Notes on functional equations of polynomial form

By H. SWIATAK (Krakéw) and M. HOSSZU (Miskolc)

1. Let us consider the polynomial

() PIX.Y,Z)= 3 auX'Viz!

i

of order n over the real (or complex) field K. Let /: G -~ K be a mapping of an abelian
group G into K. By the polynomial P one can form a functional equation

PL/(x), f(»), f(x+»)] =0, x, y€G.

If P(X,Y,Z) is not symmetric in variables X and Y, then one can find an
other polynomial form functional equation of order m <n satisfied by the same
function f. In fact, applying the transformation (x, ) -(y, x) for the independent
variables, we see that the functional equation

(2) P(X,Y,Z)=0, X=[(x), Y=/(y), Z =[f(x+))

allowes the transformation
X X, ) ~\Y, X, Z),
by which we have

Po=P-TP=(1-T)P= 3 au(X'YiI-XiY)Zt=

i+j+k=n
=X-Y) 2 biﬂsxfyjzk - s (auk_aﬁk)xiy‘izk =0,
i+j+k=n i+ j+k=n

hence f must satisfy the polynomial form functional equation
Py[f(x), f(»), f(x+»] =0, P, =(X-Y)P,

of order n—1 for every f(x)#f(»). This last restriction is not essential e. g. in the
case where G is a topological group and f'is continuous. Thus the reduction is useful
in many cases for nonsymmetric polynomial form functional equations.

The reduction can not be applied only if P is invariant under 7, i. e. it is sym-
metric:

ik = Ajik«
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Remark further that this reduction by T can be applied for nonsymmetric
polynomial form functional equations only in a unique step as

P, = P—TP = (X—Y)P,

is allready antisymmetric and so P, must be symmetric.
Clearly, for every nonsymmetric polynomial form functional equation (2)
of order n we can construct a symmetric one by

P, =(1+T)P = P+TP.

This is invariant under 7" and its order is not more than n. By this way, conversely,
every symmetric polynomial P, can be represented with a suitable P, e. g. with
P=1)2P,.

2. In many cases it is enough to look only for the odd solutions f of (2) for
which

(3) S(—x) =—f(x), x€G

is true. If e. g. we have

P(X,Y,Z) = a(X+Y)Y'— 3 auX'YiZ*  (n>0),

et
i+j+k=n

where
2" a— S‘ aijk > 0,

—_—
i+j+k=n

then, clearly, every solution f of (2) must satisfy also the condition (3).
Assuming (3), the following transformations of independent variables are
useful to reduce (2):

(x, v, x+p)=(x+y, =y, x) resp. (—x,x+y,») resp. (—x, —y, —x—y).
Then (2) allowes the transformations:
Ty:(X, Y, 2)-(Z,-Y, X),
Tx:(X,Y,Z)~(—X,Z2,Y),
I.X,Y,Z)»(—X,-Y,—-2Z).
The following properties of transformations can be observed:
I. commutability of / by the others;
v It =Tr=T1¢=i*=1;
3. TyTyTx = TyTxTy = IT;
4, (TxTy)? = Ty Ty, (TxTy) = 1.

As we have seen, the antisymmetrization (1 — T)P can be applied for the reduct-
ion of the order of the functional equation (2) not more than once. Now, by comb-
ining e. g. with the transformation 7y, the antisymmetrization applied for TP
resp. for Ty(1+ T)P may be much more useful. Then we have

(I-NTx(1+T) = Tx—TY(+T) = (T-DTy(1+T)

2
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therefore now the reduction can be used for the symmetric (1 + 7)P also without
making use of 7. This shows that the last reduction my be useful also for general
cases where G is not necessarily abelian and the antisymmetrization by (1—7)
can not be applied.

Naturally, this reduction by 7y and T, can be used for a symmetric P only
if neither TyP nor TP are invariant under 7, i. e.

(Tx—-Ty)P 20, TxTyP # P.
Clearly, for every polynomial P,
(M+Tx+Ty+ TxTy+TyTx+TxTyTx)P

is invariant under 7y and T75.
3. In order to solve a polynomial form functional equation (2) satisfying (3)
it is enough to consider only symmetric invariant polynomials.

Definition. A polynomial Q(X, Y, Z) is called invariant, if
TxQ =TyQ, ie TyTyQ =0.

It is called a symmetric invariant, if, moreover, 70 = Q.
Clearly,
S=14+TxTy+TyTx = 1+ TxTy+ (TxTy)?

is an invariant operator as we have
IT;T,S=3S, 1e. TxS=T,S.
Conversely, every invariant Q can be representes in the form
Q=SP
with a suitable polynomial P. In fact, we have

TyTyQ = 0, (TxTrVQ = 0,

[14+TxTy+(TxTy)*1Q = 3Q

and so e. g. P=1/3Q can represent Q in the form Q= SP.
An invariant Q = SP is symmetric if and only if P is symmetric as

TS = ST = I(Tx+ Ty+ Tx Ty Ty).

Since every polynomial P can be built up as the sum of homogeneous poly-
nomials

hence

H,. = Z aukXiijk
i+jt+k=r
and the order r is unchanged by Ty, Ty and T, hence in order to determine all the
(symmetric) invariants Q of order # it is enough to determine the (symmetric) homo-
geneous invariants for the orders r =n.
Some examples:
The only linear homogeneous invariant is a H,, where

H, =X4+Y~Z =~8§2.
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The quadratic homogeneous symmetric invariants are linear combinations of
the following ones:

SZ2=X*+Y2+23 S(XY)=XY-Z(X+7)
For n=3 we have:
S22 = 2°-X2-Y3,
S(X+Y)Z}) = (X+Y)Z*+(Y-2)X?+(X—-2)Y?,
S(XYZ)=3XYZ.

The other symmetric homogeneous invariants for n=3 have a similar form:
Q= SH, where
H=(XYP(X'"+Y9)Z"

is the most general form of terms in a symmetric homogeneous polynomial.
4. An interesting invariant of order n=4 is e. g.

0, = X+Y=-2)X+Z)(Y+Z)(X-Y).

This plays an important role e. g. in the reduction of the following polynomial type
functional equation

G P,=X+Y)—-2"=0, X=[f(x), Y=/() Z=[fx+))

In fact, here the substitution y = —x shows that (3) holds and P, can be fac-
torized as

—

Pl! = H| /‘, a‘ijinZk, auk - aju;,
i+j+k=n—1

where
H =X+Y-2
is an invariant:
TxH, = TyH, = - H,.
Now we have

(Tx—TYP,=—-H, 2 (DapX'Y'-X*Y)2Z/=H,(X-Y)P,_,,
it j+k=n—1
where
Pu-—Z — TPJ!-Z
is symmetric.
Here applying once more the transformations Ty, Ty. we can reduce (4) to

H\(Tx—Ty)P,., =0,
supposed that
(X=-Y), Tx(X-Y)=—-X-2Z, Ty(X-Y)=2+Y

are different from O. Thus we see that (4) is equivalent to
HX-Y)X+2Z2)(Y+Z)(Tx—Ty)P,_, =0,
i. e. to a functional equation of the form
Q4P,_5 = 0.
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E. g., for n=4, by this way (4) can be reduced to

X+Y-2)X-Y)X-Z2)X+Z)X+Y—-2Z)* =0,
i ¢ 16
0, = X+Y-2Z2)X-Y)X+Z)Y+Z) =0,

X=f(x), Y=/(y), Z=/f(x+)).

5. As another example let us consider the functional equation
) 2 apX'Y'Z¥ X=[f(x), Y=1(), Z=[f(x+))

i+jtk=<2

where

Supposed that (3) holds, we have the following possibilities:
1. (5) is of the form
a(X?+Y2+Z)+b(XY—-XZ—-YZ) = 0;
2. (5) can be reduced to
(X=Y)(@aX+bY+cZ) = 0.
In the case 1. by putting

$=0 1€ Y=0, Z=2X,
we see that
f(x)=0 for 2a—b = 0;

a(X+Y—-Z)* =0 for 2a—-b =0.
In the case 2. similarly
f(x)=0 for a+c#0 or b+c #0;
aX-=Y)X+Y-Z)=0 fora=5b=-—c
In this last case we must jet solve the functional equation
Slx+p) =f(x)+f(y) il f(x)=f(»), xyeG.

Let us consider a fixed pair (x, »). If the set of values of the function fis enouhg
large, we can find a z£G such that

f@#(), Jf@Q#f(x+y)., [f(y+2)#=f(x).
But then we have
Jx+y+2) = f(x+y)+(2) = f(X)+(y +2) = [(x)+/(») +1(2),

consequently,

f(x+y) = f(xX)+/(»)
holds for every fixed x. y€G.
Remark that

XY-XZ-YZ =0, X=f(x), Y=f(»). Z=/f(x+)y)
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has a solution
JS(x)=a(x)"?

where a(x) is an arbitrary additive function. This solution satisfies also (3), however,
it is not defined for x=0.

NOTES ON FUNCTIONAL EQUATIONS OF POLYNOMIAL FORM
By: H. SWIATAK (Krakow) and M. HOSSZU (Miskolc)

Summary

Supposed that f(— x)= — f(x), the functional equation
PX. Y, 2)=0, X=f(x). Y=I(p), Z=JSlix+))
allowes the transformations
Ty: XY, Z)+(-X,Z,Y), Ty: (X, Y,2Z)~(2,—Y,X).

This can be seen by the substitutions (x, y)—(—x, x+y) and (x, y)—=(x—p, —y) of independent
variables. By the transformations Ty and Ty, the functional equation P=0 can be reduced in many
cases to a simpler one. However, this reduction cannot be applied if P is invariant under Ty and 7.
In the classification theory of functional equations these invariants play an important role. In the
present paper all the polynomial invariantes for which Tx P= Ty P holds are determined. Some re-
marks about the solutions of invariant equations are given.



