On Symmetric G-Differential and Convex
Functionals in Banach Spaces

By SLAVOMIR BURYSEK (Prague)

The problems concerning the existence of extreme points of nonlinear functionals
belong to the very important problems of functional analysis. Let us mention here,
for example, the variational methods for solving equations with linear and non-linear
operators ([4]. [6], [10], [11], [12], [13], [14]), critical points and branching points,
eigenvalues and eigenvectors of operators which are important for applications
to the solutions of integral and differential equations, critical tension problems,
eigenswings, optimal control problems etc. ([6], [10], [12], [14]). It is well-known
that, under suitable hypotheses, convex functionals have extreme points. It would
be therefore very useful to establish some criteria for functionals to be convex.
Havings this purpose in mind we introduce a rather general notion of differentiability
of operators in Banach spaces, the so-called ,,symmetric G- and F-differentiability™,
to deduce some new criteria for the convexity of functionals.

Let X, Y be real Banach spaces, let L(X, Y) denote the space of all continuous
linear operators from X to Y and let Y’ denote the conjugate space to Y. The symbol
(y, €’) denotes the value of the continuous linear functional ¢’€ Y’ at the point
yvevy.

1. Symmetris G- and F-differential and their properties

Definition 1. 1. We shall say that an operator F(x) from X to Y has the
symmetric G-differential V, F(x,. /) at a point x,€ X if there exists for any (but
fixed) h€ X the following

s F(xq+ th)— F(xo—th)

- = V,F(xo, ),

where t is a real number.

The operator F(x) will be called symmetrically differentiable in an open set
M c X if F(x) has the symmetric G-differential at every point x € M. The G-differential
(Gateaux’s differential) will be denoted by VF(x,. /)

i.e., VF(xo,h) = lim F(xo+1h) - F(xo) |
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Definition 1.2. We shall say that an operator F(x) from X to Y has
the symmetric F-differential d, F(x,, h) at a point x, € X if there exists a continuous
linear operator d, F(x,,.)€L(X, Y) such that

. |F(xg+h)— F(xo—h)—2d,F(xo, h)|
lim —_— — =
1hil=0 Al
The F-differential (Fréchet’s differential) will be denoted by dF(x,, h) i.e., dF(x,. h)
1s an operator dF(x,,.)€L(X, Y) such that

fiok | F(xo+h)— F(xo}—dF_(fos h)_;'f_ e

1hi—~0 [|/]]

0.

0.

These definitions imply the following

Theorem 1. 1. Let the operator F(x) from X to Y have the symmetric F-dif-
ferential d,F(x,,h) (resp. F-differential) at a point x,€X. Then F(x) has also
the symmetric G-differential V F(x,, h)=d, F(x,, h) (resp. G-differential VF(x, h)=
=dF(x,, h) at this point.

Proporisiton 1. 1. The existence of the symmetric G-differential (resp.
G-differential) does not imply the existence of the symmetric F-differential (resp.
F-differential) as shown in the following example

hyh3

x, x3
h}+h3’

F(x) = P o for x=(x;,x;)#(0,0), F(0)=0. Then VF(0,h) =
X1+ X3
h=(h,,h,), but dF(0, /) does not exist.

Theorem 1. 2. Let the operator F(x) from X to Y have G-differential at the
point x, € X (resp. F-differential). Then F(x) has also the symmetric G-differential
V. F(xq, h)=VF(xqo, h) (resp. the symmetric F-differential d,F(x,, h)).

Proor. Consider the following identity

Flxo+th)—F(xo—th) _ 1 {F(xﬂ""”)_“-"ﬂ) - F(xo_”")_ﬂ"'o)}
2 a1 N t L= SRt

Then for 7 —~0 we obtain 1{VF(x,.h)+ VF(xy, h)} = V,F(xy,h). The assertion
concerning the F-differential follows analogously.

Proposition 1.2. The opposite assertion does not hold in general, because,
Jor example, the functional f(x)=|x|, x€X has V_f(0, h)=0, but Vf(0, h) does not
€xist.

Proposition 1.3. Ler the G-differential of the right of F(x) V, F(xy,h) =
F(xo+th)y—F(x,)

= r]i[)n - and the G-differential on the left V_F(xq,h) =
= 'lilg‘l F%o+ ﬂ? L exist. Then there exits V,F(xq,,h) and V,F(xy,h) =

== —;—{V+ F(xo-. h)'I‘V—-F(xO’ h)}



On Symmetric G-differential. . . 147

Proposition 1.4. V_ F(x,, h) is homogeneous in the variable heX (i.e.,
V F(xy, th) = TV F(x,, h) for any real number t), but V F(x,, h) is not additive
in he X in general. Tn the case it is additive, we denote it by D, F(x,, h).

Definition 1. 3. Let the operator F(x) from X to Y have the symmetric
G-differential (G-differential) at the point x,<X and let V,F(x,,.)€eL(X,Y)
(VF(xy..)€L(X,Y)). Then we denote V,F(x,,h) by F/(xo)h (VF(xy,h) by
F'(x4)h) and call the operator F;(x,)(F(x,)) the symmetric G-derivative (G-deriva-
tive) of the operator F(x) at the point x, ¢ X. The symmetric F-derivative ( F-deriv-
ative) is defined analogously.

Definition 1.5 An operator F(x) from X to Y is called continuous
on every segment of a convex set M — X if the function (1) = F(x + th) is continuous
abstract function of the real variable 7€ [0, 1] for any fixed x, x+h€ M.

The following ““mean value theorem™ for symmetrically differentiable operators
will have the leading role in the next investigations.

Theorem 1.3. Let the operator F(x) from X to Y be continuous on every
segment of a convex set M C X and let F(x) be symmetrically differentiable in M.
Then for any x,x+héeM there are real numbers 1,71, ¢ (0, 1) such that

(VsF(x+1,h h)e") = (F(x+h)—F(x), e) = (V,F(x+1,h, h), )
for any ecyY’,

Proor. Consider the function f(r) = F(x+th) of the real variable 7€ [0, 1]
for fixed (but arbitrary) x, x+h€ M. Then we obtain
.mF(xJ-rh+uh)—F(x+rh— uh)

ft+u)—fe—u) _
2u T =0 2u

filr) = lim = V.F(x+th, h)

and the real function g(¢) = (f(1),¢e"), e'€Y’, of the real variable 7€ [0, 1] has
the symmetric derivative g.(r) = (f,(2), €") for any 1€ (0, 1). According to [1] (the
mean value theorem) there exist real numbers t,, 7, € (0, 1) such that the following
inequality holds

g:(t)) = g(1)—2(0) = g(,).
This inequality proves our theorem.

Corollary 1. 1. Let the assumptions of Theorem 1.3 hold. Then for any
X, x+h<M there exist real numbers 7,, 7, £(0, 1) such that

IViF(x+t b, b)) = | F(x+h)— F(x)| = |V, F(x+1,h, h)|.

ProoOF. Using the corollary of the well-known Hahn-Banach theorem (see,
for example, [9], p. 177) we can choose e, f'< Y” such that |¢’|=|f’]|=1 and

(ViF(x+t.hh),e)=|V.F(x+t,hh)| = (F(x+h)—F(x), e) =
= |F(x+h)—FX)|-lel = | F(x+h)—Fx)|;
F(x+h)—F(x),f") = | F(x+h)— F(x)| =(V,F(x+th,h),f") =
|V F(x+130, W) -S| = || V. F(x+15h h)].
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Corollary 1.2. Let Y be the space of real numbers and let the assumptions
of Theorem 1. 3 hold. Then there exist real numbers 7,, 7, € (0, 1) such that

V.F(x4+t,hh) = Fix+h)—F(x) = V,F(x+t,h h)
for any x, x +he M.

Corollary 1.3. If the operator F(x) has the symmetric G-derivative at any
point x€ M and if F(x) is continuous on every segment of M then F(x) satisfies
the Lipschitz condition on M, i.e., for any x, x+h€ M there exists a real number
7€ (0, 1) such that

| F(x+h)— F(x)| = || F{ (x+th)| - [|A]l.

Theorem 1.4. Let the operator F(x) from X to Y be continuous on every segment
of a convex set M — X, let F(x) be symmetrically differentiable on M and let V F(x, h)
be a continuous operator in the variable x <M on every segment of M for any but
fixed he X. Then F(x) has also a G-differential at every point x¢ M and VF(x, h)=
=V, F(x, h).

PrROOF. Let x, x+the M, t =0 be a real number. According to Theorem 1.3
there exist real numbers 7, 7, € (0, 1) such that

(V F(x+1,th, th), e = (F(x+th)— F(x),e") = (V,F(x+1sth, th), e")

for any e’ € Y’. Using Proposition 1.4 we obtain

(V,F(x+t,th,h), e) = <£(x+ ri:)_—f_(x) s e’>

= (V.F(x+7tyth,h),e’) for >0
_F(x+rlr)—F(x) ;

3 > = (V,F(x+1t,th,h),e¢) for t<0

[reeimmer = (

The real function (V,F(x+ tth, h), e’) is a real continuous function of the variable
7€ [0,1] and therefore we can choose a number 75 € [0,1] such that (V, F(x + t3th, h).e") =

F = \ y
=< (x+ti:) F(x),e') and consequently we have }in&{V,F(x-i—r;rh, h),e) =

= lim < .F.("_’L_”;)-__F itiN e’> s <ling i ”"r) = e’> . It follows that
(V,F(x,h),e’) = (VF(x, h), e)foranye’ € Y and thus V,F(x,h) = VF(x, h).

Theorem 1. 5. Let F(x) be an operator from X to Y and let U(x,) be a convex
neighbourhood of the point x, € X such that F(x) is continuous on every segment of
U(x,) and symmetrically G-differentiable on U(x,). Then the following assertion
holds: If the symmetric G-differential V F(x, h) is continuous at the point x, then
F(x) has also a G-differential VF(x,, h) = V,F(x,, h) at the point x,.

PrROOF. Let x+1h U(x,), t#0 be a real number. According to Theorem 1. 3.
there exist real numbers 7,, 1, £(0, 1) such that

(Vi F(xq+1yth, thy—V F(xq, th), ) = (F(xq+th)— F(xq)— VF(xq,th), e =
= (V F(xg+15th, thy—V,F(x,, th), e")
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for any e’ ¢ Y’'. Using Proposition 1.4, and the same corollary of Hahn-Banach
theorem as in the proof of Corollary 1. I, we can write

| P+ h) ~ Fxo)

P _"VsF(xOsh)H =

V.F(xq+1t,th, h)—V,F(xo, h)|| =

= |V, F(xo+15th, h) =V, F(xq, h)| for t=0, or |V,F(xo+ 1 th, h)—V,F(xq, h)| =

| F(xo+th) —F |

= || ECt M =FC) _y pey, )| = WV, Fxo + a1, )=V, Fxo, B
Il

for =0, and the continuity of V,F(x, ) at the point x, implies the assertion of

the theorem.

It is obvious that we could assume in Theorem 1. 5 only that !irg V F(xo+th, h =
= V,F(x,, h) for any fixed 7€ X in place of the continuity at x,.

The following theorem gives a sufficient and necessary condition for the existence
of the symmetric G-derivative.

Theorem 1. 6. Let the operator F(x) from X to Y have the symmetric G-dif-
ferential V _F(x,, h) at a point x, € X. F(x) has the symmetric G-derivative at the
point x, (i.e., V F(xq,h) = F,(xo)h, he X, F,(xo)€L(X, Y)) if and only if the
following conditions hold

1. For any he X, | h| =1 there exists a positive real number 5(h) =0, such that
for every real number t satisfying |t| = d(h) the relation || F(x,+ th)— F(xq—th)| =
= 2C|| th| holds, where C =0 is a constant non-depending on h;

2. A} oy F(xo) = F(xo+thy +1thy) — F(xq+thy)— F(xo+thy) +
+ F(xq—1th,)+ F(xq—thy) — F(xg —thy — th,) = o(t)
for any fixed h,, h, € X.
Proor. Let F,(x,) exist. Then

‘ er {F(xo +1th)— F(xo— rh)} = ||Fs(xo)h + 2(xq, th)|,

where :
!in{‘)l :—E-(x"!f = = 0 for any h< X. Therefore
}L“g 2 {F(xo+th)— F(xo‘”'?)} | = |E(xo)ll Al <(IFs (xo)ll + 1) 4]l

and we can choose d(h) =0 such that for [¢|< d(h) the relation

| F(Xo +thy— F(xo—th)]| < 2111(I Fuxo)ll + 1)IAl = 2C]|ehl,
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holds and 1) is satisfied. On the other hand, for every ¢ =0 and any fixed h,, s, £ X
there exists d,(¢) =0 such that for every real number ¢ satisfying |7| =4, (¢) we have

: 1
F(xo)hy = 5 {F(xo+1th))— F(xo—th)}+a, (xq, thy)
A 1
F(xo)h = 5. {F(xo+thy) — F(xo—thy)} + %5 (X, thy)
Fy(xq)(h, +hy) = 21! {F(x0+zfr, +thy)~ F(x,—th, —:hz)}+a,(xo, th, +th,),

where | (xo, h)| < ;; i=1,2,3. Using the additivity of F(x,), we obtain

) B g e : :
21?| A3 iy tis F(X0)| = |1ty + 2, — 3] = & This shows that the condition 2) is satisfied.
On the contrary, let 1) and 2) hold. Then
| F(xo+ th)—F(xq—1th) || 2C ||th|
L e, LA B e St R ) 2 | BT 1 e ClUnil
ViF(xo, W)l = lg_rg_ 5 = lim 31| Cllh|

and thus V,F(x,, h) is continuous in A at the point #=0. Using Proposition 1. 4,

we get the boundedness of the operator V,F(x,, ) on each ball K, = {h<X,

[lA]l = r: r=0. In fact, for some given constant M =0 there is a é =0 such that for

| Al =0 we have | ¥V F(x,, h)| =M. Then for | A =r. r=0we obtain | V, F(x,,h) =
5;‘:]' r _ Mr

— VSF(XO,T 3= 5 Further more

WV F(xo,hy+hy)—ViF(xq, hy)—V,F(xy, b)) = ':Af.m.‘m; F(xo)l +¢

1
2{” Hn
for every £=0 and each real number ¢ sufficiently close to zero. According to 2)
we obtain the additivity of the operator V, F(x,. #) in h and, consequently, V F(x,. h)
is a continuous linear operator in the variable #< X, and our theorem is proved.

Theorem 1. 7. Let the operator F(x) from X to Y be continuous on every
segment of a convex neighbourhood U(x,) X of the point x, € X, symmetrically G-dif-
ferentiable on U(x,) and let the abstract function f(t) = V F(x,+ th, h) be continuous
at the point t =0 for any fixed hée X. Then F(x) has G-derivative F'(x,) at the point
Xo if and only if the conditions 1) and 2) of Theorem 1. 6 are fulfilled.

PROOF. It runs analogously as the proof of Theorem 1. 5 and 1. 6.

Theorem 1. 8. Letr the operator F(x) from X to Y be continuous in a neigh-
bourhood U(x,) of the point x, € X and let F(x) have the symmetric G-differential
ViF(x, h) which is continuous at the point x, for any fixed hc X and continuous at
the point h=0 in the variable h. Then F(x) has a G-derivative F’(x,) at the point x.

ProOOF. According to Theorem 1. 5 there exists VF(x,. #) and. using [14] (Theo-
rem 3. 1, p. 56), we get the above assertion.
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Theorem 1.9. Let the operator F(x) from X to Y satisfy the following assump-
tions

a) There exists a convex neighbourhood U(x,) of the point x, <X such that
F(x) is continuous on every segment of Ul(x,)

b) there exists the symmetric G-derivative F,(x,) which is continuous at the
point x;.
Then the operator F(x) has the symmetric F-differential d F(xq, h) = F/(x,)h at
the point x,.

ProOF. Let x,+he U(x,) and let us denote
{w(xy, h), e by {F(xq+h)— F(xo—h)—2F,(xo)h, e’y for an arbitrary e’ € Y.
According to Theorem 1. 3 there exists a real number 1< (0, 1), such that

{axg, h), €) = (Fi(xo—h+2th, 2h), €’) —{ F(xo)(2h), €").

Using the corollary of the Hahn—Banach theorem mentioned above, we can choose
e’ cY’, |le]=1 such that

(@(xy, h), &) = ||(xq, h)| = || F(xo —h+2th)(2h) — F(xo)(2h)]| - | €’ =
= 2|| F{(xo —h+2thyh— F,(xo)h|| = 2| F,(xo—h+2th)— F,(x,)| - | Al.
Therefore (using the continuity of FJ(x) at x,) we obtain

lleo (xo, M _ lim 2| F,(xo—h+2th)—F,(x,)| = 0.

1l ~0 A 1l =0

Thus d, F(x,, h) exists and by the application of Theorem 1. 1 we obtain F,(x,)h =
= d, F(xq, k).

2. Convex functionals

In this section we mention some properties of convex functionals and show
a certain generalization of the well-known criteria of the convexity [5] using the
symmetric differential.

Definition 2. 1. A real functional f(x) defined on a convex set M — X will
be called convex on M (quasi-convex on M) if for arbitrary x, y€ M and for any
real numbers 4 =0, u=0, A+ u = 1 the following inequality holds

(n JAx+uy) = Af(x)+pf(y)
(1) fUx+py) = max [£(x). /(»)]).

We shall say that f(x) is strictly convex (strictly quasi-convex) on M if in (1) (in (1"))
*<" holds for any =0, u=0 and x# y. The functional f(x) will be called convex
on an open set D X if f(x) is convex on every convex neighbourhood in D.

Definition 2. 2. Let F(x) be an operator from X to X’. F(x) is said to be
monotone (strictly monotone) on a set McX if (F(x+h—F(x),h =0
((F(x+h)— F(x). iy = 0 for h+=0) holds for any x, x+héeM.
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Definition 2. 3. A functional f(x) defined on X will be called lower (upper)
semi-continuous at a point x, € X if lu:nj(\‘) = f(xo) (T_ m f(x,) = f(x,)) for any

sequence {x,} € X, x,—~x,. The functlonal f(x) will be called weakly lower (upper)
semi-continuous at x, if these inequalities hold for any sequence {x, } € X converging
weakly to x,.

Lemma 2. 1. A real functional f(x) on X is convex on a convex set M X if
and only if the function @(t) = f(x+th) is a convex function of the real variable
t€[0, 1] for any fixed x, x+heM.

Proor. Let ¢(1) be a convex function. Then

@(at+ fs) = ap(t)+ Pe(s) for any 1,5€[0,1] and each =0, =0, a+f = 1.
Hence
(%)  fx+ath+psh) = f(a(x+th)+ p(x+sh)) = af(x+ th)+ Bf(x + sh).

and for 1=0, s=1 we obtain f(ax+f(x+h)) = of(x)+pf(x+h) for arbitrary
x,x+heM. Conversely, if f(x) 1s a convex functional, then the inequality (%)
gives the convexity of the function ¢(r).

Lemma 2.2. A real functional f(x) on X, which is upper semi-continuous on
every segment of a convex set M C X, is a convex functional on M if and only if

Ix+y 1 1
J[";_"] = /() + f(y) for any x, yE M.

ProoF. If f(x) is convex then (2) is satisfied evidently. Assume that (2) holds
and (1) does not hold. Then the function Y () = f(ax + (1 —a2)y) —af(x) — (1 — )zf(»)
is an upper semi-continuous function of the real variable 2€ [0, 1]. Denote M,=
= max tf/ («) and let x, be the smallest « such that y(x) = M,. Then M;,=0 and

:zo E ({) l) We can find a real number 0 =0 such that (2, — 9, %o+ 9) < [0, 1]. Then
f_'_q_l;x = (2o—0)x+(1—2y+ )y, y* = (2g+d)x+ (1 —xy—0)y we obtain

.f[ = ] Slogx+(1 —10)}) = '—f((mo_b)t+(] _1°+6)y)

(2o +0)x+(1—25—d)y).

t».)--

¥ (2o — 0) + (29 +0)
2

according to (2). Therefore Y (x,) = < M, and we arrive

to a contradiction which proves our lemma.

Theorem 2. 1. Let f(x) be a real functional on X, let f(x) be continuous on every
segment of a convex set M X and let f(x) have the symmetric G-derivative f](x)
at any point x ¢ M. Such an f(x) is a convex functional on M if and only if the operator
fJ(x) is monotone on M.
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ProOF. Let x,y,zé M,a=0, =0, 2+ f = | and let f/(x) be motonone on M.
According to Theorem 1.3 (Corollary 1.2) there exists a real number 7€ (0, 1)
such that

fx) =) = (f(z+1(x—2)),x-2) = 1_ FKE+t(x-2)-£@), t(x=2)+

+(f;(2), x—2z). Hence f(x)—f(2) = (f{(2),x—2).

Analogously, we obtain f(y)—f(z) = (f{(z). y—z). From these inequalities it
follows

2f(x)+BS(y) = af(2)+ Bf(2) + /i (2), 2(x —2)) + (fi(2), B(y—2)).
Let us put z = ax+ fiy. Then
af (x) + BA(¥) = (a+ P)flox + By) + (f;(2), ax) = (£ (2), 2x + fy)a+
+{fl (@), By)—{fI(2), ax+ By) B = flax+ By) +
+{f{(2), ax+ By) — (fJ(2), ax+ By) = flax+ By).

Hence, f(x) is a convex functional on M. On the other hand, if (1) is satisfied, then,
according to Lemma 2. 1, the function @ (1) = f(x +th) is a convex function of the
real variable 7€ [0, 1] for any x, x +h€ M. Using [7] (Lemma 1. 1, p. 13), we can
show that ¢ (7) has at any point 7 € [0, 1] left- and right-hand non-decreasing derivative
and, following Proposition 1. 3, there exists ¢ (7) = (f, (x+th), h) and it is non-de-
creasing in the interval [0, 1]. Hence ¢(1)—@U0) = (fi(x+h), h)—{f(x), h) =
= (f{(x+h)—f;(x), h) = 0, and therefore f/(x) is a monotone operator on M.

Theorem 2.2. Let f(x) be a convex functional on an open set w < X. Then f(x)
is symmetrically G-differentiable in « and, moreover, the following assertions hold:

a) If V,f(x, h) is continuous at the point x,<w in the variable x for any he X
and if it is continuous at the point h=0 in the variable h, then there exists the G-deriv-
ative f’(x,) at the point x,.

b) If f(x) is continuous at x, then there exists the symmetric G-derivative f,(x,)
at xo and f;(xo)h is weakly lower semicontinuous in h on each bounded open convex
subset E of X.

Proor. It follows from the second part of the proof of Theorem 2.1 that
Y. I h) = .‘]Z {(Vif(x, )+ V_f(x, h)}. To prove a) we use Theorem 1.5 and the

convexity of V., f(x,, h) = Vf(x,, h) as well as that of — V_/f(xq, h) = — V/(x,, h).
Then Vf(x,, h) must be an additive operator in /1< X. Indeed, according to Lemma
2. 2 we obtain

V,,f[_\‘o, B -;k] = % Vi(xo, h+ k) = ; {Vf(xo, )+ Vi(xg, k)}

h+k | 1 ; .
V_f[xo, -'--; ] - Vf(xq, h+k) = 5 {l-’j(xo, )+ Vi(x,, k)}.
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Hence Vf(x,, h+k) = Vf(xy, h)+ Vf(xy, k). Using [9] (Theorem 1, p. 125), we
deduce that Vf(x,, /) is a continuous linear operator in .Ah Let f(x) be continuous
at x,. Then according to [8] (Theorem 8. p. 749). and using the inequality
Vif(xo, h) = V, f(xq, h), we can easily deduce the assertion b).

Proposition 2. 1. The functional f(x)=|x| has (according to Theorem 2.2)
the symmetric G-derivative at any point x € X. If X is a Hilbert space, then V f(x, h) =

= Vf(x, )= (x)h =

|'|“JE!“| Jh for x=0: V f(0, h)= 0, where (.,.) denotes the inner
product in X.

Lemma 2. 3. Let ¢(t) be a real function of the real variable t< [a. b). @(t) is
a convex function on [a, b] if and only if the function Y (1) = @(t)+et? is convex
for any real number &=0.

Proor. Let ¢(7) be convex and let 1 +5.7—5¢ [a, b]. Using Lemma 2.2, we
obtain

Ye(t+5)+ Y (t—5) =2y, (t) = @t +5) +@(t—5)—2¢(t) + 25 = 0.

Since @(r) is convex, it is continuous on [a, b] and thus (¢) is also continuous
on [a, b]. According to Lemma 2. 2 ,(7) is convex. On the contrary, let ¢,(r) be
convex forany e=0. Pute=1/n,n=1,2,.... Then ¢(1) :Jim Y 1(r) alsoisa convex

function on [a, b] as a limit of convex functions.

Definition 2.4. We say that an operator F(x) from X to Y has at x, £ X
upper (lower) symmetric G-differential of the second order Vi F(x,, /) (VIF(xg, h)) if

EZF(.\'O, h} _ FEF(K’Q"Lfh)—LF(?'g—'-ﬂl)—2F(xo)

V:2F(xo,h) = “_mF—(xo '—{#)—4_—1:—(1'2 L -72”30)]
t—=0 I
We say that F(x) has at x, € X a symmetric G-differential of the second order
VZF(xo, h) if VEF(xo, h) = V2F(xy, h)=V? F(xq, h). If V2 F(x,, h) is a homogene-
ous polynomial operator of the second order in #£ X, then we put V7 F(x,, h) =
= F.(x,)(h)? and the operator F, (x,) wil be called the second symmetric G-derivative
of the operator F(x) at the point Xx,.

Definition 2. 5. We say that an operator F(x) from X to Y has at x,< X the
symmetric F-differential of the second order d? F(x,, h) if

lim IF(xo +h) + F(xo — h) — 2F (x,) —d?F(xo, h)|

Wil —0 [ 1] -

=0,

where d2F(x,, h) is a homogeneous polynomial operator of the second order in
heX.

Proposition 2. 2. The existence of the symmetric F-differential of of the second
order implies the existence of the symmetric G-different-of the second order. The oppo-
site assertion is not true generally.
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Proposition 2.3. The existence of V}F(x,, h)(d}F(x,.h)) does not imply the
existence of V,F(xq, h)(d,F(xo.h)) generally as shown by the following example

F(t)=1sin {12— , t#0: F(0)=0; where 1 is a real variable. Then V2 F(0,h)=0,
but V F(0, h) does not exist.

Theorem 2. 3. A real functional f(x) on X which is upper semi-continuous on
every segment of a convex set M X, is convex on M if and only if V2f(x,h)=0
for any x <M, he X.

Proor. If f(x) is convex, then, according to Lemma 2. 1, the function f(x + th)
is a convex function of the real variable 7¢ [0, 1]. From Lemma 2. 2 we obtain

S(x+th)+f(x—1th)—2f(x) = 0.

Hence V2f(x, h)= 0. Let us assume that V2f(x, #) = 0. It is sufficient to prove that
the assertion holds only if V2f(x, h) = 0. Indeed, if it is really so, then for the function
W, (1) = f(x+th) +&t* we obtain §/(0) = V2f(x. h)+2& = 0 for any £ =0. Accord-
ing to Lemma 2. 2 the function f(x + t/) must be a convex function. Let V2f(x. h) = 0.
If the functional f(x) is not convex on M, then there exist x,, xo+/, € M such
that the function ¢4 () = f(x,+ thy) is not convex on the interval [0, 1] and, there-
fore, the function

g(1) = @o(t) + (1 =1)(@o(1) —06(0)) — 0o (1) = (1) — 10 (1) — (1 —1)p4(0)
takes its positive maximum on the interval [0, 1]. Let max g(r) =g(7,). Then 7,€(0, 1)
te[o, 1]
because g(0)=g(1)=0. It is obvious that g/(z,) =0, but g./(1,) =@o,(1,). Hence,
for x, = x5+ 1yh,, we obtain

[/ X1+ o) +/ (X1 = tho) — 2f(x1)
=0 !

[IA

0.

Following the Definition 2.4 V2f(x,, hy) =0, and this contradiction proves the
assertion of our theorem.

Corollary 2. 1. Let f(x) be a continuous real functional having non-negative
upper symmetric F-differential of the second order at any point x of the open set
@ C X. Then f(x) is a convex functional on w.

Definition 2. 6. An operator F(x) from X to Y will be called **F-smooth™

at he point x,€ X if
m Mo+ R)+F(xo- B)—2F(xoll _
Ihi-+0 A -

The operator F(x) will be called F-smoth in an open set Dc X if it is continuous
on D and F-smooth at any point x¢€ D.

0.

Definition 2. 7. An operator F(x) from X to Y will be called “*G-smooth™
at the point x,€ X if

lim Flxoh 1)+ E()-:-G-ir)_g(ﬂ’} = 0 for every heX.
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The operator F(x) will be called G-smooth on an open set Dc X if F(x) is conti-
nuous on every segment in each convex neighbourhood of any point x¢D and
G-smooth at any point x£ D.

Theorem 2. 4. If the operator F(x) from X to Y has the second symmetric G-
(F-)derivative at the point x,€ X, then F(x) is G-(F-) smooth at x,.

Proor. Following the Definition 2.5, we can write
F(xo+h)+ F(xq—h)—2F(x,) = FJ(xo)(h)?*+w(x,, 1),

, . o(xe, A
where :!.';.r-‘]o - !m;——- = 0. Hence

i JFGo+ M)+ Fro— M) = 2F(x)l _ 1. IF(xo) (0] + o Cro, M _

Al —0 1Al ~ Uhi—=0 Al

-y " i o @ (o, ) - 1Al
o il | . | — — - -_
= III!IIi'-I}O u'FS (xU)I| |:h.I T !”3[[2 0

The assertion on the “G-smooth™ property can be proved analogously.

Theorem 2. 5. If the operator F(x) from X to Y has G-(F-)differential at any
point of an open set D C X, then F(x) is G-(F-)smooth on D.

Proor. Let F(x) be F-differentiable in D. Then F(x) is continuous on D and,
following the Definition 1.2, we can write

m VEG+D+Fat i) =2F| _ o |F(x+h)— F) —dF(x )]

Ihli=0 |4l ~ iki~0 h

(xR — Bl — &
lim [FG=M—F)—dF(x, =) _ o o xeD.

T wico a

Thus F(x) is F~smooth on D. The proof of the “G-smooth™ property is analogous.
It is obvious that the G-(F-)smooth operator F(x) need not be G-( F-)differenti-
able but the following proposition was recently proved for the author by J. KoLomy.

Propositon 2.5. Let f(x) be a convex functional on a reflexive Banach space
X and let f(x) be G-differentiable and F-smooth at a point x,€ X. Then f(x) is F-
differentiable at x.

Theorem 2. 6. Let f(x) be a real functional on X and let f(x) be G-smooth in an
open set D X. Let, furthermore, f(x) have a local extreme at a point x,€ D. Then
the following assertions hold:

a) The functional f(x) is G-differentiable at x, and V{(x,, h)=0 for any he X.

b) If the functional f(x) is F-smooth at x,, then f(x) is F-differentiable at x, and
J'(x0)=0.
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ProOF. The functions @ (1) = f(x,+th) —f(x,), Y (1) = f(xo—1th) —f(x,) have
the same sign (i.e., both functions are positive or negative) for all 7 sufficiently close
to zero. But

lim ﬂf_)_—:w(r)

10 =~ =0, and thus lim RO

!

0;

hence Vf(x,.h) = 0. If f(x) i1s F-smooth, then the proof is analogous.

Theorem 2. 7. Let f(x) be a real functional on X and let f(x) be G-smooth on an
open set D X. Then the following assertion holds: If VZf(x.h)=0 for each x<D,
except, maybe, a countable subset E— D and for any he X, then the functional f(x)
is convex on D.

ProoF. Following the proof of Theorem 2. 3, we can assume that V2f(x, h)=0
foreach xé D—FE and he X, h#0. If f(x) is not convex on D, then there is a convex
neighbourhood U(x,) of a point x, € D such that f(x) is not convex on U(x,). Then
there exists a /iy € X such that the function ¢y(t) = f(x, + thy) is not convex on the
interval [0, 1]. Hence, the function y,(1) = @o(1) —t@y(1) —(1 —1)@y(0) has its
positive maximum on the interval [0, 1]. Since ¥,(0)=y,(1)=0, we find that

‘§?‘§1>§}¢0(:)=%(r0) where 7,€(0, 1). The same goes for the functions ,(1) =

= @o(t) —at —@y(0) if x is a real number sufficiently close to ¢y(1) —@,(0). Let
U, l(t, =rgg:§]w,(r). Then ¥ (1) =¢5,(t,)=0 and thus x, = x,+1,h,€E, since

Pos(t,) =V2f(x,. hy). Using Theorem 2. 6. we obtain y.(1,) = ¢.(t,)—2 = 0 for
any real number z sufficiently close to ¢,(1) —@,(0). Then the number of ¢, is not
countable, and thus E is no countable set. We have come to a contradiction which
proves our theorem.

3. Extreme points of real functionals and solutions of operator equations

In this section we show some applications of results mentioned above to the
problem of extreme points of real functionals on reflexive Banach spaces.

Lemma 3. 1. Let f(x) be a real quasi-convex functional on X. Let f(x) has a
strong local minimum at a point x,€ X. Then f(x) has its absolute minimum at x.

PrROOF. Let =0 be a real number such that for x € X satisfying | x —x,| = ¢
the relation f(x)=f(x,). x#x, holds. Let us assume that there exists an x, <X
such that |x, —x,| = & and f(x;) <f(xo). Then for f = !Tiv_h and « = 1 -

Xy —Xo
we obtain f(axe+px,) = max[f(xp), f(x,)] = flxp), but [ax,+x; —xf =
= PBllx, —x,ll = &, and we arrive to a contradiction.

Theorem 3. 1. Let X be a real reflexive Banach space, let M — X be a closed
convex bounded set and let f(x) be a continuous real functional on M. Moreover let,
at least one of the following conditions hold.

a) f(x) has a symmetric G-derivative f, (x), which is monotone on M and continuous
on every segment in M.
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b) f(x) is G-smooth in M and Vf(x, h)=0 for any he X and for each xc M
except, maybe, a countable subset EC M.

Then there exists a point x,¢ M such that

1) flxg) :xip{l S(x) and there are no strong local extremes of f(x) in M different

Jrom f(x,).
2) f(x) has the G-derivative f'(x,) at x, and f"(x,)=grad f(x,) =0, provided
xo; fnf JM-

ProOOF. According to Theorem 2. 1 (resp. Theorem 2. 7) f(x) is a convex func-
tional on M. Being continuous, f(x) is also weakly lower semi-continuous in M.
Being closed and convex, M is weakly closed, and, according to [14] (Theorem
9. 2), there is x,€ M such that f(x,)= 1nfj(x) (the greatest lower bound of f(x) in

M). Using Lemma 3. 1, we get 1). To prove 2), we consider at first that (according
to Theorem 1. 3) there exist real numbers 7,,7,, 7,,7,€(0, 1) such that

(fi(xo+ 1 th), th)+{f(xo+ T th), —th) = f(xo+ th)+f(xo— th) —2f(x,) =
= (fi(xo+ 1ty th), thy+{f](xo + T, th), —th)
and using the continuity of f](x) on every segment in M, we obtain

jiig F\Fo+ ) /e — 18) — 2f(xo)

-0 4

= 0.

Hence, f(x) is G-smooth at x,. According to Theorem 2.6 we get Vf(x,, h)=0
and, using Theorem 2. 2, we obtain Vf(x,.h) =f"(x,)h=0 for any h€ X, and thus
the assertion 2) holds if the condition a) or b) are satisfied.

Theorem 3. 1°. Let X be a reflexive Banach space, and let f(x) be a real functional
on X which is F-smooth on a closed convex bounded set M — X and let at least one
of the following conditions hold.

a) f(x) has a monotone symmeiric F-derivative f,(x) in M.

b) V. f(x,h)=0 forany he X, and for each x ¢ M except, maybe, a countable subset
ECM.

Then there is a point x,c M such that

1) f(xo) =xi!1‘f; f(x) and there are no strong local extremes of f(x) in M different

from f(xg)
2) f(x) is F-differentiable at x, and f”(x,)=grad f(x,) =0, provided x,¢ Int M.

The prOOF of this theorem is analogous to the proof of Theorem 3. 1, but to
prove the assertion 2) we can use Proposition 2. 5.

Definition 3. 1. An operator F(x) from X to X’ will be called a weakly
(strongly) S-potential operator if there exists a G-(F-)smooth functional f(x) on
X such that V f(x, h)={(F(x), ) (d.f(x, h)=(F(x), h)). The functional f(x) will
be called the weak (strong) S-potential of the operator F(x).

Theorem 3. 2. Let X be a reflexive real Banach space, M < X a bounded closed
convex set and let F(x) be a weakly S-potential operator from X onto X: with its
S-potential f(x) satisfying f(x)—f(X)={(x—X,y) for some X¢ Int M, ye X" and any
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X€0M (the boundary of M). Furthermore, let at least one of the following condi-
tions hold:

a) F(x) is monotone and continuous on every segment in M.

b) V2f(x, h)=0 for any xc M, he X of F(x). Then the equation

F(x)=)y"

has at least one solution xo<M.If F(x) is a strictly monotone operator or, if
Vif(x, h)=0 for each xc M, he X, h =0, then the solution x, is unique.

Proor. Consider the functional g(x) = f(x)—(x, »"). Then g(x) is G-smooth
on M and g.(x) = F(x)—)" is a monotone operator on M provided, that the con-
dition a) is satisfied. Since V2f(x, h)=V?2g(x, h). then using Theorem 3. 1, we can
find an x,< M such that g'(x,) = F(x,)—)" = 0. The assertion on uniqueness is
obvious.

Theorem 3. 3. Let X be a real reflexive Banach space, M — X a bounded closed
convex set. Let F(x) be a weakly S-potential operator from X onto X' whose weak
S-potential f(x) satisfies Vif(x.h) = C||A|-||h|? for any he X and for each xcM
except a countable subset EC M, where A is a bounded linear symmetric positive
operator from X onto X', and C =0 is a positive constant. Then the equation

F(x)=/Ax
has the solution x,cM for any 7¢[0, C], provided Oc¢Int M and f(x)—f(0) =
> g{AA\', x) for xc oM.
_ Proor. Consider the functional g(x) = f(x)—4}{4x, x). Then Vig(x, h) =
= V3f(x, hy—{Ah, h) = V2f(x, h)—C| A| - |h|* = 0. Since f(x) is G-smooth, then
g(x) is also G-smooth and, according to Theorem 3. I, there exists a x; € M such
that gi(x;) = g'(x;) = F(x;)—44x; = 0.

Corollary 3. 1. Let H be a Hilbert space and let F(x) be a strongly S-potential
operator from a ball D,={x€ H, |x||=r, r=0} to H whose S-potential f(x) satisfies
V2f(x, h)=C|hl|? for any x€D,, hc H, where C=0 is a positive constant. Then
the equation

F(x)=ix

has the solution x;<D, for each 1<[0,C], provided f(x)—f(0)= sz for

XE H, ||.\.';' =T.

Finally, we show some examples of convex functionals:

1) Let 4 be a positive symmetric linear operator from a Hilbert space H to H.
Then the functional f(x)=4(Ax, x) is the convex potential of the operator A.
Indeed, Vif(x. h)=(Ah, h)=0.

2) Let P(x) be a homogeneous symmetric polynomial operator of the degree
n from H to H (i. e., let (P*(xy, ..., X,), Xy+1) be symmetric in x,, ..., X,.;, Where
P*(xy, ..., x,) is the polar n-linear form: P*(x, ... x)=P(x)). Then P(x) is the

potential operator and f(x)=-—— X), x) 1S 1ts potential. ¢ lunctiona X)
ial df()“_lrlP() s 1 ial. The fi ional f(
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is convex if P(x) is a positive operator of odd degree n = 2k — 1. As example for
such an operator can serve the integral operator

PO)=y(@t) = [[ ... [K(t,51srsSx-0)X(5)) e X (S35 )5, - dsgey,s
00 (1]

where K(t,5,, ..., S2-,) is a positive symmetric and on the 2k-dimensional unit
cube quadratically integrable function, and x(r)€ L2?[0, 1].

3) Let BC E, be a measurable set of the n-dimensional Euclidean space, g(u, x)
be a real function continuous in the variable u€(4 <=, —e) and measurable in
x€ B for each u, satisfying g,(u, x) = 0,

lg(u, x)| = a(x)+blu?~*, where a(x)€Li(B), b=0, ;]’uf-% = 1, p=2.

Then the Nemyckij's operator
h(u) =g (u(x), x)

has the convex continuous (and thus weakly lower semi-continuous) potential

ul x)

fw = [dx [ g, xdv.
B 0

4) The functionals of the theory of plasticity:

Let Dc E, be an open bounded set of the Euclidean n-dimensional space E,,
and B a subspace of the Sobolev space W (D). Let 7;(u), j=1, 2, ..., m be strictly
~convex functionals on B and g;(), j=1, 2, ..., m non-negative real functions
defined almost everywhere and locally integrable on the interval [0, + ). Let
k. 1=k=m be an index such that g,({) =a=0, where a is a positive constant.
If, further, g5(£) = 0. j = 1, 2.....m then the functional

m T ()

fw) = Df dx > [ g,(&)de

i=1lp

is a strictly convex functional on B. This functionals occur, for example, in the
problems of the elastically plastic deformations of plates (see [11]).
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