The K-unitary convolution of certain arithmetical functions

By J. CHIDAMBARASWAMY (Toledo, Ohio)

§ 1. Adivisordof niscalled a k-unitary divisor of nif (d, n/d), = 1: here the symbol
(a. b), stands for the largest kth power divisor common to both @ and 4. For any
arithmetical functions g(n) and /(n), let f(n) be their k-unitary convolution, and
F(x) be the summatory function of f(n): i. e.

(1. 1) fn)y = 3 g(d)h(d)
(d.d:Ji:I

and

(1.2) F(x) = 2 f(n)

Functions involving l-unitary divisors (unitary divisors) have been studied by
EckrorD CoHEN and some others. In particular, in [2], Cohen considers (1.1) when
k =1 and proves (Theorems 4.1 and 5.1 of [2]), that if

(1.3) g(n) = 0(1), and h(n)=n
(1. 4) F(x) = Zg(”)‘”(") +O(xlog? x)
and if
(1.5 g(n) = 0(1), and h(n) = nu?(n)
(I 6) F(x) = Z g(n)ﬁ{") +O( 3)’")
where

_ no(n)
{):7) B(n) = {2)J(n)

¢(n) being the Euler’s totient function and J(n) the Jordan’s totient function of
order 2.

Here we consider the order of magnitude of f(n) in the more general case when
k=1, g(n)=0(n"), h(n)=n" and n"p*(n). (Theorems 3.1 and 3.2). In particular,
these results would imply (See Corollaries 3.1.1 and 3.2.1 together with (3.6)) that
the main terms in (1.4) and (1.6) remain the same even though we take unbounded
2(n) subject to the condition g(n)=0(n*) with e=1/2 in (1.3) and £¢=3/4 in (1.5).
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We will be naturally led to the generalised Euler’s function ¢,(n) which is
defined as the number of integers in a resideu system mod n which are k-prime to n;
i. e. which have 1 as their k& th power G. C. D. with n. We remark that this function
is different from the generalised Euler’s function (although we are using the same
symbol) defined by Cohen ([3]) as the number of numbers in a residue system mod n*
which are k-prime to n* and that both these functions give Euler’s function for
k =1. In Section 2, we obtain some of the properties of this functions as generalis-
ations of the corresponding properties of ¢(n).

§ 2. Let tf(n) denote the number of k-unitary divisors of n. It is easily seen
that ;(n) is a multiplicative function of n and so it is completely determined by
the values t(p*) p ranging over primes and « over positive integers. Also since
(p%, p*~P), = 1 if and only if min {f, x— B} < k, it follows that every divisor of
p* is a k-unitary divisor of p*, if <2k, and if =2k, p# will be a k-unitary divisor
of p* if and only if fe{0,1,2,....k—1,2—k+1, ..., 2}. These observations give,

Theorem 2.1. If the canonical decomposition of n is given by

n=qlqs ... ql:p7'p% ... Pt
where O<f;<2k, i=1,2,...,5 and 0,=2k, i=1,2,...,t then

2.1 () = {H(HB;)“H(N)}

i=1 i=1

When k =1 each f;=1 and the formula (2. 1) reduces to the well known formula
for the number of unitary divisors of 2.

Since a=n, (a, n), = d* if and only if a/d* =n/d* and (a/d*, n/d*), =1, it follows
from the familiar argument that the

Theorem 2.2.
> @i(n/d*) = n.
d%in
is true.
Theorem 2.3. For any arithmetical functions f, (n) and f,(n)

Sa(m) = %f 1(n/d") if and only if f,(n) = X f>(n/d*)u(d).
d*|n d%|n

Proor. If f,(n) = 2 f,(n/d"), then
d&|n

2 Lm/dYud) = 3 f,0)ud) = 3
d%n d“é=n o=

b =
ud) > fi(4)

d“o=n

= 2 fi(4) 2 p(d) = f1(n),
A=n dk|rk

sincezk;t(d) =1 or O according as r=1 or r=1. The proof of the other half is

similar
We note that Theorem 2.3 when k=1 is the well known MJdbius inversion
formula.
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From Theorems 2.2 and 2. 3, we get

Theorem 2.4.
d
@2 ou(n) = n 3 1O
d%/n
Formula (2. 2) implies that ¢,(n) is multiplicative. Taking n=p?* in (2. 2), we get
i p* if x=k,
(2' 3) (Pk(p ) e {p:-k(pk_ [)! If ng_
Lemma 2.1.
+1
(1) 2 = fi—l +0), r=0, x=1;
o(l), r>1, x=1;
(ii) 2 1 ={0(ogx), r=1, x=2;
M 7 T E o TR S S ¢
(iii) i =0/Ft), r»], x>
This lemma is well known and we omit the proof.
Theorem 2.5.
x> ]
B, (x)= Z ouln) = 75 : (2k)-+0(x log x).
PROOF.

Py (x) = Eﬁox(ﬂ),

n=x

which by Theorem 2.4 is equal to
2 opd)= 2 p(d)

d*d=x

which by (i) of Lemma 2.1
= 2 #@{172) (x/d")* + O(x[d")}

2 < uld 2 d
2.4) =Z D5 3 EDr 3 w0

d=1 " o o d=xl/k Y
Now, by using Lemma 2. 1, the second term in (2. 4) is O(x'/*) and the third term
is O(x log x) and the theorem is clear in virtue of Theorem 287 of [4].
Clearly, Theorem 2. 5 reduces to Merten’s Theorem (Theorem 330 of [4]) when

k=1
§ 3. Let now, for any real numbers x and r, r=0, x=1

> 3,

d=x/d

(3.1) G, M) = 3 m
(mf':-ix::
(3.2) Ox(x,m) = 3 m"p*(m)

(m,nl=1
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Lemma 3.1. For r=0, x=1, n=1

+1
0 Px,(x, n) = :'+l @) +0(1(n)x")
¥ ; _ XU emn(n) ] "
(i) @1..(x,n) = IO +0(ti(n)x"*1/2)
, ¥+t ] ; o
(iii) O (x,n) = SR TP) 4"_:('?3]'11(_")__{_0(12("))‘; 12) k=2,
where

w*(d)

(3.3) ) = 2 5o

and t,(n) denotes the number of square free divisors of n whose k th powers also
divide n.

PROOF:
() Px, (X, n) = ”g m = Zm’ (Z u(d) = Zu(d) Z (Ja'")’
(M’u-;:!'_ M!Ik

which by Lemma 2.1 is equal to

Zroe (G ieol[3)

form which the first part of the lemma follows in virtue of Theorem 2. 4.
ii) This is in fact i) of Lemma 3.2 in [1] (see also, Lemma 5. 2 of [2]) where
the coefficient of x"*! is

B(n) _o(m n?
pplt T P ST
and by using the evaluation formula for J(n) (formula (3. 6) of [2]). it can easily
2
be seen that n,(n
(iii) ‘pi,,(x, n)= 2 mp(m) = Z nt 2 wd)=
= 3 @yud= 3 d”u(d)coz,,(x/d%n)
@, ol a1 dayz
R ={0, M= (d,m2=1

which by i) of the present lemma is

x+1 @, (n) u(d) ¥
(3.9 r+l~7—‘52r’x 72 2 ,u(d)O[r;(n)[ ]]

@,n);=1 @, m2=1
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Now,
p(d) u(d)
DY=
dgx d? 4=-er d? D’i(dZ‘.'n)z u(D)
@ n)z=1
[¥ x/p] y’ )|
= u(jD) u?(D) u(j)
=St ® 2 =2 2 =
U, D)=1
- ﬁt’(D){ = H(j) P M(_!)
- D’ J'g: J -YxID
G D)=1 Ghel
The first term above, by Lemma 5. 1 of [2] is '22((2';) and since for any D such that D?|n,
u* (D) u(j) [ 1 ]
e, =0 1
p* ﬁ-é'm o Vx

D=1
iii) is clear.

Actually, making use of Theorem 2. 4, (3. 3), and the evaluation formula for
J(n), we get

Lemma 3.2.
ou(mn(n) P (P -1)
#a e
aTk

where p*|n, means that p*|n, and p**'{n.
In particular, we note

emn(n) _

(i) i m = {(2)B(n)
(3.6) o
(i) E’sﬁ:’i&’z_ o

Theorem 3.1. If in (1. 1), g(n)=0(n*), O<e<1, and h(n)=n", r>¢, then

+1
(.7 F(x) = :1 2 Z’ £ ('2?2("’ +E,(x)
where

o(x), r>1+4g x=1

E,(x) =10(x"log?x), r=1+¢, x=2
O(x?~r+2), lyg<r<1+4g x=1.
PROOF.

F(x) = g(d)o" = P 8(d) Z o =d§‘g(ﬂ')fpt..(x/d, d),
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which by (i) of Lemma (3. 1), is equal to

rt1 ’
Zrofl3]" oz 3]} -

d) o (d d)o,(d d
- Z:g(d)’(f;( )+0[f*‘gg(d),‘f';( )] fénr(_;)

Now, by Lemma 2. 1, and the fact ¢, (n)=n,

s edad) _ o 1 ]

fpel dr+2 Xt
and
nw(d) _ 1(d)
bAE DR D R P T

and Theorem 3.1 is clear.
We have the following corollaries:

Corollary 3. 1. 1. If in (1. 1) g(n) = O(n*) for some eé<=1/2, and h(n)=n", then
forr=1,

- i Z“’f g(n) @i (n)

Fo~ 18 we

Corollary 3. 1. 1. may also be stated as

Corollary 3.1.2. If in (1.1) g(n)=0(*) for some e¢<1/2, and h(n)=n",
then for r=1, the average order of f(n) is

[ 3 g(n}%(n)]
nr-l-z
If, in particular, we take g(n)=1, h(n)=n" in Theorem 3. 1, we get

Corollary 3. 1. 3.

20 ke

2, Oh,(n) =

ey r+l

where E,(x) is given by

O(x*"), if 3<r<l, x=1
El=10log*x), # r=1, 323
O(x"), it rel, 2=1;

and o7 ,(n) is the sum of the r th powers of the k-unitary divisors of n.
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Theorem 3.2. If in (1. 1), g(n)=0n*), O <=e=1, and h(n)= n'u*(n), r=>¢, then

i Z g(n)tp(n)nt(n)+5r(x)’ if k=1;

(l) F(x) r+l c(z)”-i r+2
+1 4
(ii) F(x) = %-1-;,(1—23 ;1' f,(ff +E,(x), if k=1,

where E,(x) is given by

O(x"*12), r>1+e,
E(x) =102 1og*x), r=31+8, x=2,
O(x3/2-r+2%) lig<r<i+sg x=1.
Proor. We prove the second part, the proof of the first part being similar.

Fx)= 2 gd&p’@) = 2gd) 2 Tu*@)
=1 - d): 1

which by (3. 2), iii) of Lemma 3. 1, and ii) of (3. 6) is

Zeolli] sharolsold] -

1’+1 g(d) +1 g( ) +1/2 Tz(d)
_._r+]C(2)Zdr+l x’ Zd""l +O x" Zdr+l)'2 e
The second term above, by iii) of Lemma 2.1 is O(x'*f) and a proof similar to:
that employed in the proof of Theorem 3. | shows that the third term is O(x"+'/2),
O(x"*1/2 Jog?x), O(x3%-r+2%) according as r=1/2+e. The result follows now
since

l+e=r4+4 if r=d4e 14e<3—r+2 if r<1+e,
and r+1=>434-r+2 if r=}+e

Corollary 3.2. 1. If in (1. 1), g(n) = O(n*) for some &< 3/4, and h(n)=n"u?(n),
then for r=1,

¥ Z gme(m)n, (n) et

(I) F('x) +l ’(’)nc lr-l-z y
(ii) F(x)~ Tl-; % iff-}-, k>1.
i ‘- n-l

Corollary 3. 2.1 can also be stated as
Corollary 3.2.2. If in (1. 1), g(n)= Oo(n°) for some ¢<3/4, and h(n) = n" u*(n),.
then for r=1, the average order of f(n) is

1 g(")(P(ﬂ)nl(") G 3 4
[C(z)n=1 o ]ﬂ, if k=1,
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and is
[-c(',) oLl (Y Ay
~)m=]

Taking g(n) =1, we get, in particular, from Theorem 3. 2.
Corollary 3. 2. 3.

. % | el S @ )n,(n)
"é: cn.r(ﬂ) e [r+l C(z) n;: a2 + E,(x)

and
#1
2 o) = il-“g-(;)” +E®), k=2,
where
v ls gl f if r=4,
E(x)=10*""2iog*x), I r=%,
02 ) if }<r<i,

0% ,(n) being the sum of the r th powers of the square free k-unitary divisors of n.
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