Representation of integers by norm forms II.

By KALMAN GYORY (Debrecen) and LASZLO LOVASZ (Budapest)

1. Introduction

Let I, 25, ..., 2, be linearly independent algebraic numbers over the field R
of rationals, and let n denote the degree of the algebraic number field K= R(%,....,%,)
(over R). The conjugates and the norm of an element € K will be denoted by
o'V, .., 2" and Ngg(a), respectively (in the field K). Let further

LY =x+aP x4+ ... +a® x, =1, a0
It is a question examined by many authors when the Diophantine equation
(1 Nir(L(x))=a: acR

has infinitely many solutions x = (x,, ..., x,,) among rational integers.

In case m =n the problem is solved. If (1) has a solution then it has infinitely
many solutions and these can be represented by help of the units of K ([2] pp.
134—140.).

In case m =n the question is much more difficult, the answer depends on the
structure of the module M = {1, a,, ..., 2, }. The module M is called degenerated,
if the vector space L over R generated by M has a subspace L’ such that, for some
7€ K. L’y is a (not necessarily proper) subfield of K, different from R and the imagin-
ary number fields of degree 2. Now if M is degenerated then there exists an a< R
such that (1) has infinitely many solutions ([2], p. 322.). In the opposite case — i.e.
if M is non-degenerated — by conjecture (1) has only finitely many solutions among
rational integers for any a¢ R.

This conjecture was proved by 4. THUE ([5]) for m =2 and by W. M. ScHMIDT
([4]) for m=3. However, their method is not effective, it is not suitable to find all
the solutions of (1). Recently A. BAKER ([1]) has given an algorithm to find all solutions
of (1) in case m =2 by showing that if ¥ = n+ 1 then every solution of (1) satisfies

s X)) <exp {n*H™ +(logla|- H)"} = ¢(a, n, H, %)

where H = H(x,) is the height') of #, and v = 32%/(x —u—1) (supposing naturally
that M is non-degenerated).

max (\x,

') The maximum of absolute values of the relatively prime integer coefficients in the defining
polvnomial of «.. In knowledge of N(x,+a.x.), H(x.) can be considered to be known too.
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In [3] one of the authors proved the conjecture for m =4 and non-real Abelian
number fields of degree not divisible by 3 and 4.

In the present paper we investigate the problem for those number fields K which
are contained in a Galois field F (a normal extension of R) whose maximal real
subfield is also a Galois field. These fields we be called allowed: thus allowed fields
are the subfields of the non-real normal extensions (over R) of degree 2 of the real
Galois fields, E.g. all Abelian number fields are allowed. We are going to show
that in the case of allowed number fields K any solution x = (x,, ....x,) of (1)
satisfies both

(2) Ner(Re L(x))|=a:K1 and [Ny (iIm L(x))| = |aF:K)

Using this and the above mentioned result of Baker we give an explicite bound for
max( |x, |, | x,/, |x;3]) in case m=3, if Kis a non-real allowed number field. Further-
more, we prove the conjecture ?) in case m =4 for non-real allowed Galois fields of
degree not divisible by 3 and 4. We give a second proof of this latter proposition too,
using Dirichlet’s theorem concerning units of algebraic number fields instead of (2).

2. Results

To state our results we need the following constants. Let
c(n, my, H) = [(m— 1)!10nt4 =172 fomm—1)3usm on- 0%
H,(n,m, H) = [(m—1)c(n, m, H)yn™=' H™"™ "',
b(a,n, H) = (2H,(n, 3, H)*)” |a"c(n, 3, H)*",
H,(n, H) = [2H,(n, 3, H)]**, Hs(n, H) = j4n* H,(n, H)]",

Y(a,n, H, %) = b>Hipb™,n® H;, x).
Then we have
Theorem 1. Let {1, a,, x5} be a non-degenerated module with linearly inde-
pendent generators such that the field K = R(u,, %3) is a non-real allowed number
field of degree n. If the height of %, and », is = H and » = n® + 1, then any solution
(x,.Xx,,x3) of the equation

(l‘) IVK,"R(XI +31x2+13.\’3) =4a (GER)
satisfies
max (|x,|, |x,|, [xa]) = ¥ (a, n, H, x)

Theorem 2. Let F be a non-real allowed Galois field of degree not divisible by 3
and 4. Let further 1, u,, 25, 2, be linearly independent generators of F. Then the
equation

(I”} ‘IVF,-"R(XI+!12J'Z+13x3+24x4) =4a (ﬂe R)

has only finitely many solutions (x,, x,, X3, X;) in rational integers.

2) Ac:ided in pxoof: Recently Prof W. Schmidt proved the conjecture for all m.
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3. Lemmas

Lemma 1. If the coefficients of the linear form L(x) are linearly independent
elements of an allowed field K and F= K is an allowed Galois-field, then any solution

of (1) satisfies (2).

Proor. If K is real we have nothing to proof’; assume that K and consequently F
are non-real. Let G be the Galois group of F (over R). Since in our assumption
the maximal real subfield S of Fis normal, the cyclic group {/} (of order 2) generated
by the complex conjugation  (as automorphism) is a normal subgroup. Hence
Y belongs to the center of G.

Now if H is the subgroup corresponding to K then all isomorphisms of K in F
can be described by the right cosets of H. Let Ho,, ..., Hp, be these cosets. Since
Y€ Z(G), we have for any o< Ho, (1 =k=n)

(Re L))o = 5 (LX) +LOW)@ = 5 (LEI9u+ LN DY) = Re(LX))

|
Hence
" [F:K]
Ner(Re L(x)) = [ (Re L(x))p = L]]I Re (L(x)gok)]
and since ; 5 .
LX) = Re(L(X)9y)
we have

a|tF X1 = Neg(L)| = gi{Re(L(")%)”"” = ENHR(RCL("))i

The second statement of (2) follows similarly.

We are going to apply Baker’s result onto one of the inequalities (2). This can be
done only if one of the forms Re L(x), Im L(x) has two variables at the most, its
coefficients are linearly independent and generate a non-generated module. This
is not the case in general but it can be reached by multiplying (1°) by the norm of an
appropriate element of F and by applying a linear transformation. In lemmas 2.
and 3. this will be carried out.

Before stating them we remark that the heights of z, @ and 1/x are equal and the
same holds for their degrees. Furthermore, if d(x) is the degree of « then
|2| = d(x) H(z). Using this one easily verifies that d(aff), d(z+f) = d(x)d(p),
and if f is a polynomial of degree / having integer coefficients and s =/ variables,
H(x%)=H and d(%;) = d(1 = i=s), then

d(f(ay, ..., 2,))=d°,
3) H(f(2y, .., 2))= (| f|| - d*H'C+ V)"
(here | /| means the sum of absolute values of the coefficients of f).

Lemma 2. One can find a linear, non-singular transformation Y =CX with
integer coefficients transforming (1) into an equation

(4) Nigr(ry+22Y3+ ... +ayn) = a4
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of the following properties:
(a) the non-zero imaginary parts of 1, a5, ..., a,, are linearly independent;
(b) max H(x)) = H,(n,m. H)

!a] | = |a . C(n’ m, H){lll— 1)2n
(¢) If x is a solution of (1) and y=CXx is the corresponding solution of (4) then

max x|l = m—1)c(n,m, H) max [

Remark: The systems {l,x,,...,2,} and {l,3,....2,} are both linearly
dependent or linearly independent and since they generate the same vector space
over R they are both degenerated or non-degenerated.

ProoF. Let, say, Im «,. ..., Im % be a maximal independent subsystem of the
imaginary parts (2= /= m). Then

Ima,, =cpp2Ima,+ ... +¢ppy . Imay
(5) :
Ima, =c,:Ima,+...+c,, Ima

where the ¢ ,-s are rational. Let ¢ denote the I. c. m. of the denominators of the
¢ 8. Put ¢, = c-c; , and consider the substitution

y1 = €xy
Y, = CX; +Ci1,2X141F o0 + Co 2 X
©6) i = CX;tCra X1 +ooe T+ Con 1 X
Jip1 = CXpgq
Y-~ CXom

Multiplying both sides of (1) by ¢" and carrying out this substitution we obtain
the equality (4), where

a = %
’ » r
) U1 = —Cry1,2%2— voe = Cpin, 1%+ %pgq
Uy = —C28y — oo = Co 1% + 0L,y

Here Ima/,,=...=Imx, =0 and Ima3,....Ima are linearly independent.
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Now we deal with the necessary estimations. First let us consider the heights
of the ¢; (-s. Since in our assumption i Im a5, .... i Im %, are linearly independent,
we can find certain indices i, .... #,_, such that

(i Ima,)™ ... (i Im o)

ﬁ:

(i Imoay)t-2) . (i Im ag))-0)
Then ¢; ; (/+1=r=m,2=s5=1) can be determined from the system of equalities

(i(Ima)® = ¢ (i Ima,) ™ + ... +¢ (i Im o)V

(Ima,)i-2 = ¢ (i Imay) -V + ... + ¢ (i Imag) -0

as a quotient where the denominator is the determinant f and the numerator is
a determinant of similar type. Now by (3),

d(ilmay) = d[f‘-"—'z"-?"-] =n, H(ilma) = (@n*H3)",

d[%] =d(p) = n*™-1, H [;3] =Hp) = [(m— l)!"z(,._”:Hm(m_”,]n‘m'“;

hence, applying (3) again,
H(c, ) = c(n,m, H).

¢ being the 1. c. m. of the denominators of the ¢, ,-s,

max (¢, |¢,,J) =c(n, m, H)™-1*

Hence
la,| =lac"|=|al - c(n, m, H)™-~ 1"
Since
(6) gi ler, sl = H(cy, ) =c(n, m, H),
gives

max |x; =(m—1)e(n, m, H) max |y,

and, finally, (7) implies
H(x) = Hi(n,m, H),
which was to be proved.

Lemma 3. Let 1, a,,«; be linearly independent algebraic numbers and assume
that M = {1, a,, a3} is non-real and non-degenerated. Then there exists a linear,
non-singular transformation Z = AX with integer coefficients, such that the application
of A and appropriate expontation of both sides of (1”) tranforms (1) into an equation

®) Nir(@y2+a32, +%323) = a,
where KE K’ = R(aj. 03, 23) is of degree =n?, the module {i Im o}, i Im a3, i Im %3}

i2 D
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has at most two generators different from 0, these are linearly independent and gene-
rate a non-degenerated module, furthermore
la,|=|a|"c(n, 3, H)*"
H(x})=H,(n,3, H)
and the corresponding solutions of (1) and (8) satisfy

max |x;| = 2¢(n, 3, H) max

il
Remark: The proof shows that if K is allowed then so is K”.

PrROOF. Put 2, = B +iy (k=2,3) in (1"). If y, and y; are linearly dependent
then by lemma 2 (1”) can be transformed into a form like (8), where K'=K and
then the required inequalities follow trivially.

Thus we may assume that y,,y; are linearly independent. Put iy; = y:iy,.
If y is of degree =3 we have nothing to prove since (17) itself satisfies the require-
ments. Thus we may confine ourselves to the case d(y)=2.

Put 6 = B3 —7B, = 23— yx,. Now 8¢ R(y), since otherwise we would have
%3 — 7%, = ryy—r, with some rational coefficients r,, r,, which would imply

L

a0 a+ry’

ie. that {l,2,,2,} is degenerated, which is a contradiction. Hence either y—¢
or 7+, say y—a is of degree =3.

Put K'= K(&,) S F. Consider the [K": K]-th power of both sides of (1”), multiply
by N r(1+a,) and substitute z; = x;, —X;, 2, =X,, 23 =X;

Nir((1+83) 2, + (1 4+ &) (1 4+ o5) 2, + (1 + &) 23 23) = @ X FINg, o (1 +a,).

Here Im (1 +&,) = 75, Im (1 +&,)(1 +a3) = 0, Im(1 +&,)x; = y,(y—3), i.e. we
have obtained an equality of the required type. The necessary estimations are trivial.

4. Proofs of the theorems

Proof of theorem I. By lemma 3, it is enough to find an upper bound for the
solutions of equality (8). We may assume that Im ;=0 and either Im a5=0,
Im 230 or Im %3, Im o are linearly independent and {i Im o5, i Im o3 } is non-de-
generated.

There exists a rational integer ¢ with |e|=2H3 such that of =cx, i Im o
(k =1,2,3) are algebraic integers. Multiplying both sides of (8) by Ng. g(c)=c'*"R,

®) Ny jr(@12y + 222, +0323) = a3
where las|=la,c’*"*®=b(a,n, H) and H(x)=H,(n, H).

Assume first that in (8) we have Imai=Ima5=0. Let F be an allowed
Galois extension of K, then, as we have noticed after lemma 3, K'S F and
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similarly K"=K’(Z5)S F where K” is of degree =n*. Applying now lemma 1
onto the equality (9), we obtain

a3F K = |Ngo g (i Im a3 z3) [[F: KD = |z, |(F: R,
hence
z3|=las|=b(a,n, H).

Now if z, =0, then (9) gives, by the mentioned result of Baker, that
max(izl |! [ZZ |) = fp(bs "29 H29 Z).

If z; =0, (9) gives

L{k](z) i[.F:K1 L(g)(z) :[F:K’]

. o L [F:K"] 2 | ——
ilmL®(z) | Nicrjn (i Im 2325) i Imoai®

st L]
lay|F:K = |
|
hence we have for every 1=k=n
|IL¥(2)|=|as| [i Im a3®|=bn*H,
Now x7, %3, 23 are linearly independent, therefore we can find a pair j, k of indices
such that
oo )
B = IO # 0
Expressing z,.z, from the equalmes
1Pz, +ajPz, = LU (2)— a2,
Wz, +aj®z, = LW(2)— 5@z,
we can find an upper bound for them with the help of an upper bound for the height
of B, which can be obtained similarly as in the proof of lemma 2. The upper bound
for |x,, |x,/, |x;/ deduced from this is much better than the upper bound given
in the theorem.
Assume now that in (8) Im ] =0, Im a3, Im %3 are linearly independent and

{iTlmz3,ilm a3} is non-degenerated. Consider the field K” = K'(&7, a3)< F of
degree =n° and apply lemma 1. Then (9) gives the inequality

las|™ = |ay|FRVIF:K™) = |Npe o (i Im a3z, +iImaj 23)|
which implies by Baker
max (|z,], [z,]) = (", n3, H,, x)
Now if z,=z;=0 then (9) gives
b=lay|=|Ngr(212,) =]z

which is not larger than the upper bound gwen above. On the other hand, if one
of z, and z; is non-zero, then by

LM (2) (F: K71 IL(k)(z)I[F-K']

[F:K'] — F: K~
|!l:]’_a,|[ = NK ;R(! Im o:a..2+:1m 13 } ' 1= |l ImL(”(z)][F 1K'}

= GImL®(z)
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and
ayz, = LW (2)—azz, —a3z;
we can deduce
lz,|=4n®bH, H o (b", n*, Hy, %)

which proves the theorem.

IST PROOF OF THEOREM 2. By our assumption z,, o,, #, are not all real. More-
over, by lemma 2 we may suppose that the non-zero imaginary parts of =, «,, 3.
say Im o, ..., Imoa,, are linearly independent. Obviously we may assume that
they are algebraic integers. Now by lemma 1,

lal = |pr(PImagxg+ ... +iIm oy xy)|

By our assumption concerning the degree of F, F has no real subfield of degree 2
and no subfield of degree 3, hence the module {i Im 2, ..., 7 Im a,} is non-degener-
ated. By Thue’s and Schmidt’s mentioned results this inequality has only finitely
many solutions. Thus it is enough to show that for fixed x,, ..., x; (1”) has only
finitely many solutions in x,, ..., X, ;.

If xq=...=x,=0, then (1”) gives

Ner(xy +2X+ o+ X)) = @

and here {l,a,, ..., %_,} is non-degenerated, consequently x,. ..., x,_, can have
only finitely many different values. On the other hand, if there is an x; (k= j=4)
different from 0, then because of the linear independence of Im o, ..., Im 2,

L(r)(x)

(X) L)
i Im L") (x)

iIm L9 (x)]

la = (r=1, .. [F:R)

«|Npr(iIm L(x))| =

and this gives an upper bound for L’ (x) independently from the value of x,, ..., x; _,.
Since 1, a4, ..., %, are linearly independent, there exist indices i,, ..., i, such
that

|1 as? ey
: =0
R P
Hence the system
Xy +a(;;)x2 iy +aii.|-)l Xey = L(ll)(x)_a(tl'llxk e —12').‘?4

X, +agk-|)x2 & +a=:t-1”-\’k-t s L[lk-l}(x)_xifk-i}xk_ _xgk-l)x4

gives an upper bound for |x,[, ..., |xx- /.

2ND PROOF OF THEOREM 2. We start like in the 1st proof: «,, 23, 2, are not
all real, Ima, =... =Ilmaoy_, =0, while Im %, ..., Im «, are linearly independent
algebraic integers.
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Assume indirectly that (1”) has infinitely many solutions. Since only finitely
many principal ideals of F can have norm a, we can find an appropriate element
B = F such that infinitely many solutions of (1”) and units ¢ of F satisfy

X+ X, a3 X3+ 25X, = fe.

Since Fis a non-real Galois field, it is totally imaginary, hence by Dirichlet’s theorem
the rank of the group of its units is § [F: R]— 1. On the other hand, F being allowed
its maximal real subfield is normal, consequently totally real, thus the rank of the
group of the units of Sis also 1[F:R]—1. Now the logarithmical representation
of the units shows that the units of S form a subgroup of the group of units of F,
and the index of this subgroup is a finite number /4. Therefore, there are units g, ..., g,
such that every unity of F is of form £, where ¢ is a real unity. Consequently we
can find a fixed integer j such that

X, 40X, a3 X3+ oy x,=fe;e

has infinitely many solutions in integers x,., x,. x5, x, and real units &. Considering
the imaginary parts of both sides,

imoyx,+...+ilmoagxy, = ye
where y= 1 (fg; wﬁ_ej). Taking the norm of both sides,
Neg(iImox,+ ... +ilmagxy) = Npjp(ye) = Ngr(y) = const.

which has, by our assumption concerning the degree of F, only finitely many solutions
Xy, ...s Xg. But then

X+ X+ e+ 0 Xy = PEe—X— ... — Uy Xg = 1
or
Ner(Xy+oaxy+ oo+ oy X ) = Npjr()

has infinitely many solutions for some fixed x,. ..., x; (and, consequently, for fixed &),
which is a contradiction.
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