Two isotopically equivalent varieties of groupoids

By AHMAD SHAFAAT (Portland)

We shall say that a grupoid (4, ®") is nomially derived from a groupoid {4, o)
if there exists a w-word w(x, ») in x, y such that xyw” = w(x, y) for all x, y€ A.
If further (A4, @) is also nomially derived from (A, ®") we shall say that (4, w),
(A, ") are nomially equivalent. Groupoids (4, ), (4, ®") will be called isotopically
equivalent if each is an isotope ([1]) of the other.

Two classes K, , K, of groupoids will be called nomially (isotopically) equivalent
if every groupoid in one class is nomially (isotopically) equivalent to a groupoid
in the other.

Nomial and isotopical equivalences can be defined for arbitrary classes of
universal algebras of a given species without any difficulty.

Examples of nomially equivalent varieties of algebras are well-known. Thus
varieties of Boolean algebras and Boolean rings are nomially equivalent.

In this note we prove that the variety of groupoids defined by the law
y = Xtoxzoyzootoo is isotopically equivalent to the variety of abelian groups.

Theorem. The varieties of groupoids defined by the laws

(1 Yy = Xtw XZ0) Yz GIoo
and
(11) V= X XZ0 yz0) 00

are isotopically equivalent but not nomially equivalent.
The PROOF of the theorem is divided into the following four lemmas.
Lemma 1. A groupoid satisfving 1 is a quasigroup.
PRrROOF. In I replace 7 by y,zm, y by y, and x by xzw. We get the law
Vi = XZIO) Y, 20 WXZIO) Z0Y, 20 0, 20 O0).

If we write w for the word xzw zwy,zw wy,z0 » and u for the word xww then
this last law together with I gives

Vi = XWO XZ0 V20 OWE = XWO P, 0 = UYO.

Hence I implies that Yy,, y,3¢ (ty,@=y,). This can be expressed by saying that
the equation 7y, @ = y, has a solution in 7 in every groupoid satisfying I for all y,, y,..
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The equation y, te =y, is also solvable. This can be seen as follows. We have just
proved that we can find x, ¢, such that xr,w=y,. Then, by I,

ViXZ0 y,Z00 oo = Y,

and if we put t = xzm y,zm ot,® we have y, 1o =y,.
We now prove the ‘cancellation laws’. Let ¢, v, ¢, be such that 7, yo =1, ym.
Then, by (1),

= Xl Xyw 1 yo ofn 0 = Xl Xyo L yo olo o = 1,

and the right cancellation law holds. Next let 7., y, 7, be such that yf, 0=yl .
Find x, z, y,, y, such that y=xzw, 1, =y, zo, t,=y,zo. Then

Vi= Xlo X2 V20 @Olow = Xl YL o oo = X0 VLo oo =
= Xl XZW Y, Z0 W W ¥,

so that 7, =7, and the left cancellation law also holds. This completes the proof
of the lemma.

Lemma 2. The law (1) is equivalent to the following statement. There exists e such
that for all x, y, z

(i) xew ew = x,
(ii) xzm yzo o = xXyo ew,
(iii) xew xyw @ = y.
Proor. I implies (i)—(iii). We have, by (I)
X = Xl X20 XZ00 (0.
By Lemma 1 xze can be any element 1, for suitable z. Hence
(iv) x= xt,o tt,o too, tor all X fy. L

This gives
XX = XX )X Xt mw

and if ¢ is such that xxo 1o =y,
XX =yym=e, some fixed element.
We can now write (iv) in the form

X = Xxlw etm .

In the last equation if 7 is taken equal to e we arrive at (i).
To prove (ii) we note that

Y = X0 XZ,0 P20 Wl @ = XIW XZ,0 YZ,0 olo 0.

Hence by Lemma 1

XZ W V2,00 = XZ,0 V2,0 ©



Two isotopically equivalent varieties of groupoids 107

so that xzw yzo 0 = xyo wyy o = xyow ew.
By (I) and (i)
¥ = Xew Xyw yyo wem ) = Xew Xyw .
This proves (iii).
Now we show that (i)—(iii) imply (I). We have

X1 Yzo Yz OIow = Xte Xym emt e , by (i1) of Lemma 2
= Xew Xyw ewe mw , by (ii) of Lemma 2
= Xem Xyw o . by (i) of Lemma 2
=y , by (iii) of Lemma 2

Hence 1 holds and the lemma is proved.

Lemma 3. A groupoid (A, ®) satisfies (1) if and only if (A, ") satisfies (II)
where

(1) xyo=xyw'y, for all x,ycA,

where xyw’ = xyw xxo o for all x, y € A and v is an involution of (A, »’). (We recall
that y is called an involution if y is an automorphism and y? is the identity map.) Further
a groupoid (A, ") satisfies (1) if and only if (A, ») satisfies (1) where

(2) xyo' = xyo xxo o  forall x, ycA.

PROOF. Part 1. Let (A, o”) satisfy (II) and (4, @) be defined by (1). Then (4, w)
satisfies (I). For,

Xl xXzw yzm oto o

=xtw" yxz0'y yzo'y o'y to'y 0'y, by (1)
= Xt xz20" yzo' o'to’ o, since y is an involution
= -],"

In this last step we have used the result [2] that II characterizes abelian groups in
terms of the operation of subtraction.

Part 2. Let (A, o) satisfy (I) and @ be defined by (2). Then (4, @) satisfies (1I).
For by the proof of Lemma 2 xxw =e for some e and for all x in 4 and hence

xxzw' yz w'o'o’

= XX Z0) ewyz wew wewwe : by (2)

= X XZO VI Wew eww ew A by (ii) of Lemma 2
= X XZO YZ) wew 7 by (i) of Lemma 2
= Xew XI() VI Wew ; by (ii) of Lemma 2
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Part 3. Let (A, w) satisfy (I) and let (4, ®") be defined by (2). We show that
(1) holds for some involution y of (4, w’). Define y by xy = xew where e is the con-
stant value of xx in (A4, w). Then y is an involution of (4, ). For

xXyw'y = Xyw ewe @
= Xew yew wew, by (ii) of Lemma 2
= XYy ywe @ = xyy Y0’

and
Xyy = Xew ew = X, by (i) of Lemma 2.

The involution y satisfies (1); xyw'y = xyw ewe w = xyw, by (i) of Lemma 2.

Part 4. Let (A, o) satisfy Il and (4, w) be defined (1). We show that w, @’
are related by (2). This is easy:

XYm XX00 = Xyo'y xxo'y o'y = yxo’ xxo' 0" = xyo'.

Here we have used the fact that @’ is an operation of subtraction in an abelian
group and the assumption that y is an involution of (4, »).

The proof of the lemma is complete.

We observe that Part 3 of the proof of Lemma 3 shows that if {4, ) satisfles 1
and o’ is defined by (2) then (A4, »") is an isotope of (A4, w). In view of this remark
Lemma 3 shows that the varieties defined by 1 and 11 are isotopically equivalent.

Lemma 4. The varieties defined by (1) and (11) are not nomially equivalent.

PrOOF. Suppose that the lemma is not true. Let (4, ) be a countably free
groupoid satisfying (I) and let (A, ®") be nomially equivalent to (4, ) and suppose
that (A, ") satisfies (11). Since endomorphisms of (4, ) and (A, ®") are the same
it is easy to see that (4, @) is a free abelian group. Let k,, k, be integers such that
xyw = kyx+kyy for all x, y€ A. Here we have used the usual operation of addition
in an abelian group and usual notation. If we substitute xyw =k, x +k,y in (I) and
use the fact that (4, ") is free we find that k k, = £ 1. This implies that (4, w)
satisfies (II) or the law

(I1%) Y = Zym ZX0w OXO.

But (A, w) is free. Hence (I) implies (II) or (II*).

However there exist groupoids that satisfy (I) but not (11) or (I1*). An example
is the groupoid consisting of four elements 0, 1, 2, 3 in which the multiplication
is defined by the table:
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This contradiction proves the lemma.

Incidentally the law (I) has the interesting property thatif (A4, ) satisfies (I) then
so does the dual groupoid (A4, *) where xyw = yxw* for all x, y€ A. The law (II)
does not have this property.

In the end I would like to thank Professor B. H. NEUMANN for his encouragement
during the writing of this paper.
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