Notes on functional equations of polynomial form

By H. ŚWIATAK (Kraków) and M. HOSSZÚ (Miskolc)

1. Let us consider the polynomial

(1)
$$P(X, Y, Z) = \sum_{i+j+k \le n} a_{ijk} X^i Y^j Z^k$$

of order n over the real (or complex) field K. Let $f: G \to K$ be a mapping of an abelian group G into K. By the polynomial P one can form a functional equation

$$P[f(x), f(y), f(x+y)] = 0, x, y \in G.$$

If P(X, Y, Z) is not symmetric in variables X and Y, then one can find an other polynomial form functional equation of order m < n satisfied by the same function f. In fact, applying the transformation $(x, y) \rightarrow (y, x)$ for the independent variables, we see that the functional equation

(2)
$$P(X, Y, Z) = 0, X = f(x), Y = f(y), Z = f(x+y)$$

allowes the transformation

$$T:(X, Y, Z) \rightarrow (Y, X, Z),$$

by which we have

$$\begin{split} P_1 &= P - TP = (1 - T)P = \sum_{i+j+k \le n} a_{ijk} (X^i Y^j - X^j Y^i) Z^k = \\ &= (X - Y) \sum_{i+j+k \le n} b_{ijk} X^i Y^j Z^k = \sum_{i+j+k \le n} (a_{ijk} - a_{jik}) X^i Y^j Z^k \not\equiv 0, \end{split}$$

hence f must satisfy the polynomial form functional equation

$$P_2[f(x), f(y), f(x+y)] = 0, P_1 = (X-Y)P_2$$

of order n-1 for every $f(x) \neq f(y)$. This last restriction is not essential e. g. in the case where G is a topological group and f is continuous. Thus the reduction is useful in many cases for nonsymmetric polynomial form functional equations.

The reduction can not be applied only if P is invariant under T, i. e. it is symmetric:

$$a_{ijk} = a_{jik}$$
.

Remark further that this reduction by T can be applied for nonsymmetric polynomial form functional equations only in a unique step as

$$P_1 = P - TP = (X - Y)P_2$$

is allready antisymmetric and so P_2 must be symmetric.

Clearly, for every nonsymmetric polynomial form functional equation (2) of order n we can construct a symmetric one by

$$P_s = (1+T)P = P + TP.$$

This is invariant under T and its order is not more than n. By this way, conversely, every symmetric polynomial P_s can be represented with a suitable P, e. g. with $P=1/2P_s$.

2. In many cases it is enough to look only for the odd solutions f of (2) for which

$$(3) f(-x) = -f(x), x \in G$$

is true. If e. g. we have

$$P(X, Y, Z) = a(X+Y)^n - \sum_{i+j+k=n} a_{ijk} X^i Y^j Z^k$$
 $(n>0),$

where

$$2^n a - \sum_{i+j+k=n} a_{ijk} \neq 0,$$

then, clearly, every solution f of (2) must satisfy also the condition (3).

Assuming (3), the following transformations of independent variables are useful to reduce (2):

$$(x, y, x+y) \rightarrow (x+y, -y, x)$$
 resp. $(-x, x+y, y)$ resp. $(-x, -y, -x-y)$.

Then (2) allowes the transformations:

$$T_Y: (X, Y, Z) \rightarrow (Z, -Y, X),$$

 $T_X: (X, Y, Z) \rightarrow (-X, Z, Y),$
 $I: (X, Y, Z) \rightarrow (-X, -Y, -Z).$

The following properties of transformations can be observed:

- 1. commutability of I by the others;
- 2. $T^2 = T_X^2 = T_Y^2 = I^2 = 1$;
- 3. $T_X T_Y T_X = T_Y T_X T_Y = IT$;
- 4. $(T_X T_Y)^2 = T_Y T_X$, $(T_X T_Y)^3 = 1$.

As we have seen, the antisymmetrization (1-T)P can be applied for the reduction of the order of the functional equation (2) not more than once. Now, by combining e. g. with the transformation T_X , the antisymmetrization applied for T_XP resp. for $T_X(1+T)P$ may be much more useful. Then we have

$$(1-T)T_X(1+T) = (T_X - T_Y)(1+T) = (T-1)T_Y(1+T)$$

therefore now the reduction can be used for the symmetric (1+T)P also without making use of T. This shows that the last reduction my be useful also for general cases where G is not necessarily abelian and the antisymmetrization by (1-T)can not be applied.

Naturally, this reduction by T_X and T_Y can be used for a symmetric P only

if neither $T_X P$ nor $T_Y P$ are invariant under T, i. e.

$$(T_X - T_Y)P \not\equiv 0, \quad T_X T_Y P \not\equiv P.$$

Clearly, for every polynomial P,

$$(1 + T_X + T_Y + T_X T_Y + T_Y T_X + T_X T_Y T_X) P$$

is invariant under T_X and T_Y .

3. In order to solve a polynomial form functional equation (2) satisfying (3) it is enough to consider only symmetric invariant polynomials.

Definition. A polynomial Q(X, Y, Z) is called invariant, if

$$T_X Q = T_Y Q$$
, i.e. $T_X T_Y Q = Q$.

It is called a *symmetric* invariant, if, moreover, TQ = Q. Clearly,

$$S = 1 + T_X T_Y + T_Y T_X = 1 + T_X T_Y + (T_X T_Y)^2$$

is an invariant operator as we have

$$T_X T_Y S = S$$
, i.e. $T_X S = T_Y S$.

Conversely, every invariant Q can be representes in the form

$$Q = SP$$

with a suitable polynomial P. In fact, we have

$$T_{\rm Y}T_{\rm Y}O=O, \quad (T_{\rm Y}T_{\rm Y})^2O=O,$$

hence

$$[1 + T_X T_Y + (T_X T_Y)^2]Q = 3Q$$

and so e. g. P = 1/3Q can represent Q in the form Q = SP.

An invariant Q = SP is symmetric if and only if P is symmetric as

$$TS = ST = I(T_x + T_y + T_x T_y T_x).$$

Since every polynomial P can be built up as the sum of homogeneous polynomials

$$H_r = \sum_{i+j+k=r} a_{ijk} X^i Y^j Z^k$$

and the order r is unchanged by T_X , T_Y and T, hence in order to determine all the (symmetric) invariants Q of order n it is enough to determine the (symmetric) homogeneous invariants for the orders $r \leq n$.

Some examples:

The only linear homogeneous invariant is a H_1 , where

$$H_1 = X + Y - Z = -SZ$$
.

The quadratic homogeneous symmetric invariants are linear combinations of the following ones:

$$SZ^2 = X^2 + Y^2 + Z^2$$
, $S(XY) = XY - Z(X + Y)$.

For n=3 we have:

$$SZ^3 = Z^3 - X^3 - Y^3,$$

 $S[(X+Y)Z^2] = (X+Y)Z^2 + (Y-Z)X^2 + (X-Z)Y^2,$
 $S(XYZ) = 3XYZ.$

The other symmetric homogeneous invariants for n > 3 have a similar form: Q = SH, where

$$H = (XY)^p (X^q + Y^q) Z^r$$

is the most general form of terms in a symmetric homogeneous polynomial.

4. An interesting invariant of order n=4 is e. g.

$$Q_4 = (X+Y-Z)(X+Z)(Y+Z)(X-Y).$$

This plays an important role e. g. in the reduction of the following polynomial type functional equation

(4)
$$P_n = (X+Y)^n - Z^n = 0$$
, $X = f(x)$, $Y = f(y)$, $Z = f(x+y)$.

In fact, here the substitution y = -x shows that (3) holds and P_n can be factorized as

$$P_n = H_1 \sum_{i+j+k=n-1} a_{ijk} X^i Y^j Z^k, \quad a_{ijk} = a_{jik},$$

where

$$H_1 = X + Y - Z$$

is an invariant:

$$T_X H_1 = T_Y H_1 = -H_1$$
.

Now we have

$$(T_X - T_Y)P_n = -H_1 \sum_{i+j+k=n-1} (-1)^i a_{ijk} (X^i Y^k - X^k Y^i) Z^j = H_1 (X - Y) P_{n-1},$$

where

$$P_{n-2} = TP_{n-2}$$

is symmetric.

Here applying once more the transformations T_X , T_Y , we can reduce (4) to

$$H_1(T_X-T_Y)P_{n-2}=0,$$

supposed that

$$(X-Y)$$
, $T_X(X-Y) = -X-Z$, $T_Y(X-Y) = Z+Y$

are different from O. Thus we see that (4) is equivalent to

$$H_1(X-Y)(X+Z)(Y+Z)(T_X-T_Y)P_{n-2}=0,$$

i. e. to a functional equation of the form

$$Q_4 P_{n-3} = 0.$$

E. g., for n = 4, by this way (4) can be reduced to

$$(X+Y-Z)(X-Y)(X-Z)(X+Z)(X+Y-Z)^2 = 0,$$

i. e. to

$$Q_4 = (X+Y-Z)(X-Y)(X+Z)(Y+Z) = 0,$$

where

$$X=f(x)$$
, $Y=f(y)$, $Z=f(x+y)$.

5. As another example let us consider the functional equation

(5)
$$\sum_{i+j+k<2} a_{ijk} X^i Y^j Z^k, \quad X = f(x), \quad Y = f(y), \quad Z = f(x+y).$$

Supposed that (3) holds, we have the following possibilities:

1. (5) is of the form

$$a(X^2 + Y^2 + Z^2) + b(XY - XZ - YZ) = 0;$$

2. (5) can be reduced to

$$(X-Y)(aX+bY+cZ)=0.$$

In the case 1. by putting

$$y = 0$$
 i. e. $Y = 0$, $Z = X$,

we see that

$$f(x) = 0$$
 for $2a - b \neq 0$;

$$a(X+Y-Z)^2 = 0$$
 for $2a-b = 0$.

In the case 2. similarly

$$f(x)=0$$
 for $a+c\neq 0$ or $b+c\neq 0$;

$$a(X-Y)(X+Y-Z) = 0$$
 for $a = b = -c$.

In this last case we must jet solve the functional equation

$$f(x+y) = f(x) + f(y)$$
 if $f(x) \neq f(y)$, $x, y \in G$.

Let us consider a fixed pair (x, y). If the set of values of the function f is enough large, we can find a $z \in G$ such that

$$f(z) \neq f(y)$$
, $f(z) \neq f(x+y)$, $f(y+z) \neq f(x)$.

But then we have

$$f(x+y+z) = f(x+y)+f(z) = f(x)+f(y+z) = f(x)+f(y)+f(z),$$

consequently,

$$f(x+y) = f(x) + f(y)$$

holds for every fixed $x, y \in G$.

Remark that

$$XY - XZ - YZ = 0$$
, $X = f(x)$, $Y = f(y)$, $Z = f(x+y)$

has a solution

$$f(x) = a(x)^{-1}$$

where a(x) is an arbitrary additive function. This solution satisfies also (3), however, it is not defined for x = 0.

NOTES ON FUNCTIONAL EQUATIONS OF POLYNOMIAL FORM

By: H. ŚWIATAK (Kraków) and M. HOSSZÚ (Miskolc)

Summary

Supposed that f(-x) = -f(x), the functional equation

$$P(X, Y, Z) = 0$$
, $X = f(x)$, $Y = f(y)$, $Z = f(x+y)$

allowes the transformations

$$T_X: (X, Y, Z) \rightarrow (-X, Z, Y), T_Y: (X, Y, Z) \rightarrow (Z, -Y, X).$$

This can be seen by the substitutions $(x, y) \rightarrow (-x, x+y)$ and $(x, y) \rightarrow (x+y, -y)$ of independent variables. By the transformations T_X and T_Y , the functional equation P=0 can be reduced in many cases to a simpler one. However, this reduction cannot be applied if P is invariant under T_X and T_Y . In the classification theory of functional equations these invariants play an important role. In the present paper all the polynomial invariantes for which $T_X P = T_Y P$ holds are determined. Some remarks about the solutions of invariant equations are given.