) \frac{1}{t} dt.$$

We prove that the space $\mathscr{C}^+(\alpha, \beta)$ endowed with the multiplication (1) is a ring without divisors of zero. This ring will be denoted by $\mathscr{C}_{\mu}(\alpha, \beta)$. Every $\mathscr{C}_{\mu}(\alpha, \beta)$ is isomorphic to $\mathscr{C}_{\{x\}}(-\infty, \infty)$. The quotient field of $\mathscr{C}_{\mu}(\alpha, \beta)$ will be denoted by \mathscr{M}_{μ} , and it will be called the field of generalized convolution quotients. $\mathscr{M}_{\{x\}}$ is the field of Mikusiński operators. Every \mathscr{M}_{μ} is isomorphic to $\mathscr{M}_{\{x\}}$. § 1 is devoted to the definition and basic properties of the field \mathscr{M}_{μ} . In § 2 the embedding of the locally Stieltjes integrable functions in \mathscr{M}_{μ} is given. In § 3 the properties of the shift operator in \mathscr{M}_{μ} is investigated. In § 4 the convergence is defined. Finally, in § 5, linear transformations of \mathscr{M}_{μ} are considered. Thus, it will be showed that every \mathscr{M}_{μ} gives an operational calculus for the operator $d/d\mu(t)$.

§ 1. The field M,

Definition 1. 1. A real valued function $\mu(x)$, defined in $\alpha < x < \beta$ ($-\infty \le \alpha < \beta$) $<\beta \le \infty$), is called a base function if

1° $\mu(x)$ is continuous in $\alpha < x < \beta$,

 $\mu(x)$ is increasing in $\alpha < x < \beta$,

 $\lim_{\substack{x \to \alpha + 0 \\ x \to \beta - 0}} \mu(x) = -\infty,$

We shall show that every base function $\mu(x)$ determines a field \mathcal{M}_{μ} , which is isomorphic to the field *M* of the Mikusiński operators.

Definition 1.2. Let $\alpha < \xi < \beta$ and let $\mathscr{C}^{\xi}(\alpha, \beta)$ be the class of the complexvalued functions, defined on $\alpha < x < \beta$ such that every function f(x) of $\mathscr{C}^{\xi}(\alpha, \beta)$ is continuous in $\alpha < x < \beta$ and vanishes in $\alpha < x \le \xi$. Let

$$\mathcal{C}^+(\alpha,\beta) = \bigcup_{\alpha < \xi < \beta} \mathcal{C}^\xi(\alpha,\beta)$$

Obviously, $\mathscr{C}^+(\alpha, \beta)$ is a vector space (under addition and multiplication by scalars). It is well known ([1]) that the set $\mathscr{C}^+(-\infty,\infty)$ forms a commutative ring with respect to addition and multiplication in the following sense

$$(1.1) f(x) * g(x) = \int_{-\infty}^{\infty} f(x-t)g(t) dt, (f, g \in \mathscr{C}^+(-\infty, \infty)).$$

The absence of divisors of zero in the ring $\mathscr{C}^+(-\infty,\infty)$ makes it possible to extend this ring to a quotient field *M* and the elements of the field *M* are called Mikusiński operators.

Definition 1.3. Let $\mu(x)$ be a base function in (α, β) and let $\mu^{-1}(t)$ be the inverse function of $\mu(x)$. The product of the functions $f(x) \in \mathscr{C}^+(\alpha, \beta)$ and $g(x) \in \mathscr{C}^+(\alpha, \beta)$ $\in \mathscr{C}^+(\alpha, \beta)$ let be defined as follows

where the integral is understood in the sense of Stieltjes. The product (1. 2) is called the generalized convolution of f and g.

Evidently, $f, g \in \mathscr{C}^+(\alpha, \beta)$ implies that $f * g \in \mathscr{C}^+(\alpha, \beta)$. The set $\mathscr{C}^+(\alpha, \beta)$ endowed with the operations of addition and multiplication defined by (1. 2), forms an algebraic

system and it will be denoted by $\mathscr{C}_{\mu}(\alpha, \beta)$. The symbol $\{f(x)\}_{\mu}$ denotes that the function $f(x) \in \mathscr{C}^{+}(\alpha, \beta)$ is regarded as an element of the algebraic system $\mathscr{C}_{\mu}(\alpha, \beta)$. Thus we may preserve the usual notation of the algebraic operations in $\mathscr{C}_{\mu}(\alpha, \beta)$ without misunderstandings:

$$(1.3) \{f(x)\}_{\mu} + \{g(x)\}_{\mu} = \{f(x) + g(x)\}_{\mu}$$

(1.4)
$$\{f(x)\}_{\mu} \{g(x)\}_{\mu} = \left\{ \int_{\alpha}^{\beta} f[\mu^{-1}(\mu(x) - \mu(t))] g(t) d\mu(t) \right\}_{\mu}$$

Remark 1.1. The function $\mu(x) = x$ is a base function in $(-\infty, \infty)$. In this case the product (1.2) reduces to the convolution (1.1). The term "generalized convolution" is motivated by the above circumstance. In the case of $\mu(x) = x$ we shall preserve the original notations of Mikusiński and we shall write simply

(1.5)
$$\{f(t)\}\{g(t)\} = \left\{\int_{-\infty}^{\infty} f(t-\tau)g(\tau) d\tau\right\}$$

and $\mathscr{C}^+(-\infty, \infty)$ will denote the convolution ring in which the multiplication is defined by (1.5).

Theorem 1. 1. Let $\mu(x)$ be a base function in (α, β) . Then the set $\mathcal{C}_{\mu}(\alpha, \beta)$ forms a commutative ring without zero divisors. Moreover, $\mathcal{C}_{\mu}(\alpha, \beta)$ is isomorphic to the convolution ring $\mathcal{C}^+(-\infty, \infty)$ (see remark 1.1).

PROOF. It will be sufficient to prove that the mapping

(1.6)
$$L_{\mu}\{f(t)\} = \{f[\mu(x)]\}_{\mu}$$

of $\mathscr{C}^+(-\infty, \infty)$ onto $\mathscr{C}_{\mu}(\alpha, \beta)$ is an isomorphism. It is clear that (1.6) definies a one-to-one correspondence between the elements of $\mathscr{C}^+(-\infty, \infty)$ and $\mathscr{C}_{\mu}(\alpha, \beta)$. We shall show that the mapping (1.6) preserves the algebraic operations. In fact:

$$L_{\mu}(\{f(t)\} + \{g(t)\}) = L_{\mu}\{f(t) + g(t)\} = \{f[\mu(x)] + g[\mu(x)]\}_{\mu} = \{f[\mu(x)]\}_{\mu} + \{g[\mu(x)]\}_{\mu} = L_{\mu}\{f(t)\} + L_{\mu}\{g(t)\},$$

and

$$\begin{split} L_{\mu}\big(\{f(t)\}\,\{g(t)\}\big) &= L_{\mu}\,\Big\{\int\limits_{-\infty}^{\infty} f(t-\tau)g(\tau)\,d\tau\Big\} = \Big\{\int\limits_{-\infty}^{\infty} f[\mu(x)-\tau]g(\tau)\,d\tau\Big\}_{\mu} = \\ &= \Big\{\int\limits_{\alpha}^{\beta} f[\mu(x)-\mu(y)]g[\mu(y)]\,d\mu(y)\Big\}_{\mu} = \Big\{\int\limits_{\alpha}^{\beta} f\big[\mu(\mu^{-1}\big(\mu(x)-\mu(y)\big)\big)\big]g[\mu(y)]\,d\mu(y)\Big\}_{\mu} = \\ &= \{f[\mu(x)]\}_{\mu}\,\{g[\mu(x)]\}_{\mu} = L_{\mu}\{f(t)\}\cdot L_{\mu}\{g(t)\} \end{split}$$

Since $\mathscr{C}^+(-\infty, \infty)$ is a commutative ring which has no zero divisor, it follows from the isomorphism, that $\mathscr{C}_{\mu}(\alpha, \beta)$ is a commutative ring without zero divisors too. Thus the theorem is proved.

Corollary 1. The ring $\mathscr{C}_{\mu}(\alpha, \beta)$ can be extended in the usual way to a quotient field \mathscr{M}_{μ} . The elements of \mathscr{M}_{μ} will be called generalized convolution quotients and denoted by

$$\frac{\{f(x)\}_{\mu}}{\{g(x)\}_{\mu}}$$
, ... etc.

Corollary 2. Every element \bar{a} of \mathcal{M}_{μ} has a representative

$$\bar{a} = \frac{\{f_0(x)\}_{\mu}}{\{g_0(x)\}_{\mu}}$$

where $\{f_0(x)\}_{\mu}$ and $\{g_0(x)\}_{\mu}$ are functions of the class $\mathscr{C}^{x_0}(\alpha, \beta)$ and $x_0 \in (\alpha, \beta)$ is the zero of $\mu(x) : \mu(x_0) = 0$.

Corollary 3. The mapping

$$\{f(x)\}_{\mu} \leftrightarrow \frac{\{f(x)\}_{\mu} \{g(x)\}_{\mu}}{\{g(x)\}_{\mu}} \qquad (g \in \mathcal{C}_{\mu}(\alpha, \beta))$$

defines an embedding of $\mathscr{C}_{\mu}(\alpha, \beta)$ in \mathscr{M}_{μ} .

Corollary 4. Let \mathcal{K} be the field of complex numbers. The mapping

(1.7)
$$\lambda \leftrightarrow \frac{\{\lambda f(x)\}_{\mu}}{\{f(x)\}_{\mu}} \qquad (\lambda \in \mathcal{K}, \ f \in \mathcal{C}_{\mu}(\alpha, \beta))$$

defines an embedding of \mathcal{K} in \mathcal{M}_{μ} .

Corollary 5. The field \mathcal{M}_{μ} is isomorphic to the field \mathcal{M} of Mikusiński operators. This isomorphism is the extension of the mapping (1.6) in the following manner:

(1.8)
$$L_{\mu}\left(\frac{\{f(t)\}}{\{g(t)\}}\right) = \frac{\{f[\mu(x)]\}_{\mu}}{\{g[\mu(x)]\}_{\mu}} = \frac{L_{\mu}(f)}{L_{\mu}(g)} \qquad \left(\frac{f}{g} \in \mathcal{M}\right)$$

Remark 1.2. We may regard the numbers on the one hand as elements of \mathcal{M} , on the other as elements of \mathcal{M}_{μ} . We show that L_{μ} preserves the numbers:

$$(1.9) L_{\mu}(\lambda) = \lambda (\lambda \in \mathcal{K})$$

Indeed, let f(t) be a function of $\mathscr{C}^+(-\infty, \infty)$, then $\overline{f}(x) = f[\mu(x)]$ is a function of $\mathscr{C}_{\mu}(\alpha, \beta)$ and we have

$$L_{\mu}(\lambda) = L_{\mu} \left(\frac{\{\lambda f(t)\}}{\{f(t)\}} \right) = \frac{L_{\mu} \{\lambda f(t)\}}{L_{\mu} \{f(t)\}} = \frac{\{\lambda f[\mu(x)]\}_{\mu}}{\{f[\mu(x)]\}_{\mu}} = \frac{\{\lambda \bar{f}(x)\}_{\mu}}{\{\bar{f}(x)\}_{\mu}} = \lambda$$

§ 2. The embedding of locally integrable functions

Let $\mathcal{L}_{\mu}(\alpha, \beta)$ be the class of functions f(x) defined in $\alpha < x < \beta$ such that

(i) f(x) vanishes identically in a right-sided neighbourhood of α .

(ii) f(x) is integrable with respect to $\mu(x)$ in every subinterval (α_1, β_1)

 $(\alpha \le \alpha_1 < \beta_1 < \beta)$ in the sense of Lebesgue—Stieltjes.

If $\mu(x) = x$, then $\mathcal{L}_{\mu}(-\infty, \infty)$ is the class of the locally Lebesgue-integrable functions f vanishing in any interval $(-\infty, \lambda)$, where the number λ depends on f. We write in this case $\mathcal{L}^+(-\infty, \infty)$ instead of $\mathcal{L}_{\mu}(-\infty, \infty)$.

Theorem 2.1. f(x) is a function of $\mathcal{L}_{\mu}(\alpha,\beta)$ if and only if $f[\mu^{-1}(t)]$ is a function of $\mathcal{L}^{+}(-\infty,\infty)$.

This theorem is an immediate consequence of the well known connection

between the Lebesgue and Lebesgue-Stieltjes integrals (see [2]).

By the embedding of $\mathcal{L}_{\mu}(\alpha, \beta)$ in \mathcal{M}_{μ} we make use of the fact that $\mathcal{L}^{+}(-\infty, \infty)$ is embedded in \mathcal{M} . Let $f(x) \in \mathcal{L}_{\mu}(\alpha, \beta)$. Then, by theorem 2.1, $\{f[\mu^{-1}(t)]\} \in \mathcal{M}$. We identify the element $L_{\mu}\{f[\mu^{-1}(t)]\}$ of \mathcal{M}_{μ} with the function f(x) and we write in this case

(2.1)
$$\{f(x)\}_{\mu} = L_{\mu} \{f[\mu^{-1}(t)]\}.$$

For $-\infty < \lambda < \infty$ let

(2.2)
$$H_{\lambda}(x) = \begin{cases} 0 & \text{if } x < \lambda \\ 1 & \text{if } \lambda \leq x. \end{cases}$$

Obviously, $H_{\lambda}(x)$ is a function of $\mathcal{L}_{\mu}(\alpha, \beta)$ and thus $\{H_{\lambda}(x)\}_{\mu}$ is an element of \mathcal{M}_{μ} , provided $\alpha < \lambda < \beta$.

For the zero x_0 of $\mu(x)$, the function $l = \{H_{x_0}(x)\}_{\mu}$ is called the operator of integration with respect to $\mu(x)$. This definition is justified by

(2.3)
$$l\{f(x)\}_{\mu} = \left\{ \int_{\alpha}^{x} f(t) d\mu(t) \right\}_{\mu}$$

for $f \in \mathcal{L}_{\mu}(\alpha, \beta)$. Indeed, we obtain from (2.1) that

$$\begin{split} l\{f(x)\}_{\mu} &= L_{\mu}\{H_{x_{0}}[\mu^{-1}(t)]\} \cdot L_{\mu}\{f[\mu^{-1}(t)]\} = L_{\mu}\{\{H_{0}(t)\}\{f[\mu^{-1}(t)]\}\} = \\ &= L_{\mu}\{\int_{-\infty}^{\infty} H_{0}(t-\tau)f[\mu^{-1}(\tau)]d\tau\} = L_{\mu}\{\int_{-\infty}^{t} f[\mu^{-1}(\tau)]d\tau\} = \\ &= \{\int_{\mu(\alpha)}^{\mu(x)} f[\mu^{-1}(\tau)]d\tau\}_{\mu} = \{\int_{\alpha}^{x} f(t)d\mu(t)\}_{\mu}. \end{split}$$

Let f(x) and g(x) be defined in the neighborhood of the point x. The derivative of f with respect to g in the point x is the limit

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{g(x+h)-g(x)}$$

if it exists and it will be denoted by

(2.4)
$$\frac{df(x)}{dg(x)} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{g(x+h) - g(x)}.$$

If f and g have derivatives in x, then, obviously,

$$\frac{df(x)}{dg(x)} = \frac{\frac{df(x)}{dx}}{\frac{dg(x)}{dx}} = \frac{f'(x)}{g'(x)}.$$

Theorem 2.2. Let $\bar{f}(x)$ be a function of $\mathscr{C}_{\mu}(\alpha, \beta)$. If $\bar{f}(x)$ is derivable with respect to $\mu(x)$ in all points of the interval $\alpha < x < \beta$, then the function

$$f(t) = \vec{f}[\mu^{-1}(t)]$$

is also derivable in $-\infty < t < \infty$ and

(2.5)
$$\frac{d\bar{f}(x)}{d\mu(x)} = f'[\mu(x)].$$

holds.

PROOF. Let $t = \mu(x)$. Since, by the continuity of $\mu(x)$, $\Delta t = \mu(x+h) - \mu(x) \rightarrow 0$ as $h \to 0$, we get

$$\frac{d\bar{f}(x)}{d\mu(x)} = \lim_{h \to 0} \frac{\bar{f}(x+h) - \bar{f}(x)}{\mu(x+h) - \mu(x)} = \lim_{h \to 0} \frac{f[\mu(x+h)] - f[\mu(x)]}{\mu(x+h) - \mu(x)} =$$

$$= \lim_{\Delta t \to 0} \frac{f(t+\Delta t) - f(t)}{\Delta t} = f'(t) = f'[\mu(x)],$$

and the theorem is proved.

The element

$$\bar{s} = \frac{1}{l}$$

is called the operator of differentiation with respect to $\mu(x)$. This definition is motivated by the following theorem:

Theorem 2. 3. Let $\bar{f}(x)$ be a function of $\mathscr{C}_{\mu}(\alpha, \beta)$. If $\frac{d\bar{f}}{d\mu}$ exists and $\frac{d\bar{f}}{d\mu} \in \mathscr{C}_{\mu}(\alpha, \beta)$, then

PROOF. It follows from theorem 2.2 that $\{f'(t)\}\in\mathscr{C}^+(-\infty,\infty)$ for f(t)= $=\bar{f}[\mu^{-1}(t)]$ and thus, by a known result of the Mikusiński's operational calculus. (see [3] p. 192.),

$$s\{f(t)\} = \{f'(t)\} + f[\Lambda(f)]e^{-\Lambda(f)s}.$$

It follows from the continuity of f in $(-\infty, \infty)$ that $f[\Lambda(f)] = 0$. Therefore

(2. 8)
$$s\{f(t)\} = \{f'(t)\}.$$
 Since

$$\bar{s} = \frac{1}{\bar{l}} = \frac{1}{\{H_{x_0}(x)\}_{\mu}} = \frac{1}{\{H_0[\mu(x)]\}_{\mu}} = \frac{L_{\mu}(1)}{L_{\mu}\{H_0(t)\}} = L_{\mu}\left(\frac{1}{\{H_0(t)\}}\right) = L_{\mu}(s),$$

we get

$$\bar{s}\{\bar{f}(x)\}_{\mu} = L_{\mu}(s)L_{\mu}(f) = L_{\mu}(sf) = L_{\mu}\{f'(t)\} = \{f'[\mu(x)]\}_{\mu} = \left\{\frac{d\bar{f}(x)}{d\mu(x)}\right\}_{\mu}$$
 and the theorem is proved.

§ 3. The shift operator

Definition 3.1. Let

$$\{H_{\lambda}(x)\}_{\mu} \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } \alpha < x < \lambda \\ 1 & \text{if } \lambda \leq x < \beta \end{cases}, \quad (\alpha < \lambda < \beta).$$

The function

(3.1)
$$h(\lambda) = \bar{s}\{H_{\lambda}(x)\}_{\mu}$$

is called the *shift operator* in \mathcal{M}_{μ} .

Theorem 3.1.

$$(3.2) h(\lambda) = L_{\mu}(e^{-\mu(\lambda)s})$$

PROOF.

$$L_{\mu}(e^{-\mu(\lambda)s}) = L_{\mu}(s\{H_{\mu(\lambda)}(t)\}) = L_{\mu}(s)L_{\mu}\{H_{\mu(\lambda)}(t)\} =$$

$$= \bar{s}\{H_{\mu(\lambda)}[\mu(x)]\}_{\mu} = \bar{s}\{H_{\lambda}(x)\} = h(\lambda).$$

Theorem 3.2. The function $h(\lambda)$ satisfies the functional equation

$$(3.3) h(\mu^{-1}[\mu(\xi) + \mu(\eta)]) = h(\xi)h(\eta) (\xi, \eta \in (\alpha, \beta)).$$

PROOF. It follows from theorem 3.1 that

$$h(\mu^{-1}[\mu(\xi) + \mu(\eta)]) = L_{\mu}(e^{-[\mu(\xi) + \mu(\eta)]s}) = L_{\mu}(e^{-\mu(\xi)s}e^{-\mu(\eta)s}) =$$

$$= L_{\mu}(e^{-\mu(\xi)s})L_{\mu}(e^{-\mu(\eta)s}) = h(\xi)h(\eta).$$

Theorem 3.3. For $F \in \mathcal{C}_{u}(\alpha, \beta)$ and $\lambda \in (\alpha, \beta)$,

(3.4)
$$h(\lambda)\{F(x)\}_{\mu} = \{F(\mu^{-1}[\mu(x) - \mu(\lambda)])\}_{\mu}.$$

PROOF. If
$$f \in \mathcal{C}^+(-\infty, \infty)$$
, then $e^{-\lambda s} \{f(t)\} = \{f(t-\lambda)\}$. Thus $h(\lambda) \{F(x)\}_{\mu} = L_{\mu}(e^{-\mu(\lambda)s}) L_{\mu} (L_{\mu}^{-1} \{F(x)\}_{\mu}) = L_{\mu}(e^{-\mu(\lambda)s}) L_{\mu} \{F[\mu^{-1}(t)]\} = L_{\mu} \{e^{-\mu(\lambda)s} \{F[\mu^{-1}(t)]\}\} = L_{\mu} \{F[\mu^{-1}(t-\mu(\lambda))]\} = \{F(\mu^{-1}[\mu(x)-\mu(\lambda)])\}_{\mu}.$

§ 4. The convergence in \mathcal{M}_{μ}

In this section we shall define the notion of the convergence in \mathcal{M}_{μ} and we shall show that the mapping L_{μ} is continuous.

Definition 4.1. A sequence of functions $f_n \in \mathscr{C}^+(\alpha, \beta)$ is said to be convergent in $\mathscr{C}^+(\alpha, \beta)$ to the function $f \in \mathscr{C}^\xi(\alpha, \beta)$ ($\xi \in (\alpha, \beta)$), if $f_n \in \mathscr{C}^\xi(\alpha, \beta)$ for all n = 1, 2, ... and if the sequence f_n is convergent to the limit f uniformly in any closed subinterval $[\xi, \eta]$ of $[\xi, \beta)$. We write in this case

$$(4.1) f_n \Rightarrow f in \mathscr{C}^+(\alpha, \beta) as n \to \infty.$$

Lemma 4.1. Let $\mu(x)$ be a base function in (α, β) . If $f_n = f$ in $\mathscr{C}^+(-\infty, \infty)$ as $n \to \infty$, then $L_{\mu}(f_n) = L_{\mu}(f)$ in $\mathscr{C}^+(\alpha, \beta)$ as $n \to \infty$.

PROOF. Let $f \in \mathscr{C}^{\lambda}(-\infty, \infty)$. Then $f_n \in \mathscr{C}^{\lambda}(-\infty, \infty)$ for all n = 1, 2, Consequently, $L_{\mu}(f_n) = \{f_n[\mu(x)]\}_{\mu} \in \mathscr{C}^{\xi}(\alpha, \beta)$ and $L_{\mu}(f) = \{f[\mu(x)]\}_{\mu} \in \mathscr{C}^{\xi}(\alpha, \beta)$ for $\xi = \mu^{-1}(\lambda)$. Fix $\varepsilon > 0$ and η such that $\xi < \eta < \beta$. Since the sequence of functions f_n is convergent to f uniformly in the segment $\lambda \le t \le \mu(\eta) < \infty$, therefore there is an integer N so that $|f_n(t) - f(t)| < \varepsilon$ whenever n > N and $\lambda \le t \le \mu(\eta)$. Consequently,

$$|f_n[\mu(x)] - f[\mu(x)]| < \varepsilon$$

ehenever n > N and $\xi \le x \le \eta$. This proves the lemma.

Definition 4.2. A sequence of elements $A_n \in \mathcal{M}_{\mu}$ is said to be convergent in \mathcal{M}_{μ} to the limit $A \in \mathcal{M}_{\mu}$, if there exist representatives

$$\frac{F_n}{G_n} = A_n \qquad (F_n, G_n \in \mathcal{C}_{\mu}(\alpha, \beta), \quad n = 1, 2, \ldots)$$

and

$$\frac{F}{G} = A$$
 $(F, G \in \mathcal{C}_{\mu}(\alpha, \beta))$

such that

$$F_n \Rightarrow F$$
 in $\mathscr{C}^+(\alpha, \beta)$ as $n \to \infty$

and

$$G_n \Rightarrow G$$
 in $\mathscr{C}^+(\alpha, \beta)$ as $n \to \infty$.

Theorem 4.1. If a sequence of operators a_n of the field \mathcal{M} is convergent in \mathcal{M} to the limit $a \in \mathcal{M}$, then the sequence of elements $L_{\mu}(a_n) \in \mathcal{M}_{\mu}$ is convergent in \mathcal{M}_{μ} to the limit $L_{\mu}(a)$:

 $(4.2) L_{\mu}(a_n) \to L(a) (n \to \infty).$

PROOF. Let $\frac{f_n}{g_n} = a_n$ be a sequence of representatives such that $f_n = f$ and $g_n = g$ in $\mathscr{C}^+(-\infty, \infty)$ as $n \to \infty$. Then $\frac{f}{g} = a$ and, by lemma 4. 1, we have $L_\mu(f_n) = L_\mu(f)$ and $L_\mu(g_n) = L_\mu(g)$ in $\mathscr{C}^+(\alpha, \beta)$ as $n \to \infty$. Thus, by definition 4. 2,

$$L_{\mu}\left(\frac{f_{n}}{g_{n}}\right) = \frac{L_{\mu}(f_{n})}{L_{\mu}(g_{n})} \to \frac{L_{\mu}(f)}{L_{\mu}(g)} = L_{\mu}\left(\frac{f}{g}\right) \qquad (n \to \infty)$$

and the theorem is proved.

Using theorem 4.1, the basic properties of the limit of a sequence in \mathcal{M}_{μ} can be easily deduced from the corresponding properties of the limit of a sequence in \mathcal{M} . We remark that a similar theorem holds for L_{μ}^{-1} .

§ 5. Linear transformations of \mathcal{M}_{μ}

We consider maps $\overline{\mathbf{F}}$ of \mathcal{M}_{μ} into \mathcal{M}_{μ} . These are called transformations of \mathcal{M}_{μ} .

Definition 5.1. Let \mathbb{F} be an operator transformation of \mathcal{M} (see [3]). The transformation

$$(5.1) \bar{\mathbf{F}} = L_{\mu} \mathbf{F} L_{\mu}^{-1}$$

of \mathcal{M}_{μ} is called the equivalent of **F** in \mathcal{M}_{μ} .

Theorem 5. 1. If F and G are transformations of M, then

$$\overline{\mathbf{F}} + \overline{\mathbf{G}} = \overline{\mathbf{F}} + \overline{\mathbf{G}}$$

$$\overline{\mathbf{F}} \overline{\mathbf{G}} = \overline{\mathbf{F}} \overline{\mathbf{G}}$$

PROOF.
$$\overline{\mathbf{F} + \mathbf{G}} = L_{\mu}(\mathbf{F} + \mathbf{G})L_{\mu}^{-1} = L_{\mu}(\mathbf{F}L_{\mu}^{-1} + \mathbf{G}L_{\mu}^{-1}) =$$

= $L_{\mu}\mathbf{F}L_{\mu}^{-1} + L_{\mu}\mathbf{G}L_{\mu}^{-1} = \overline{\mathbf{F}} + \overline{\mathbf{G}}$

and similarly

$$\overline{\mathbf{F}\mathbf{G}} = L_{\mu}(\mathbf{F}\mathbf{G})L_{\mu}^{-1} = (L_{\mu}\mathbf{F}L_{\mu}^{-1})(L_{\mu}\mathbf{G}L_{\mu}^{-1}) = \bar{\mathbf{F}}\bar{\mathbf{G}}.$$

References

J. Mikusiński, Operational Calculus, New York, 1959.
 F. Riesz—B. Sz.-Nagy, Vorlesungen über Funktionalanalysis, Berlin, 1956.
 E. Gesztelyi, Über lineare Operatortransformationen, Publ. Math. (Debrecen) 14 (1967), 169—206.

(Received August 2, 1968.)