On J -groups

By F. FENYVES (Debrecen)

1. Introduction. We start with the following definition. Let G be a group,
and let n be a positive integer. An endomorphism z of G is said to be a J,-endo-
morphism if z satisfies the J,-identity

((g,8; -- gn)zguﬂ)x((gzga gngn+l)’gl)’ ((gigH-l e Zu8ns1 81 - Ki- 2)=gi—1)l---
cer ((BaBas181 - 8u-2)8n-1)"((8u+181 - Bu-1)'8)* = €

for all g,, g5, ..., 8+ In G, where g/ denotes the image of g; under « and e is the
identity of G. (A J,-automorphism is defined in the obvious way.) It is easy to see
that the trivial endomorphism 9 defined by g? =e for all g in G is a J,-endomorphism.
Also, it is easy to check that the mapping «:g -g~' is a J,-endomorphism of G
if (and only if) G is an abelian group.

A group G which admits a nontrivial J,-endomorphism is said to be a J,-group.
For example, every abelian group is a J,-group.

The J,-groups were first considered by B. M. PuTTASWAMAIAH in [2]. In [1]
J. MORGADO proved that the group G is a J,-group if and only if G is a semidirect
product of a proper normal subgroup and an abelian group with the unique square
root property.

The purpose of this article is to extend the above theorem to J,-groups. We
also extend the other results of [1] and [2] to the general case.

2. Preliminary lemmas. Recall that a group G has the unique nth root property,
if for every g in G the equation x" =g has a unique solution in G.

Lemma 1. The following properties of a torsion group are equivalent:
(1) G has the unique nth root property;
(it) (ord g, n)=1 for every g in G.

ProOF. (i) implies (ii). Suppose, to obtain a contradiction, that there exists
an element g in G such that (ord g, n) = 1. Then we can choose a prime p for which
ord g = pk and n=pl where k, [ are positive integers. Hence we must have g*<e
as an element of order p. Since pln, it results in e = (g°)” = (g*)"= ¢", which yields,
by (i), g* = e. This contradiction completes the proof of (i) implies (ii).

(i1) implies (i). Consider g in G, since (ord g, n)= 1 there exist integers k and /
such that kn = /-ord g+ 1. If there exists an element x in G such that x"=g, then
x"ordo — (x")rd9 = ¢ which implies, by (ord x,n)=1, ord x|lordg ie. x°9=e.
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Therefore x = x°9 x = x"*=g* that is we must have x=g* Conversely, x=g*
is a solution of the equation x"=g. In fact, one obtains (g')" = glod¢+l=g

Notation. If 2 and f are mappings of G into G, then g*** denotes g*¢” and
g*" denotes (g*)".

Lemma 2. Let x be an endomorphism of the group G. Then the following con-
ditions are necessary and sufficient in order that « be a J,-endomorphism of G:

(1 grite = for all g, in G:
2 gvey = gyegy for all g,,g, in G.

PrOOF. Let us begin by supposing that « is a J,-endomorphism of G. The J,-iden-
tity can be rewritten in the following equivalent form
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for all g,,85, ..., 8a+q Iin G.
Then taking g,=g,=---=g,.,=e€ in (%) we see that g}
whence follows

%

g1g=rl—llx: =p

(n gi+*=¢ forall g, in G.
This of course implies

3) grgr=gig¥ for all g, in G.
Also, it follows from (*). by ga=gys=-=g,,,=¢e,

e sy s ssET ) =
But this can be written as

ST (21820 (2281)7 (2,82)*(218)" P =¢
in view of (3). Thus

(8182)7 (228" = (g:18)" "7~
Using (1), we express this relation as
(2182)7(2281)" = (8182)*"
and this implies that (g,g,)* =(g,g,)*. Whence one gets
(2) grgy = gvgx forall g, g, G.
Conversely, suppose that (1) and (2) hold. First of all, we show that
4) g:gy =gvg forall g,,g, in G.

In fact, it follows from (1) that g} *?g4**+* = ¢. Using (3) and (2) we express this
relation as

g Sl el e
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which implies, since g7**=g7* and gy~ V*+*=g7*

o el
that is (4) holds.
Then by repeated application of (4), (2) and (1) we have

B85 a0, YO8 0L (8 N8E BT itE B =

(galga g(n 1)a )(gz::zgzgizuuﬂz {gh’gk (n—k)a? )

n+1

e, gn)= [ g+ =e forall g,,8,,....8.4 in G.
i=1

Consequently we have proved that « is a J,-endomorphism of G.

3. Results.,

Theorem 1. If = is a J,-endomorphism of a group G then
(i) G* is an abelian group,

(i1) the restrection of « to G* is an automorphism of G*,

(i) G* has the unique nth root property.

Proor. (i) In fact, if a, b€ G* then there exist g, i in G such that g*=a and
h*=b. Thus using (1) and (2) we get

ab= gzhx =gz(h—n):1 s (h—n)ﬂg: e hxgz = ha.

(ii) First, it is clear that G** < G*, because g** = (g*)* for all g in G. Secondly,
if @ is an arbitrary element of G* then exists g< G such that g*=a. Then it follows
from (1) that a=g*=(g~")*, and this implies G*S G**. Hence the restrection
of z to G* is an epimorphism. Next, let a( = g*), b(=h*)€G. Then it follows from
a*=b* that g¥”=h" ie. (g 'h)*”*=e. This combined with (1) implies
e=((g~'N)”)™" = (g~ )" =(g" hy*=(g~*)*k*, and so g*=h" that is ‘a=b.
In other words, the restriction of z to G* is also a monomorphism, and thus it is
an automorphism.

(iii) Consider a =g*in G*. Then it follows from (1) that a = g* = g =" =((g~*)*)".
This means that x=g~*" is a solution of equation x"=a in G* This solution is
Lmique Indeed. if x, and x, are solutions of the equation x"=a in G* then x7'x,
is a solution of the equation x" =e in G*. But the equation x" = e has only the solution
x=-e¢in G In fact, if ( 1’)"—.«3 for some y € G, then using (1) we obtain e= ((y“)") =
=" =y~ Hence y*=e and so x, =x,. With this the validity of (iii) is proved.

Theorem 2. The following three assertions concerning a group G are equwa!enr
(A) G has exactly one J,-automorphism.

(B) G has a J,-automorphism.

(C) Gisan abelian group and has the unique nth root property.

Proor. That (A) implies (B) is trivial; that (B) implies (C) has been proved
already by Theorem 1. The proof will be complete when we show that (C) implies (A).
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Next we suppose that (C) holds. Let 2:G -G be the mapping defined by
1 1

g*= (g ") forall g in G, where g denote the unique nth root of g. We shall prove
that o is a J,-automorphism of G. First, z is onto; because if g€ G, then (g7")* =
1 1

= (g")" = g. Secondly, z is one to one: for if gj =g3, then gi'=((g7')")" =
1
= ((gz")")"=gz "', andso g, = g,. Next, z is an automorphism of G. Let g,, g,,€G.
1 1

Suppose (giV)"=h,,(gz")"=h, ie. gi'=hl,g:3'=h. Then (g,g,) =
— g7 'g3' = Wihs = (hh,)", hence

1 1 1
{glgz)’=((§|32)-l)" =hh,=(@r")"*(gz")" =832

1
Lastly, it results g"***=((g")")"g*= (((g*)~})*)'g" = (g9~ 1g*=¢ for all ¢
in G, and so, by Lemma 2, « is a J,-automorphism of G. On the other hand, if f
were a second J,-automorphism of G, then we prove that o= f. Indeed, one has

dearly it -1 -ﬂﬂ‘ Py — B (o BB — fym\8
e=(((g""Ve'y)= @) =g’ (2" =(g&")).

1
So we find that g(g”)"=e, hence g = (g~ ')" = g” for all g in G, which means that
o =f. Consequently (C) implies (A).
Using Lemma 1, we now establish the following.

Corollary 1. If G is a torsion group, then there exists a J,-automorphism of
G if and only if G is abelian and (ord g, n) =1 for all g in G.

In particular, if G is an abelian group of exponent k then there exists a J,-auto-
morphism of G if and only if (k,n)= 1.

Corollary 2. The following are equivalent conditions on a group G.
(A) G is a J,-group under an inner automorphism of G.

(B) G is a J,-group under the identity mapping of G.

(C) G is an abelian group of exponent n+1.

We now can formulate a characterization of J,-groups.

Theorem 3. For any group G the following two statements are equivalent.

(A) G is a J,-group.

(B) G is the semi-direct product of a proper normal subgroup B by an abelian
subgroup A having the unique nth root property.

PrOOF. Assuming (A), let « be a non-trivial J,-endomorphism of G. Then
it holds that the quotient group G/Ker « is isomorphic to G*. Moreover for all g
in G we have (g™g)*=g""**=e. Hence g™gcKer «, that is g Ker a=g~"*Ker «
and here g7"*€ G*. On the other hand, if #* were a second element of G* for which
g Ker a = h*Ker «, then h~*ge Ker a. Therefore h~*g*=¢, hence e=h"""g" =
=/*g", which implies /*= g~"*. Consequently (4)=(B).
Conversely, assume (B). Define a mapping « of G into G by a=fyd, where
(i) B is the natural homomorphism of G onto G/B;
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(i) 7y is the isomorphism of G/B onto A defined by (gB)? = g*, where g* is the
unique element of A for which gB=g*B: and

(iii) é is the unique J,-automorphism of A.

Then the next facts are obvious: z is a nontrivial endomorphism of G; G*=4;

and Kera=B28.
Moreover, one has

g==E@r=0"r=(B"r=c"r=0""".

This implies, by (ii), that gB= g~"B. Hence it follows that g"g < B. Therefore we

have
(1) e= (g"g)* = g"™** forallginG.

Lastly, recalling that Ker « is an abelian group, we also have
) g’h*=h*g* for all g, h in G.

Thus we have verified (see Lemma 2) that « is a nontrivial J,-endomorphism
of G, proving that (B) implies (A).
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