On J_n -groups

By F. FENYVES (Debrecen)

1. Introduction. We start with the following definition. Let G be a group, and let n be a positive integer. An endomorphism α of G is said to be a J_n -endomorphism if α satisfies the J_n -identity

$$((g_1g_2 \dots g_n)^{\alpha}g_{n+1})^{\alpha}((g_2g_3 \dots g_ng_{n+1})^{\alpha}g_1)^{\alpha} \dots ((g_ig_{i+1} \dots g_ng_{n+1}g_1 \dots g_{i-2})^{\alpha}g_{i-1})^{\alpha} \dots \dots ((g_ng_{n+1}g_1 \dots g_{n-2})^{\alpha}g_{n-1})^{\alpha}((g_{n+1}g_1 \dots g_{n-1})^{\alpha}g_n)^{\alpha} = e$$

for all $g_1, g_2, ..., g_{n+1}$ in G, where g_i^α denotes the image of g_i under α and e is the identity of G. (A J_n -automorphism is defined in the obvious way.) It is easy to see that the trivial endomorphism θ defined by $g^\theta = e$ for all g in G is a J_n -endomorphism. Also, it is easy to check that the mapping $\alpha: g \to g^{-1}$ is a J_1 -endomorphism of G if (and only if) G is an abelian group.

A group G which admits a nontrivial J_n -endomorphism is said to be a J_n -group.

For example, every abelian group is a J_1 -group.

The J_2 -groups were first considered by B. M. PUTTASWAMAIAH in [2]. In [1] J. MORGADO proved that the group G is a J_2 -group if and only if G is a semidirect product of a proper normal subgroup and an abelian group with the unique square root property.

The purpose of this article is to extend the above theorem to J_n -groups. We

also extend the other results of [1] and [2] to the general case.

2. Preliminary lemmas. Recall that a group G has the unique nth root property, if for every g in G the equation $x^n = g$ has a unique solution in G.

Lemma 1. The following properties of a torsion group are equivalent:

- (i) G has the unique nth root property;
- (ii) (ord g, n) = 1 for every g in G.

PROOF. (i) implies (ii). Suppose, to obtain a contradiction, that there exists an element g in G such that (ord g, n) > 1. Then we can choose a prime p for which ord g = pk and n = pl where k, l are positive integers. Hence we must have $g^k \neq e$ as an element of order p. Since p|n, it results in $e = (g^k)^p = (g^k)^n = e^n$, which yields, by (i), $g^k = e$. This contradiction completes the proof of (i) implies (ii).

(ii) implies (i). Consider g in G, since (ord g, n) = 1 there exist integers k and l such that $kn = l \cdot \text{ord } g + 1$. If there exists an element x in G such that $x^n = g$, then $x^{n \cdot \text{ord } g} = (x^n)^{\text{ord } g} = e$ which implies, by (ord x, n) = 1, ord x | ord g i.e. $x^{\text{ord } g} = e$.

F. Fenyves

Therefore $x = x^{l \cdot \text{ord } g} x = x^{nk} = g^k$, that is we must have $x = g^k$. Conversely, $x = g^k$ is a solution of the equation $x^n = g$. In fact, one obtains $(g^k)^n = g^{l \cdot \text{ord } g + 1} = g$.

Notation. If α and β are mappings of G into G, then $g^{\alpha+\beta}$ denotes $g^{\alpha}g^{\beta}$ and $g^{\alpha\beta}$ denotes $(g^{\alpha})^{\beta}$.

Lemma 2. Let α be an endomorphism of the group G. Then the following conditions are necessary and sufficient in order that α be a J_n -endomorphism of G:

(1)
$$g_1^{n\alpha^2+\alpha}=e$$
 for all g_1 in G ;

(2)
$$g_1^{\alpha^2}g_2^{\alpha^2} = g_2^{\alpha^2}g_1^{\alpha^2}$$
 for all g_1, g_2 in G .

PROOF. Let us begin by supposing that α is a J_n -endomorphism of G. The J_n -identity can be rewritten in the following equivalent form

$$(g_1^{\alpha^2} g_2^{\alpha^2} \dots g_n^{\alpha^2} g_{n+1}^{\alpha}) (g_2^{\alpha^2} g_3^{\alpha^2} \dots g_{n+1}^{\alpha^2} g_1^{\alpha}) \dots$$

$$\dots (g_i^{\alpha^2} g_{i+1}^{\alpha^2} \dots g_n^{\alpha^2} g_{n+1}^{\alpha^2} g_1^{\alpha^2} \dots g_{i-2}^{\alpha^2} g_{i-1}^{\alpha}) \dots (g_{n+1}^{\alpha^2} g_1^{\alpha^2} \dots g_{n-1}^{\alpha^2} g_n^{\alpha}) = e$$

for all $g_1, g_2, ..., g_{n+1}$ in G.

Then taking $g_2 = g_3 = \cdots = g_{n+1} = e$ in (*) we see that $g_1^{\alpha 2} g_1^{\alpha} g_1^{(n-1)\alpha^2} = e$ whence follows

(1)
$$g_1^{n\alpha^2+\alpha} = e \text{ for all } g_1 \text{ in } G.$$

This of course implies

(3)
$$g_1^{\alpha^2} g_1^{\alpha} = g_1^{\alpha} g_1^{\alpha^2}$$
 for all g_1 in G .

Also, it follows from (*), by $g_3 = g_4 = \cdots = g_{n+1} = e$,

$$g_1^{\alpha^2}g_2^{\alpha^2}g_2^{\alpha^2}g_1^{\alpha}g_1^{\alpha}g_1^{\alpha^2}g_2^{\alpha}(g_1^{\alpha^2}g_2^{\alpha^2})^{n-2}=e.$$

But this can be written as

$$(g_1g_2)^{\alpha^2}(g_2g_1)^{\alpha^2}(g_1g_2)^{\alpha}(g_1g_2)^{(n-2)\alpha^2} = e$$

in view of (3). Thus

$$(g_1g_2)^{\alpha^2}(g_2g_1)^{\alpha^2}=(g_1g_2)^{-(n-2)\alpha^2-\alpha}.$$

Using (1), we express this relation as

$$(g_1g_2)^{\alpha^2}(g_2g_1)^{\alpha^2}=(g_1g_2)^{2\alpha^2}$$

and this implies that $(g_2g_1)^{\alpha^2} = (g_1g_2)^{\alpha^2}$. Whence one gets

(2)
$$g_1^{\alpha^2} g_2^{\alpha^2} = g_2^{\alpha^2} g_1^{\alpha^2}$$
 for all g_1, g_2 G.

Conversely, suppose that (1) and (2) hold. First of all, we show that

(4)
$$g_1^{\alpha} g_2^{\alpha^2} = g_2^{\alpha^2} g_1^{\alpha}$$
 for all g_1, g_2 in G .

In fact, it follows from (1) that $g_1^{nx^2+\alpha}g_2^{nx^2+\alpha}=e$. Using (3) and (2) we express this relation as

$$g_1^{\alpha}g_2^{\alpha^2}g_1^{n\alpha^2}g_2^{(n-1)\alpha^2+\alpha}=e,$$

which implies, since $g_1^{n^{2}} = g_1^{-x}$ and $g_2^{(n-1)\alpha^2 + x} = g_2^{-\alpha^2}$,

$$g_1^{\alpha}g_2^{\alpha^2}g_1^{-\alpha}g_2^{-\alpha^2}=e$$

that is (4) holds.

Then by repeated application of (4), (2) and (1) we have

Consequently we have proved that α is a J_n -endomorphism of G.

3. Results.

Theorem 1. If α is a J_n -endomorphism of a group G then

- (i) Gz is an abelian group,
- (ii) the restrection of α to G^{α} is an automorphism of G^{α} ,
- (iii) Gz has the unique nth root property.

PROOF. (i) In fact, if $a, b \in G^{\alpha}$ then there exist g, h in G such that $g^{\alpha} = a$ and $h^{\alpha} = b$. Thus using (1) and (2) we get

$$ab = g^{\alpha}h^{\alpha} = g^{\alpha}(h^{-n})^{\alpha^2} = (h^{-n})^{\alpha^2}g^{\alpha} = h^{\alpha}g^{\alpha} = ba.$$

(ii) First, it is clear that $G^{\alpha^2} \subseteq G^\alpha$, because $g^{\alpha^2} = (g^\alpha)^\alpha$ for all g in G. Secondly, if a is an arbitrary element of G^α then exists $g \in G$ such that $g^\alpha = a$. Then it follows from (1) that $a = g^\alpha = (g^{-n})^{\alpha^2}$, and this implies $G^\alpha \subseteq G^{\alpha^2}$. Hence the restrection of α to G^α is an epimorphism. Next, let $a(=g^\alpha)$, $b(=h^\alpha) \in G$. Then it follows from $a^\alpha = b^\alpha$ that $g^{\alpha^2} = h^{\alpha^2}$ i.e. $(g^{-1}h)^{\alpha^2} = e$. This combined with (1) implies $e = ((g^{-1}h)^{\alpha^2})^{-n} = (g^{-1}h)^{-n\alpha^2} = (g^{-1}h)^\alpha = (g^{-1})^\alpha h^\alpha$, and so $g^\alpha = h^\alpha$ that is a = b. In other words, the restriction of α to G^α is also a monomorphism, and thus it is an automorphism.

(iii) Consider $a = g^{\alpha}$ in G^{α} . Then it follows from (1) that $a = g^{\alpha} = g^{-n\alpha^2} = ((g^{-\alpha})^{\alpha})^n$. This means that $x = g^{-\alpha^2}$ is a solution of equation $x^n = a$ in G^{α} . This solution is unique. Indeed, if x_1 and x_2 are solutions of the equation $x^n = a$ in G^{α} then $x_1^{-1}x_2$ is a solution of the equation $x^n = e$ in G^{α} . But the equation $x^n = e$ has only the solution x = e in G^{α} . In fact, if $(y^{\alpha})^n = e$ for some $y \in G$, then using (1) we obtain $e = ((y^{\alpha})^n)^{\alpha} = y^{n\alpha^2} = y^{-\alpha}$. Hence $y^{\alpha} = e$ and so $x_1 = x_2$. With this the validity of (iii) is proved.

Theorem 2. The following three assertions concerning a group G are equivalent-

- (A) G has exactly one J_n -automorphism.
- (B) G has a J_n-automorphism.
- (C) G is an abelian group and has the unique nth root property.

PROOF. That (A) implies (B) is trivial; that (B) implies (C) has been proved already by Theorem 1. The proof will be complete when we show that (C) implies (A).

Next we suppose that (C) holds. Let $\alpha: G \to G$ be the mapping defined by $g^{\alpha} = (g^{-1})^{\frac{1}{n}}$ for all g in G, where $g^{\frac{1}{n}}$ denote the unique nth root of g. We shall prove that α is a J_n -automorphism of G. First, α is onto; because if $g \in G$, then $(g^{-n})^{\alpha} = (g^{-1})^{\alpha}$ $=(g^n)^{\frac{1}{n}}=g$. Secondly, α is one to one; for if $g_1^{\alpha}=g_2^{\alpha}$, then $g_1^{-1}=((g_1^{-1})^{\frac{1}{n}})^n=g$ $=((g_2^{-1})^{\frac{1}{n}})^n=g_2^{-1}$, and so $g_1=g_2$. Next, α is an automorphism of G. Let $g_1,g_2,\in G$. Suppose $(g_1^{-1})^{\frac{1}{n}} = h_1$, $(g_2^{-1})^{\frac{1}{n}} = h_2$ i.e. $g_1^{-1} = h_1^n$, $g_2^{-1} = h_2^n$. Then $(g_1g_2)^{-1} = -g_1^{-1}g_2^{-1} = h_1^n h_2^n = (h_1h_2)^n$, hence

$$(g_1g_2)^z = ((g_1g_2)^{-1})^{\frac{1}{n}} = h_1h_2 = (g_1^{-1})^{\frac{1}{n}}(g_2^{-1})^{\frac{1}{n}} = g_1^zg_2^z.$$

Lastly, it results $g^{nz^2+\alpha} = ((g^x)^x)^n g^x = (((g^x)^{-1})^{\frac{1}{n}})^n g^x = (g^x)^{-1} g^x = e$ for all g in G, and so, by Lemma 2, α is a J_n -automorphism of G. On the other hand, if β were a second J_n -automorphism of G, then we prove that $\alpha = \beta$. Indeed, one has clearly

 $e = (((g^{-1})^{\beta}g^{\beta})^{\beta})^n = g^{-n\beta^2}(g^{\beta})^{n\beta} = g^{\beta}(g^{\beta})^{n\beta} = (g(g^{\beta})^n)^{\beta}.$

So we find that $g(g^{\beta})^n = e$, hence $g^{\beta} = (g^{-1})^{\frac{1}{n}} = g^z$ for all g in G, which means that $\alpha = \beta$. Consequently (C) implies (A).

Using Lemma 1, we now establish the following.

Corollary 1. If G is a torsion group, then there exists a J_n-automorphism of G if and only if G is abelian and (ord g, n) = 1 for all g in G.

In particular, if G is an abelian group of exponent k then there exists a J_n -automorphism of G if and only if (k, n) = 1.

Corollary 2. The following are equivalent conditions on a group G.

- (A) G is a J_n -group under an inner automorphism of G.
- (B) G is a J_n -group under the identity mapping of G.
- (C) G is an abelian group of exponent n+1.

We now can formulate a characterization of J_n -groups.

Theorem 3. For any group G the following two statements are equivalent.

- (A) G is a J_n -group.
- (B) G is the semi-direct product of a proper normal subgroup B by an abelian subgroup A having the unique nth root property.

PROOF. Assuming (A), let α be a non-trivial J_n -endomorphism of G. Then it holds that the quotient group $G/\text{Ker }\alpha$ is isomorphic to G^{α} . Moreover for all g in G we have $(g^{n\alpha}g)^{\alpha} = g^{n\alpha^2 + \alpha} = e$. Hence $g^{n\alpha}g \in \text{Ker } \alpha$, that is $g \text{ Ker } \alpha = g^{-n\alpha} \text{Ker } \alpha$ and here $g^{-n\alpha} \in G^{\alpha}$. On the other hand, if h^{α} were a second element of G^{α} for which g Ker $\alpha = h^{\alpha}$ Ker α , then $h^{-\alpha}g \in \text{Ker }\alpha$. Therefore $h^{-\alpha^2}g^{\alpha} = e$, hence $e = h^{-n\alpha^2}g^{n\alpha} = e$ $=h^{\alpha}g^{n\alpha}$, which implies $h^{\alpha}=g^{-n\alpha}$. Consequently $(A)\Rightarrow (B)$.

Conversely, assume (B). Define a mapping α of G into G by $\alpha = \beta \gamma \delta$, where

(i) β is the natural homomorphism of G onto G/B;

(ii) γ is the isomorphism of G/B onto A defined by $(gB)^{\gamma} = g^*$, where g^* is the unique element of A for which $gB = g^*B$; and

(iii) δ is the unique J_n -automorphism of A.

Then the next facts are obvious: α is a nontrivial endomorphism of G; $G^{\alpha} = A$; and Ker $\alpha = B$.

Moreover, one has

$$g^{n\alpha} = (g^{\alpha})^n = (g^{\beta\gamma\delta})^n = ((gB)^{\gamma\delta})^n = (g^{*\delta})^n = (g^*)^{-1}.$$

This implies, by (ii), that $gB = g^{-nx}B$. Hence it follows that $g^{nx}g \in B$. Therefore we have

(1)
$$e = (g^{n\alpha}g)^{\alpha} = g^{n\alpha^2 + \alpha} \quad \text{for all } g \text{ in } G.$$

Lastly, recalling that Ker a is an abelian group, we also have

(2)
$$g^{\alpha^2}h^{\alpha^2} = h^{\alpha^2}g^{\alpha^2}$$
 for all g, h in G .

Thus we have verified (see Lemma 2) that α is a nontrivial J_n -endomorphism of G, proving that (B) implies (A).

References

[1] J. Morgado, Note on Jacobi endomorphisms, Gaz. Mat. (Lisboa). N. 105—108 (1967), 48—52. [2] B. M. PUTTASWAMAIAH, Jacobi endomorphisms, Amer. Math. Monthly. 73 (1966), 741—744.

(Received July 2, 1968; in revised form, June 4, 1969.)