On a characterization of the Rényi— Shannon entropy
for incomplete probability distributions

By LUISA ARLOTTI (Ferrara)

RENy! [1] has defined axiomatically in the following way the information
associated to an incomplete probability distribution: Let © denote the set of all

finite sequences P=(p,, ..., p,) of nonnegative numbers such that 0 = w(P) = sz = l
=

If Pén and Q¢€n where P=(p,,....,0), O0=(qy,.--,q9,) Wwe put PwQ—
=2 (Pidys sves Dallla s osos Dylgy v Billa)- If PER and Qﬁzr where P=(py; s D)
O0=(q;, ..esqw) and w(P)+w(Q)=1 we put PUQ = (D1, ce0cs Pus G15 «ovs @)t
Let I(P)=I(p,. ..., p,) be defined for Pcn such that .
A’) I(p) is continuous for 0=p=1, and /(1/2)=1
B’') I(py, ..., p,) is @ symmetric function of its variables. v
C’') (P*Q) = I(P)+1(Q), further
D) if w(P)+w(Q)=1 then

w(P)I(P)+w(Q)1(Q) &
I(PUQ) = - j
KELQ) - n(P)+u (0) :
Rényi has shown that under the conditions
> pilog, - I
I(P) =" ——F%
2 Pk
k=1

A distribution P ¢ r is called an imconplete probability distribution: the functlon
I(P) is called the information associated to P.
We want to show here the following.

Theorem. If for every Pecm:

A) I(p) is continuous for 0<p=1 and nonnegative,

B) I(p,.....p,) is a symmetric function of its variables,
C} ](pl 9 ==y prn 0) = I(Pl ] '“9_pn)s

D) I(pys s PR)=1(Pys oo s Pae2s Pne1 +Pn) = PPy + oo +Pu—2s Pn=15D0)
with &=0,
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E) I(P% Q) = I(P)+1(Q).

F) ®(0.p, 1 —p) is a Lebesgue integrable function over the interval 0=p=1
not identically equal to O, then we have for some a=1 and n=1

2 1
2 pilog, —
I(P) = *=! — X 4 log, w(P)—log, w(P)

w(P)
In particular if a=>b, then

-~ |
2 pilog,
I(P) = k=1 P

2 P
k=1
Proor. From the hypothesis C and D it follows immediately
(I) ¢(.pl + .. +pn—2 ’pn—l)o) = I(pl’ “ory .pu—l" 0)_I(p1| "Hpn—l) - 0
By the symmetry hypothesis, we have
I(Pys <> PactoPo) = X(Pys cves Pas Po=1)-
From this and from D we obtain
(2) P(py+ - +Pa-2sPa=1Pa) = P(P1+ oo +Puz2s Pns Pa-1)-
By the symmetry hypothesis, we get also:
"(pl’ vees P2 pn—l"pn) = !(qu "'!pn—lspn—?_’pn)-
From this and applying D twice we deduce that necessarily
3 D(py+ - +Pa25Pa1sP) + P(Pr+ oo +Pae3s Paeas Py +P0) =
=@(py+ e +Pae1sPu=2:sP) + P(Pr+ -os +Pu3s Paets Pa-2+Pn)-
From ¥ we deduce, for m=1

4 1(p1q, - 0q) = 1(Py, s P)+1(q)
and thus in particular, for n=1
@) I(pg) = I(p)+1(q)

The relation (4") must be true for all (p, g) with 0=p=1, 0=¢=1; the function
I(p) must be continuous and nonnegative for all p:0<p=1; this implies ([2]):

(5 I(p)=clogp for O0<=p=1,
where ¢ is a negative constant. Applying D many times successively we obtain
(6) I(pyy s Pa) = @1+ - +Pu2s Pumrs Pa) +
+ PPt P Pae2s Paca HPD) o PO, oy Pyt +pa) +
+1(py+ps+ ... +p,)
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and also, bearing in mind the symmetry of /(p,, ..., p,),

(6") F (i 30 FERIG & AL GRMR Ve SO B §
=@w(P)(q1+ - +qm-1) +(P1+ oe +Pn2) s Pue 1 Gms PG + --- +
+ ®[w(P) (g1 + - + Gm-1): P1Gm> (P2 + - + P Gl + - +
+@W(P) (g + . +qu) +(Pr+ s +Pu2) 15 Pao1 G1s Padi] + - +
+@[W(P)(Gy+ - +Gu)s P14y (P2 + - +0) g ]+ I(W(P) gy, w(P)q,, ..., w(P)g,).

From the relationships (4), (6), (6") it follows from E, that for all Péxn and Q¢n
one has

Pw(P)(q+ - +qm-1)+(P1+ oos +Pa2)Gms Pue 1 Qs Puml + -+ +
+@w(P)(q1+ - +Gm=1)s P1Gms (P2 + --- +PD) Gl + ... +
(7) + B[W(P)(qa+ -+ @)+ (Pr+ oo +Pn-2)q1 5 Pue 1915 Pas] + --- +
+@w(P)(Gy+ - +Gu)s P11 (P2t o +P)G] =
= @[py+ s +Pu-2sPa-15Pal + - + P[0, Py, P2 + ... + ]
From (7) we obtain, for m=1
(7))  Plpy+ .+ P2 P19 P+ - + P[0, pr g, (P2t ... +p)q] =
= ®[py+ ... +Pu-25Pu-1:P) + .- + P[0, py, P2 + ... + ).
(7’) implies, for n=2
(77 ®(0,p,9. p2q) =P, p;, p2)
forall p,.p,. g withp, =0, p,=0,0 < p,+p, = 1,0<=g=1; and for n=3
) D (P14, P29, P39)+ (0, p1q, (P2 +p3)q) =

=®(py,p2.03)+ PO, p,,ps+p3)
for all

3
P, @ With p,=0, 0< 3 p=1, 0<g=1 (k=1,2,3)

k=1

As for all (7”) and (7”) are simultaneously true. it follows

(8) @(p1q.P29,P39) = P(py. P2, P3)
for all
3
Px» @ with po,=0, 0= Jp=1 0<g=1l x=L13
k=1

On the other hand, putting

' , .
P19 =P1s P29 =P2» P39 =P ;"=q

»
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from (8) it follows that
(8) @(pi.p2.p3) = P(piq’.p2q". p3q)
for all

3
pi., ¢ with pp=0, 0< 3p=1, ¢g=1 (k=123
k=1

Now we can notice that the relationships (8) and (8°) equal the unique condition

(8") (P19, P29,P39) = P(Py,P2,P3)
for all

3
Pe» 9 With p,=0, 0< 2p=1 ¢g=0 (k=1, 2, 3)
K=1

Let us suppose now that in (7) n=2. (7) itself becomes in such a hypothesis 0

) ;2"" P[(p, +p) (w(Q)—4,), P14r- P24, = (0, py.p2)

We put in(9) g, =w(Q)x,. Being ¢,=0 for 1 =r=m, Zm q,=w(0Q)=0, we will have
m r=1

x,=0, for I=r=m and > x,=1. Then (9) becomes
=1

) =ZmId’[(P. +p)w(Q) (1 =x,), pyw(Q)X,, P, w(Q)x,| = @(0,py,p5)

from which we deduce, bearing in mind (8”)

9 ._zl Pl(py+p2)(1=x,), py X, pax,) = @0, py. ps)

The relation (9”) having to be true however, if we choose the nonnegative numbers
Xy, ooy X,y Such that fx,zq, and whatever the naturae number m may be, we
deduce that necessarirl;l
(10) D(py+p2) (1 —x; —x,), py(x; +X3), p2(x) +X,)] =

= ®[(p, +P.) (1 —x)), pyxy, P2x ] +@(py +p2) (1 — X3), Py X2, P2 X3]

Fixing p, and p,. ®[(p, +p,)(1 —X). p, x. p,x] is a function of the variable x only,
defined over the intervall 0 =x =1, there being nonnegative. Putting

?(x) = @[(p +p2) (1 =X), prx.pyx]
(10) assumes the form
(107) @ (x, +x3) = @(x,) + @(x;)

It is known (see [2]). that the only function ¢(x) satisfying these conditions is of
the form
@(x)=cx, x<[0,1] with ¢=0, constant.
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Correspondingly we obtain

(1) P[(py+p)(1—x), py X, pyx] = cx
From the comparison of (11) with (9”) we deduce, remembering that > x, =1
r=1

c= ¢(0. p; ,pz)

It is then

(1) Pl(py+p2) (1 —=X), pyx,pyx] = @0, py, py)x
7120, p,=0, O<p,+p, =1, 0=x=1.

Now we put

(pr+P))(—=x)=mn;, pyx=m7;, pyx=m;
from which it results

T, T, + M3
=(n,+7n,+7 X = —— .
sz+x], pz ( 1 2 3) I-‘a+71'3 3‘1‘1+?I2+1r3

Py =(m+7,+my)

3
We recognize immediately that O0=n,=1, for r=1,2,3 and that 0< > r, =1.

r—l

It is also evident that (11°) is equivalent to

Ty + 73
T +7+7y

On the other hand, (8”) and the preceding relationship nnply

P(ny, 7y, 73) =

¢[0’(KI+HZ+K3)J’[ 2 (l’r1+21'2+:"r_;) 2+n3]

2T

M,+7 4 T
(12) Bn, %, 0) =~ 3 ¢[0, Sy s Sui ]
ny +rr2+rr3 M,+ My My+1y

for all

3
nin; 0, O=<

=1 (r=1,273).

-

From (3) for n=3 we deduce

@) (i, p2.P3)+ PO, py,py+p3) = P(P2, Py s P3)+P(0, Py, Py +P3),

=0 k=123, 0= "pkﬂl

k=1
and thus, bearing in mind (12)

(3”} _pg+pi_¢[0 __Pz - P3 ]+¢[ pl p2+.p‘3 - -] —

Pi+p2+p; " patps’ Patps "pi+pa+pyT PP+ Ps

T 0.5 o [ P o ] [  PiHps ]
Pr+P2+Ps Pt"‘Pa P1+P3 Pl"‘P*"‘PJ P1+P2+pPs
Let us put
P P2

= s = —=——, f(p) = ¢(0,p, 1 —p)
3 Py +P2+P3 ! P1+pP2+ps E (P 3
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The function f(p) is defined over the intervall 0=p=1: it is Lebesgue integrable
over this intervall, according to F; by (2) it has the property

flp) =f(1—=p) for pel0,1]
It follows further from (3”)

( —p)f[Ti—p] Hp) = (1 —q)f[ lfq]mq)

for all p, g with 0=p=1,0=¢=1,0 = p+qg=1
This is Tveberg's equation ([3]). It follows that

J(p) = —plog,p—(1—p)log,(1-p) for pc[o,1].
From the definition of f(p) and from (12) we then deduce

1
DP(py,Prs P3) = - (p,+piy)lo +ps3)—p, log, p,— p; log,
(P1sP25P3) TR [(P2+p3) 108, (P2 + P3) — P2 108, P2 — 3 l0g, p3]
Let us substitute this expression together with (5) in (6), observing that in (5) the
constant c is linked to the logarithmic base and that therefore we can assume /(p)=
= —log, p. Thus we obtain

= 2 Pilogap P .
> Px 3 -
k=1

If') a=b, then in particular
_k';. P log, py
I(Pys o5 P = —
Thus our statement is proved.
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) It is easy to see, that the condition

G) I(p,, p:) = Ip)
is with the property a=5 equivalent.



