Two isotopically equivalent varieties of groupoids

By AHMAD SHAFAAT (Portland)

We shall say that a grupoid $\langle A, \omega' \rangle$ is nomially derived from a groupoid $\langle A, \omega \rangle$ if there exists a ω -word w(x, y) in x, y such that $xy\omega' = w(x, y)$ for all $x, y \in A$. If further $\langle A, \omega \rangle$ is also nomially derived from $\langle A, \omega' \rangle$ we shall say that $\langle A, \omega \rangle$, $\langle A, \omega' \rangle$ are nomially equivalent. Groupoids $\langle A, \omega \rangle$, $\langle A, \omega' \rangle$ will be called isotopically equivalent if each is an isotope ([1]) of the other.

Two classes K_1 , K_2 of groupoids will be called nomially (isotopically) equivalent if every groupoid in one class is nomially (isotopically) equivalent to a groupoid

in the other.

Nomial and isotopical equivalences can be defined for arbitrary classes of universal algebras of a given species without any difficulty.

Examples of nomially equivalent varieties of algebras are well-known. Thus

varieties of Boolean algebras and Boolean rings are nomially equivalent.

In this note we prove that the variety of groupoids defined by the law $y = xt\omega xz\omega yz\omega\omega t\omega\omega$ is isotopically equivalent to the variety of abelian groups.

Theorem. The varieties of groupoids defined by the laws

$$y = xt\omega xz\omega yz\omega \omega t\omega\omega$$

and

(II)
$$y = x x z \omega y z \omega \omega \omega$$

are isotopically equivalent but not nomially equivalent.

The PROOF of the theorem is divided into the following four lemmas.

Lemma 1. A groupoid satisfying I is a quasigroup.

PROOF. In I replace t by $y_2 z \omega$, y by y_1 and x by $xz \omega$. We get the law

$$y_1 = xz\omega y_2 z\omega \omega xz\omega z\omega y_1 z\omega \omega y_2 z\omega \omega\omega$$
.

If we write w for the word $xz\omega z\omega y_1 z\omega \omega y_2 z\omega \omega$ and u for the word $xw\omega$ then this last law together with I gives

$$y_2 = xw\omega xz\omega y_2 z\omega \omega w\omega = xw\omega y_1 \omega = uy_1 \omega$$
.

Hence I implies that $\forall y_1, y_2 \exists t \ (ty_1 \omega = y_2)$. This can be expressed by saying that the equation $ty_1 \omega = y_2$ has a solution in t in every groupoid satisfying I for all y_1, y_2 .

106 A. Shafaat

The equation $y_1 t\omega = y_2$ is also solvable. This can be seen as follows. We have just proved that we can find x, t_1 such that $xt_1\omega = y_1$. Then, by I,

$$y_1 xz\omega y_2 z\omega\omega t_1 \omega\omega = y_2$$

and if we put $t = xz\omega y_2 z\omega \omega t_1 \omega$ we have $y_1 t\omega = y_2$.

We now prove the 'cancellation laws'. Let t_1 , y, t_2 be such that $t_1 y \omega = t_2 y \omega$. Then, by (I),

$$t_1 = xt\omega xy\omega t_1 y\omega \omega t\omega \omega = xt\omega xy\omega t_2 y\omega \omega t\omega \omega = t_2$$

and the right cancellation law holds. Next let t_1 , y, t_2 be such that $yt_1\omega = yt_2\omega$. Find x, z, y_1 , y_2 such that $y = xz\omega$, $t_1 = y_1z\omega$, $t_2 = y_2z\omega$. Then

$$y_1 = xt\omega \ xz\omega \ y_1 z\omega \ \omega t\omega \omega = xt\omega \ yt_1 \omega \ t\omega \omega = xt\omega \ yt_2 \omega \ t\omega \omega =$$

$$= xt\omega xz\omega y_2 z\omega \omega t\omega \omega y_2$$

so that $t_1 = t_2$ and the left cancellation law also holds. This completes the proof of the lemma.

Lemma 2. The law (I) is equivalent to the following statement. There exists e such that for all x, y, z

- (i) $xe\omega e\omega = x$,
- (ii) $xz\omega yz\omega \omega = xy\omega e\omega$,
- (iii) $xe\omega xy\omega \omega = y$.

PROOF. I implies (i)—(iii). We have, by (I)

$$x = xt\omega xz\omega xz\omega\omega t\omega\omega$$
.

By Lemma 1 $xz\omega$ can be any element t_1 for suitable z. Hence

(iv)
$$x = xt_1\omega tt_1\omega t\omega\omega$$
, for all x, t_1, t .

This gives

$$xx\omega = xx\omega t\omega x x\omega t \omega \omega$$

and if t is such that $xx\omega t\omega = y$,

 $xx\omega = yy\omega = e$, some fixed element.

We can now write (iv) in the form

$$x = xt\omega et\omega \omega$$
.

In the last equation if t is taken equal to e we arrive at (i).

To prove (ii) we note that

$$y = xt\omega xz_1\omega yz_1\omega \omega t\omega \omega = xt\omega xz_2\omega yz_2\omega \omega t\omega \omega$$
.

Hence by Lemma 1

$$xz_1\omega yz_1\omega \omega = xz_2\omega yz_2\omega \omega$$

so that $xz\omega yz\omega \omega = xy\omega \omega y \omega = xy\omega e\omega$. By (I) and (i)

 $y = xe\omega xy\omega yy\omega \omega e\omega \omega = xe\omega xy\omega \omega.$

This proves (iii).

Now we show that (i)—(iii) imply (I). We have

$$xt\omega yz\omega yz\omega \omega t\omega\omega = xt\omega xy\omega e\omega t \omega\omega$$
 , by (ii) of Lemma 2
 $= xe\omega xy\omega e\omega e\omega\omega$, by (ii) of Lemma 2
 $= xe\omega xy\omega \omega$, by (i) of Lemma 2
 $= y$, by (iii) of Lemma 2

Hence I holds and the lemma is proved.

Lemma 3. A groupoid $\langle A, \omega \rangle$ satisfies (I) if and only if $\langle A, \omega' \rangle$ satisfies (II) where

(1)
$$xy\omega = xy\omega'\gamma$$
, for all $x, y \in A$,

where $xy\omega' = xy\omega \ xx\omega \ \omega$ for all $x, y \in A$ and γ is an involution of $\langle A, \omega' \rangle$. (We recall that γ is called an involution if γ is an automorphism and γ^2 is the identity map.) Further a groupoid $\langle A, \omega' \rangle$ satisfies (II) if and only if $\langle A, \omega \rangle$ satisfies (I) where

(2)
$$xy\omega' = xy\omega xx\omega \omega$$
 for all $x, y \in A$.

PROOF. Part 1. Let $\langle A, \omega' \rangle$ satisfy (II) and $\langle A, \omega \rangle$ be defined by (1). Then $\langle A, \omega \rangle$ satisfies (I). For,

 $xt\omega xz\omega yz\omega \omega t\omega \omega$ $= xt\omega' \gamma xz\omega' \gamma yz\omega' \gamma \omega' \gamma t\omega' \gamma \omega' \gamma, \quad by (1)$ $= xt\omega' xz\omega' yz\omega' \omega' t\omega' \omega', \quad \text{since } \gamma \text{ is an involution}$

In this last step we have used the result [2] that II characterizes abelian groups in terms of the operation of subtraction.

Part 2. Let $\langle A, \omega \rangle$ satisfy (I) and ω' be defined by (2). Then $\langle A, \omega' \rangle$ satisfies (II). For by the proof of Lemma 2 $xx\omega = e$ for some e and for all x in A and hence

χχz ω' yz ω'ω'ω'

= y.

 $= xx z\omega e\omega yz \omega e\omega \omega e\omega \omega e\omega$, by (2)

 $= x xz\omega yz\omega \omega e\omega e\omega\omega e\omega$, by (ii) of Lemma 2

 $= x xz\omega yz\omega \omega \omega \omega$, by (i) of Lemma 2

 $= xe\omega xz\omega yz\omega \omega e\omega \omega$, by (ii) of Lemma 2

= y , by I.

108 A. Shafaat

Part 3. Let $\langle A, \omega \rangle$ satisfy (I) and let $\langle A, \omega' \rangle$ be defined by (2). We show that (1) holds for some involution γ of $\langle A, \omega' \rangle$. Define γ by $x\gamma = xe\omega$ where e is the constant value of $xx\omega$ in $\langle A, \omega \rangle$. Then γ is an involution of $\langle A, \omega' \rangle$. For

$$xy\omega'\gamma = xy\omega e\omega e\omega$$

= $xe\omega ye\omega \omega e\omega$, by (ii) of Lemma 2
= $x\gamma\gamma \gamma\omega e\omega = x\gamma\gamma \gamma\omega'$

and

$$x\gamma\gamma = xe\omega \ e\omega = x$$
, by (i) of Lemma 2.

The involution γ satisfies (1); $xy\omega'\gamma = xy\omega \ e\omega e \ \omega = xy\omega$, by (i) of Lemma 2.

Part 4. Let $\langle A, \omega' \rangle$ satisfy II and $\langle A, \omega \rangle$ be defined (1). We show that ω, ω' are related by (2). This is easy:

$$xy\omega xx\omega\omega = xy\omega'\gamma xx\omega'\gamma \omega'\gamma = yx\omega' xx\omega' \omega' = xy\omega'.$$

Here we have used the fact that ω' is an operation of subtraction in an abelian group and the assumption that γ is an involution of $\langle A, \omega' \rangle$.

The proof of the lemma is complete.

We observe that Part 3 of the proof of Lemma 3 shows that if $\langle A, \omega \rangle$ satisfies I and ω' is defined by (2) then $\langle A, \omega' \rangle$ is an isotope of $\langle A, \omega \rangle$. In view of this remark Lemma 3 shows that the varieties defined by I and II are isotopically equivalent.

Lemma 4. The varieties defined by (I) and (II) are not nomially equivalent.

PROOF. Suppose that the lemma is not true. Let $\langle A, \omega \rangle$ be a countably free groupoid satisfying (I) and let $\langle A, \omega' \rangle$ be nomially equivalent to $\langle A, \omega \rangle$ and suppose that $\langle A, \omega' \rangle$ satisfies (II). Since endomorphisms of $\langle A, \omega \rangle$ and $\langle A, \omega' \rangle$ are the same it is easy to see that $\langle A, \omega' \rangle$ is a free abelian group. Let k_1, k_2 be integers such that $xy\omega = k_1x + k_2y$ for all $x, y \in A$. Here we have used the usual operation of addition in an abelian group and usual notation. If we substitute $xy\omega = k_1x + k_2y$ in (I) and use the fact that $\langle A, \omega' \rangle$ is free we find that $k_1k_2 = \pm 1$. This implies that $\langle A, \omega \rangle$ satisfies (II) or the law

$$(II^*) y = zy\omega zx\omega \omega x\omega.$$

But $\langle A, \omega \rangle$ is free. Hence (I) implies (II) or (II*).

However there exist groupoids that satisfy (I) but not (II) or (II*). An example is the groupoid consisting of four elements 0, 1, 2, 3 in which the multiplication is defined by the table:

	U	1	2	3
0	0	3	2	1
1	3	0	1	2
. 2	2	1	0	3
3	1	2	3	0

This contradiction proves the lemma.

Incidentally the law (I) has the interesting property that if $\langle A, \omega \rangle$ satisfies (I) then so does the dual groupoid $\langle A, \omega^* \rangle$ where $xy\omega = yx\omega^*$ for all $x, y \in A$. The law (II) does not have this property.

In the end I would like to thank Professor B. H. NEUMANN for his encouragement

during the writing of this paper.

References

[1] R. H. BRUCK, Survey of binary systems, Berlin-Göttingen-Heidelberg 1958.

[2] G. Higman, and B. H. Neumann, Groups as groupoids with one law, *Publ. Math. Debrecen* 1 (1952), 215—221.

(Received June 20, 1968.)