On the integrability of functions defined
by trigonometric series

By MANSOOR AHMAD (Lucknow)

1. HEywoop ([1]) has proved that if 4, is ultimately positive, if

1 10+ZZ,= 0,
2 n=1

and if
f(x) = —~).0+ Zﬂ. cos nx,
n=]
f(x)
then € L(0, 1), if and only if 2 4, log n is convergent.

The object of this note is to provc more general results of this type, in which
we do not assume that 4, is ultimately positive.

2. Theorem 1. If f(x) = Z /.€"*, where the series is uniformly convergent in
n—O

the closed interval (0, ), if Z 2,=0, and if Z sp+logn is convergent, then

n=]

a“To f 'L(J-c—)— dx exists and is finite. Conversely, if Zlﬂe"“ is uniformly conver-
- F n=0

gent in the closed interval (0, n), if S,logn—~a, as n—-eo, and if Iy = f(x) dx—~1,
5

as 00, then Z s logn is convergent, where a and I are finite and S, = Z - R
n=1 r=0

iz
e
- round the closed contour formed by

Proor. If z = x + iy, integrating

|z] =a, |z]=na, 0= argz_;, and the segments of the real and imaginary axes,
we have
(1) fl_: dx = ——dt—rf(l """'°)d0+!f(l ") do.
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Now, if 0<d=<m, we have

E nn nd
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nmn né nmn né

[ e:‘x = e eix e | [ el'x

o Falf - |5 e=-Fal - [ |55

4 a n é

=—th
n=0
]

Putting a=n and a=4 in (1) and subtracting, we have

-1t ([

f (emée if emn 9)d0 +i f (eaae“’ iue 0)d0

Since the series >'A,e"* converges uniformly to f(z), when 0=x ==, I=0. we have

n=0

o [ e [ it G e

=/2 n/2
..if (f(ée"“)-—f(ne"’))dﬂd}-if (e — e'*")d0 . ZA,,.
n=0
0 0

Since e~ decreases steadily, when x =0, for every fixed a,0=a=n,
is a non-increasing function of n, n=1; and since

0,

na na na

1 | O 1 dx 1 e > i
- dx= — [ ———— dx =1 or _
logn x logn) x logn) x ll_ 1 fe x

’ ‘ . logn) x
a

according as a=0or =0, it follows that, foreveryfixeda,0=a=mr, - l f it

lo X

-2

logn f g “*

’
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is a non-decreasing function of n, n>1. Also, we have Oﬂlv—— f l—e_ dx =1

and so }— f e dx is uniformly bounded with respect to a and n0=a=mn,
logn . x

=>1. Consequently, if >4,-logn is convergent, by Abel’s theorem, it follows
ne=1

-

na
. ot - 1 —
that the series ZA,, J

dx is uniformly convergent, when 0=a=n; and

so, by (2), it follows that hm ff( )a't exists and 1s finite. Moreover, if Z’A logn

n=]
has bunded partial sums, by Dirichlet’s theorem, it follows that f Fis )dx is boun-

ded, as § - +0. We have, thus, proved more than what was contamed in the
statement of the theorem.

To prove the second part of the theorem, we observe that, if one of the two
integrals

e —1

f __f(;_fl dx and f (x)a'(e”‘)
4 o

is convergent or bounded, as é -~ +0, so is the other, because the diﬂ'erence of the
Iz( )
1'—e®*

-, and the segments of

two integrals is absolutely integrable in (0, x). Now mtegratmg

the closed contour formed by |z|=4, |z|=n, O0=argz= -2

the real and imaginary axes, we have
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Therefore, we have

f(x)d(e'x} Z’ l e ‘f“ (l . GM" } uu-‘o

ol
ue' "

]

méel’ —&n o -
+Z)- f (l prIe d( mm Z f l_ é—dg Z;'"f ll —_g‘_d:‘*-
]

n/2 n/2

f(me®) deiery—i | SO gty _

1= In" 1 3“ ]

+1

) 5o 5 P
_of e fl—ad“

n/2

n/2
+lj f(nel’) d(eixei')__l-'/. l.f(ae::.)'s d( u!e-o
]

| ei:e!ﬂ
L]

where (&) = D 4,-&" 0=¢=1. So, it follows that, if
n=0

e~9

oo -2 o=
@ = 34, f"% =24‘-..[e‘*’+92‘+ A+

ma=] n=]1 n

!, tends to a definite finite limit or oscillates finitely, as é - +0, according as
f == (x) ===2-d(e') is convergent or bounded.

Also, if e=% = 1 -T\;—Z’

N+l 8 N+1 r N-+1
e 1 1
r=1 *}— N r=2l' r [ h_] r=1 [ Z +0 [NZ]]

N+1

I
_Z r+o[ ] logN+r+uN+l+O[N]

where N is any positive integer. we have

where r is Euler’s constant and w, tends steadily to zero, as n <.
It follows easily that, if N is fixed,
2"‘5 e
r

. r=1 v
LS Tognr =0

-rd
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Also we have
- e—m’

2 ey = lutlith,

N —nd N2 -né oo —nd 2
e e e N
I =.,=§T; nlogn’ L _g;: nlogn’ Iy _,,§+1?logn’ N = [loglgN]’

where [x] denotes the greatest integer not exceeding x. It follows easily that 7, —~log 2,
I,-0 and I3-+0, as N—+-<=,
Now, we have

N i ]
e e
.21 P Kad I Y P Laid ES AR
n=1 r=1 n= V+l

=1

M 50 o S -
}].‘,:";:2,,[’;: :, [I—N—j]] :n;l'd,.[r;; ,l. [1-;§+0[‘\:2]] -
S AL LIS I

N

= D logn+ ZA. U, — g+ O(1) = Z} logn+ H+0(1),

n=1

where H = —ri,+ Z) A, ¥ and u, having the same meaning as before. Also,

since by hypothesis, .S' log n -, as n—-, we have

fikie 3 A,.[Z"e:a — lim >4, [ 3 "‘]:

n=N+1 r=1 M~ N1y

! M L . M e~
- im 2650 27 = am[sa 2 7]
ZM" e~
lo gM

N+1 _
e rd
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o llm Z'Sn 1 —"“‘SNZ e—r— = llm [(SJ“IOEM)

M-W)- r=1

e—"é -

r= I r &

I e
—nd - -M’

ta Z = —(Sylog N)(1+0(1)).

= — Z(S..  log n—2)

log n

Since we have proved thaat

o

e-né

————log2, a8 N-—-o
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by (3) and (4), it follows that 2 i, log n converges or oscillates finitely, according

n=1
as f —ﬂxi) dx converges or occilates finitely, as é — +0; and this completes the

proof of the theorem.
Remarks. (i) Since, by hypothesis, S, -0, as n - ==, it follows easily that

- rid
)=
Also, we have

B e e i

~2
1 n nn—1)
5[ L | e

3
]
2
|
+
= "

Now, we have

oo = N e_,.a N2 S N l
La=— 2 § =5y > 3 S5, 32 00)
=N+ r=1 F n=N+1 N r=1 I

Also, we have
.5—2’» [2’ ]+0(1)~ (S,—S,- 1)2 +0(1) =

N

R e P I, LT
n r=1 I

ne=]

%]

Therefore, we have
NZ

ol
LahotBpee Z: 3 Lyo).

Consequently, by (3) and (4) it follows that
hl
JLETS S

where H is a fixed number.
(i) An analogue of Theorem 1 for power series can be stated as follows:

a,

——=), a8 n-—+e
r+1 i

Iftr,.=
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any two of

(I) f(x) ="Z:a,,x"—~!, as x—-1-0,

(11) na,~k, as n—o=,

(111) n_s; a, is convergent, where | and k are finite, imply the third.

PrROOF. Let x = 1 — ; , where N is a positive integer and ¢ is a fixed positive

number (¢<=N). We have

N N n r N
D " = Za.Z’H)'[”][“] = Da,+M,
n=0 n=0 r=0 r)\N n=0
where
N n n c r
w=Za S (7[5
Also, for every fixed r, r =1, we have

N

et 5[t 4 3o icnca-

n=]

n
r [~ n—1 1 J"'[r]llm"'_'
N Tt N _-N".;z,[[r]_[ r ]]”""-“Nf,,;; e

where f=a, or 0, according as r=1 or =1. Now, it is easy to see that, if no, -k,

k : ? h
as n—»eco, v, - as N e, r being fixed, and that v,-r! is uniformly bounded

with respect to r, as N —c<o. Consequently, it follows that M tends to a definite
finite limit, as N — =,
Also, we have

oo M
Zanx“ = lim Z(oil_au—l)(”+l)x” 2
N+1 M=l

oe .- ol
= —(N+2)x"*1.0y— 2 no,_, (¥ D =0t ]
N+2 n

It follows easily that > no,_,(x"—x""!) tends to a definite finite limit, as N — <.
© N+2

To prove that > 6,_, x" tends to a definite finite limit, as N -, we have
N+2
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and
&b N+1 _g»
szlt: =—log(l—x)— 2: lﬂ = log N—logc—
N+1 2
| n(n—l)c ) (N+1)ce*
_,,2‘: n N T N7 _] N "'H“H[c_—z‘ﬁr?zf"““‘ o

as N =, k, and p being finite. Moreover, if S, = Za and if Za is convergent,

Z’ a,x" is uniformly convergent in (0, ). Since, by hypothesrs G, —»0 as n—-o, we
n=0
have

—~Z __nzs s, bt g g ey

ey 1 n+2 ,._2r(r+l)

and so no, tends to a definite finite limit, as n -

Theorem 2. If f(x)= E’ A", A, being real and the series being uniformly con-
n=10

vergent in the closed interval (0, n), if >2,=0 and if w=' S,—~0, as n—-o=, where
r=0
rei
Re(e? f (x)

n
S,= 24, andr is any fixed number such that 1 <r<2, then alim ¥ f =
r=0 -

a
exists and is finite.

Proor. Integrating round the closed contour formed by the semi circles [z] =4,
|z|=n, 0<d-<=m, in the upper half plane, and the two segments of the real axis,
we have

sf(-x)dx *f(x)dx = f(;r[e"’)e (r=1)i0 f(3ei®)e-r-1io
mf (—xY +f ¥ f a0+ i f S,
o P

because the series > 2, €' is uniformly convergent, when —7n =x = n, y=0.
1 a=p ke o g
Let 5=-AF, where N is any positive jinteger, and let denote the semicircle [z| =0,

O=argz=n. We have

orl

0 4 A

N ni.. v nl. Ly
-4 [ £y 5 [ 8 g,
N+1

4 £ A

f(ée"’)e el _f(z)_d.._ £ 2“: ; f ehds
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But, we have

N g N-1
IJ e I'Nr-l Zlnfenﬂeme-(r—l)wdo Nr IZS f(l Jdel’”)e)liée"*’e—(r-l)wdg_'_
=0 0
n o N-— l )k
+ l'N'_'Sv f ieie —(r l)ioda iNT— IZ f lua(l zaeh‘?)e—(r I):ed9+
: 0 k 0 n=0

n

+fNr_lS\r ferem.e—(r-l]iﬂdﬂ_
]

Since 1 —ei%"” = —ijei®+0(82), and n*—'S,—0 as n—o=, it is easy to see that, if

1
wi(N) = N™ IZ(:)S(mo)" f MO (] — glde) p=r=1)i0 g

wi(N). (k!) tends to zero uniformly with respect to k, as N - ==, Consequently, it

follows that I, -0, as N —»ee,
Also, integrating by parts, we have

M niz (N+1)iz o iz} iz
e"dz e d (Iu—e )e" dz
I, = lim Ay =-S5 _—— —
N—=co ll-%':l df zr NJf ol f
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(N+1)iei®
5 . me®tViE) g ¥ - = i ey
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+:\Zl' n(n+l)!z ] +,n;1' (n+ )iz ] NT1 n-fJf Pasl i
o r ell‘l-i‘l]l.dz
+N§S".;(n+l)f! o
Therefore

1 00 1 ar=1
] = eyl 2ne SV Sy gyees SIS

+1
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oo _1 - -1
+2arN*-1 D) - —'?§—'+, N > o

N+1 N+1
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T ?
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where Ay=max [n"~'S,| (n=N, N+1, ...). We have, thus, proved that 7, -0, as
N — ==, Now, the theorem follows easily, if we take the real part of each side of (5).

Remark. By the method of proof of Theorem 2, it is easy to prove that, if
f(x)= > 4, €" ", 2, being real and the series being uniformly convergent in (0, 7),

n=0

and if nS, tends to a definite finite limit, as n —~ <, each of the limits

4
lim —&:‘f(x)gf— and lim = anJ) (x);fx 3
s~+0y x%.logx o=+0 7 x*((log x)* +n?)
exists and is finite; further, if 4, is ultimately of constant sign, then ;E{EE%EL(O, 7).
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