Characterization of rings whose classical
quotient rings are perfect rings
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1. Introduction

Rings with descending chain condition on principal right ideals have been
studied by Bass ([3]), FartH ([4]), KApLANSKY ([10]) and SzAsz ([16], [17], [18]).
Bass ([3]) studied rings R such that every left R-module has a projective cover.
He called these rings (left) perfect. He proved that this class of rings coincides with
the class of rings having d. c. c. on principal right ideals. There exist at least two
characterisations of rings that are orders in Artinian rings, see GUPTA and SAHA
[9], RoBsoN [14] and SMALL [15]. In this note orders in perfect rings and orders
in semi-primary rings are characterised in sections 3 and 4. In section 5 it is shown
that R is an order in a perfect (semi-primary) ring if and only if R,, the ring of n X n
matrices, over R is an order in a perfect (semi-primary) ring. Finally, it is shown
by an example that if R is an order in a semi-primary (perfect) ring, then R[x] is
in general not an order in a semi-primary (perfect) ring.

2. Definitions and basic results

Let R be a ring containing regular elements. A ring S with unit containing
R is said to be a right quotient ring of R if s€ S implies s=am~!, with a¢ R, m a
regular element of R.

AsANoO [1] has shown that if M is a multiplicatively closed set of regular elements
of R and R has the common multiple property with respect to M:

If ac R, me M, then there exist a,, m, € R with m, € M such that am, =ma,,
and then there exists a quotient ring S of R in which the elements of M are invertible.

2.2 A right quotient ring Q of R is said to be a classical right quotient ring
of R if all the regular elements of R are invertible in Q. The classical right quotient
ring of R if it exists will be denoted by Q(R). It is well known that Q(R) exists if
and only if R satisfies the common multiple property with respect to the set M of
all regular elements of R.

2.3 It has been proved by Bass [3] that Q is perfect if and only if Q/J(Q) is a
semi-simple Artinian ring and J(Q) is left T-nilpotent in the following sense:

If {a,} is any infinite sequence of elements of J(Q), then there exists N such
that a,, a,, ..., a,=0, where J(Q) denotes the Jacobson radical of Q.
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2.4 A ring Q with unit is said to be semi-primary if J(Q) is nilpotent and
Q/J(Q) is semi-simple Artinian. Clearly, a semi-primary ring is a perfect ring.
The following result follows from the definition:

Proposition 2. 5. 4 homomorphic image of a perfect ring is a perfect ring.

Proposition 2. 6. I Q is a perfect ring and a is a right regular element of Q, then a
is invertible in Q.

PrOOF. The chain aQ>a*Q>...=a"Q > ... stops giving a"=a"*'h for some
n and some b. Hence |1=ab. Now, a(ba—1) = (ab)a—a = 0; so (ba—1) =0
also.

Corollary 2.7. If R has a right quotient ring Q which is perfect, then Q is a
classical right quotient ring of R.

Proposition 2. 7. If R has a classical quotient ring Q which is perfect, and N is
an ideal of R such that whenever a is regular in R, a+ N is regular in R/N, then
Q(R/N) exists and Q(R/N)=Q/NO.

PrOOF. Let M = {m+ N|m regular in R}. Clearly, M is a multiplicatively
closed set of regular elements of R/N and R/N satisfies the common multiple pro-
perty with respect to the set M. Therefore (R/N)y exists. It can be checked that
am~'—(a+N)(m+N)~! is well defined map of Q onto (R/N)y and is a ring
homomorphism. The kernel of this homomorphism is NQ. Consequently

Q/NQ=(R/N)x.
Now by 2.7 and 2.5 it follows that (R/N)y=Q(R/N). Hence Q(R/N)=Q/NQ.

Proposition 2. 8. If R has a classical right quotient ring Q which is perfect, N’
is an ideal of Q" and N = N’(\R, then whenever a is regular in R, a+ N is regular
in R/N. Also, if N"<J(Q), then a+ N regular in R/N implies a regular in R.

PROOF. Suppose a is regular in R. axéN, x in R, implies axc N'. a~'axc N’.
x£N'[1R = N. Similarly xa€ N, x in R, implies x€ N. Now, assume that N < J(Q)
and a+ N is regular in R/N. By 2.7 it follows that Q(R/N)=Q/N’ because
(N'MR)Q = N’. Nowa-+N is invertible in Q(R/N). Consequently by its image
a+ N’ is invertible in Q/N’. There exists b in Q such that ab— 1, ba— 1N J(Q).
Consequently ab and ba are invertible in Q. Therefore a is invertible in Q. Hence
a is regular in R.

Proposition 2. 9. If 0= N is a left T-nilpotent ideal of a ring R, then there exists
0=xeN such that xN = 0

PROOF. Assume that there exists no such x. Let 0= x,; € N. Assume there exist
Xy, X3, ...s X, in N such that x;x,x; ... x, =0. Assumption implies that there exists
X,+1 €N such that x;x,x;3 ... x,X,., #0. That contradicts the left T-nilpotency
of N.

Proposition 2. 10. (Mark L. Teply) A4 simple left T-nilpotent ring R is a trivial ring.

ProoF. Let I = {x:xR = 0}. I is a two-sided ideal of R and 70 by 2.9.
Hence /=R. R?>=0. 2
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3. Perfect quotient rings

Definition 3.0. For any ring R, we define T,(R), an ideal of R as follows:
To(R)=(0). T,.1(R) = {x:x€ N(R), xN(R) — T,(R)} for an ordinal number of
the type z+1, and T,(R)= U Ty(R) for a limit ordinal «, where N(R) denotes

fi=a

the upper nil radical of R.

Theorem 3. 1. A ring R has a classical right quotient ring Q which is perfect if
and only if

(i) N(R), the upper nil radical of R, is left T-nilpotent.
(1) R/N(R) is a right Goldie ring.
(it1) @+ N(R) regular in R implies a is regular in R.
(iv) a,R, is an essential right ideal of R, for every right regular element a, in
R, and for every ordinal number » where R,=R/T,(R).

ProoF. Necessity. Assume that R has a classical right quotiént ring Q which
is perfect. Notice that J(Q) is nil and therefore N(Q)=J(Q). It is proved in [8,
Theorem 4. 1] that N(R) = N(Q)(" R. Therefore N(R) is left T-nilpotent. Also
(iii) follows by using 2. 8. Also by using 2.8 and 2.7 it follows that Q(R/N(R))
exists and Q(R/N(R))=Q/N(Q). As Q/N(Q) is semi-simple Artinian, R/N(R) is
a right Goldie ring [6]).

In order to prove (iii) for x=0 we have to show that aR is an essential right
ideal of R every right regular element @ in R. Now a being right regular in R a is
also right regular in Q. Therefore a~'£Q by 2. 6. It is sufficient to prove that
aRNbR =0 for every 0%b in R. Now a~'béQ=a'b=cd- ', ¢,d in R.
bd=ac=0. Hence aRbR # 0.

Now to prove (iii) for every ordinal number « we note in the next lemma that
for every ordinal « T,(R)=T,(Q) " R. By using 2. 8 and 2. 7 it follows that R/T,(R)
has a classical right quotient ring isomorphic to Q/7,(Q) which is perfect. The
case =0, therefore, implies (iii) for all =.

Lemma 3. 2. If R has a classical right quotient ring Q which is perfect,

T,(Q)NR =T,(R)

7 ordinal .

ProoF. Trivial for 2=0. Assume T,(Q)( 1R = T4(R) for f=u. If «is a limit
ordinal, then

T,(R) =ﬂl:_J (T4(R)) =§g__J (To(Q)R) = (ﬂU T4(Q)NR = T,(Q)NR.

Assume now that z = 41 for some f. Then T,(Q) 1 R = T4(R). Let x€ Ty, ,(R).
Then x< N(R)< N(Q) and xN(R) < T4(R). Therefore xN(R)Q < T4(R)Q. xN(Q)c
C T4(Q). because N(R)Q=N(Q) and T,(R)Q=T,(Q). Hence x € Ty, (Q)NR.
Conversely, suppose x € Tp.,(Q)R. Then x € N(Q)(NR = N(R) and xN(Q)C
CT5(Q). xN(R) < T4(Q)N R = Ty(R), x£ Ty, ,(Q). Hence T,(Q)N R = T,(R) for
every ordinal number .
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Before proving the sufficiency part of 3. 1, we prove first a lemma.
Lemma 3. 3. Let R be a ring satisfving conditions (1), (ii). (iii) and (iv). Let
M = {ac Rla+ N(R) regular in R/N(R)}.

Then M is a non-empty multiplicatively closed set of regular elements of R. If ac M
then a+ T,(R) is right regular in R/T,(R) for every ordinal number x.

PROOF. M is non empty because R/N(R) contains regular elements [6, Theorem
3.9]. Also M is a closed set of regular elements in R, because of (iii) and because
the set of regular elements in R/N(R) is closed. Now assume a< M. a being regular
in R is right regular in R. That proves the assertion for 2 =0. Now assume that
ay = a+ Ty(R) is right regular in R, for every f<ua. If « is a limit ordinal, then
ax<T,(R), xR implies ax€ Ty(R) for some f<a. Therefore by the induction
hypothesis, x € T3(R). x€ T,(R). Now let « = B+ 1 for some f. Suppose ax< T, (R)
for some x in R. axN(R)<= T,(R). By the induction hypothesis xN(R)<=T,(R).
Also axc Ty, (R)=>ax< N(R). which implies x¢ N(R), as a+ N(R) is regular in
R/N(R). Hence x € Ty, ((R). Hence a+ T,(R) isright regular in R/T,(R) for every
ordinal number .

We are now ready to prove the sufficiency part of 3. 1. We prove below a result
which, in view of lemma 3. 3, implies the sufficiency part of theorem 3. 1.

Proposition 3. 5. Let R be a ring such that
(i) N(R) the upper nil radical of R is left T-nilpotent.
(i) R/N(R) is a right Goldie ring.

(iit) There exists a multiplicatively closed set M of regular elements of R such
that the elements of M = {m+ N(R)m& M} are regular in R/N(R) and (R/N(R))g
exists and coincides with Q(R/N(R)).

(iv) For every mec M and every ordinal number =, m,R, is an essential right
ideal of R,, where m, = m+T,(R). Then Ry exists and is perfect.

Before proving this result we prove two lemmas.

Lemma 3. 6. Let A be an arbitrary ring and B, an ideal of A. Let a,bc A be

such that aA is an essential right ideal of A and bB=0, thenb-'(aA) = h-'(ad)+ B
is an essential right ideal of R/B, where b='(aA) = {xc Rbxcad}.

Proor. It is sufficient to prove that I"Nb~'(ad) contains an element of B,
whenever I is a right ideal of R not contained in B. Let 7 be a right ideal of R not
contained in B. Either b/=0, in which case /MNb-'(ad) = ILB. If bI0, then
bIMNaA # 0, because a4 is an essential right ideal of 4. Therefore there exists x €/,
v€ A such that bx=ay0.x € INb~1(ad). x€ B, because x¢ B gives bx =0, which
is a contradiction.

Lemma 3.7. If R is a semiprime right Goldie ring, and M a multiplicatively
closed set of regular elements of R such that Ry, exists and coincides with Q(R), then
every essential right ideal of R contains an element of M.

PROOF. Let 7 be an essential right ideal of R. Then 7 contains a regular element
[6, Theorem 3. 9]. Therefore /Q=0Q. But IQ=IRM ={rm~'rcl. mc M} [15, Cor.
1. 5). Hence 1 =rm~1 for some rcl, me M. Therefore m(=r)<cl.
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PROOF OF 3.5. Assume N(R)#0. By 2.9 it is immediate that T,(R)=0. In
general if T,(R)EN(R), then T,(R)ET,.,(R). From the definition of 7,.,(R)

Ty 41 (R)T,(R) = {x+ T,(R) € N(R)/T,(R)|(x + T,(R)) N(R)/T,(R) = 0}

As N(R)/T,(R) is left T-nilpotent 7, ,(R)/T,(R)#0by 2.9. Hence T,(R) & T7,.,(R).
So T,(R)= N(R) for some ordinal number v. Now we prove that for every a, ma
in N(R) m in M there exist a,, mya, in Rm, in M such that am, =ma,. This is
trivial if a€ Ty (R)=(0). Assume this is true for all @€ T3(R) where f<uo. If 2 is a
limit ordinal and a¢ T,(R), then a€ Ty(R) for some <o and again the result fol-
lows. If, however, « = f+1 and a€T,(R), me M then denoting a+ Ty(R) by a,.
ag(N(R)/T4(R))=0, and myR, is an essential right ideal of R; by condition (iv).
By 3.6
ag "(mgRy) = ag ' (mzRy)+ N(R)/T,

is an essential right ideal of (R/T,(R))/(N(R)/T;(R)). As (R/Ty(R)/(N(R)/T4(R)) =
= R/N(R), it follows by conditions (ii), (iii) and Lemma 3. 6 that there exists d< R
such that ayd;emyR, and d+ N(R) € M. Therefore d+ N(R) = m’+ N(R) for
some m'eM. agmy = ag(m’ —d)y+agdgc myR; because ay(m’—d); = 0. There
exists @’ € R such that am” —ma’ € Ty(R). By the induction hypothesis there exist
a’,m’,a” in R m” in M such that (am” —ma")ym” = ma”. aim'm”) = m(@m” +a").
The result is now proved by taking d=v.

Now to show that Ry exists let a€ R me M. As (R/N(R))y exists, there exist
ay,, mya, in Rm, in M such that am, = ma,. an;, —ma, € N(R). There exista,. m,
a, in R, my, in M such that (am, —ma,)m, = ma,. a(m;m,) = m(a,m, +a,).
Hence R, exists.

To prove now that Ry, is left perfect it is easy to check that the map am~! —
—~(a+N(R))(m+N(R))~! is well defined and is a homomorphism of R, onto
(R/N(R))iy=Q(R/N(R)). The kernel of this homomorphism is N(R)R,;. Con-
sequently, N(R)R,, is a two sided ideal of R, and Ry /N(R)R,, being isomorphic
to Q(R/N(R)) is a semi-simple Artinian ring. It is sufficient to show that N(R)R,,
is left T-nilpotent. Now N(R)Ry = {nm~'lne N(R), me M} [15, Cor 1.5]. Let
{nym; '} be any sequence of elements of N(R)R,,;: We show that there exist se-
quences {n;} and {m;} of elements of N(R) and M respectively such that

namiingmst...nm;t = (ny ... 0)m,=2 Vr.

And this gives that the given sequence is left vanishing. We can take n;=n, and
mi=m,. Assume that there exist ny,n3,...,n, ¢ N(R) and mjy, ...,m.€ M such
that

nyomi'nymzt...nm;t = (niny ... n))m, "1,

Post multiplying by n,, ,m},

1 1

i a -1 =1 .o’ ” L | -1
Y SIS e B L iy = (A s BT My ( Dhiy i

Now m,~'n,,,=am~1, ac R, mé M. So that we can take n,,, =a and m,,, =
=m,, m if we know that a¢ N(R). We know that n,, ,m=m,a. So m, ac N(R).
Therefore a € N(R), because m, + N(R) is regularin R/N(R). Hence Ry, is left perfect.
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4. Semiprimary quotient rings

It is easy to see that 7T, = /(N(R)*) I N(R) for all integers k. If N(R) be nil-
potent of index n. then 7,_; = /(N(R)"~')NN(R) = N(R). In the "only if” part
of 3.1 if J(Q) is nilpotent then so is N(R) because N(R) = J(Q) R. Conversely,
if N(R) is nilpotent, then N(R)R,, is also nilpotent is clear by going through the
argument used. Consequently we have the following

Theorem 4. 1. A ring R has a classical right quotient ring Q which is semiprimary iff

(i) N(R), the upper nil radical of R is nilpotent,

(1) R/N(R) is a right Goldie ring,

(ii1) If a+ N(R) is regular in R/N(R)., then a is regular in R,

(iv) xR, is an essential right ideal of R, for every integer k and every right
regular element a, in R,.

Stronger version of the ‘if " part can be phrased easily.

5. Matrix rings

If Q is a left perfect ring, then Q,, the ring of all n X n matrices over Q is also
left perfect, see Bass [3, page 475). If Q be semi-primary, then J(Q,) =(J(Q)), which
is nilpotent and therefore Q, is semiprimary. (R is said to be an order in Q if Q is
the classical right quotient ring of R.)

Theorem 5. 1. A ring R is an order in a perfect (semiprimary) ring iff R, is an
order in a perfect (semi-primary) ring.

ProoF. Assume that R is an order in a perceft (semi-primary) ring Q. Let
[9:;1€ ©,. There exists m regular in R such that g;m¢eR Vi, j=1,2,...,n[I5, Lem-
ma 1. 4]. Then

[9:]] = [gi;m]ldiag(m, m, ..., m)]~1.

Hence R, is an order in Q,.

Conversely, suppose R, is an order in a perfect (semiprimary) ring, then N(R,),
the upper nil radical of R,=/(R,), the lower nil radical of R, = J(Q,) R, [8, The-
orem 4. 1]. But /(R,) = (/(R)), [13, Cor. page 101]. Hence /(R) is left T-nilpotent
(nilpotent). Now R,/N(R,)= R,/I(R,)= R,/(I(R)), = (R/I(R)),. Therefore (R//(R)),
isa right Goldie ring. Consequently R//(R) is a right Goldie ring. Hence N(R) =I(R)
[8, Cor 3. 3, page 92]. Therefore N(R) is left T-nilpotent (nilpotent) and R/N(R)
is right Goldie ring.

Now it is easy to check that (7,(R)),= T,(R,) V ordinal a. Therefore
(R/T,(R)), = RJTAR,) = T,(R,). If a, is a right regular element in R,, then
[diag(a,, a,, ..., a,)] is right regular in (R,), and therefore [diag(a,, a,, ..., a,)] (R,),
is an essential right ideal of (R,),. Hence a,R, is an essential right ideal of R,. Now
to prove (iii) suppose that @ + N(R) be regular in R/N(R). Then diag(a.a.....a) +
+(N(R)), is regular in R,/(N(R)),. But

Rnr'r(N(R))n = R,/N(R,).

Therefore diag(a, a, ..., a) is regular in R,. Hence a is regular in R.



a3
[
j—

Characterization of rings. . .

6. Polynomial rings

It is well known that if R be an order in a right Artinian ring, then R[x] is an
order in an Artinian ring. An example of ring R such that R is an order in a semi
-primary ring, but R[x] is not an order in a semi-primary ring. In fact the ring R
is semi-primary, but R[x] has no classical right quotient ring.

Let R={[g i] \a, b real, ¢ rational}.

Let f(x) =x— [g I:_] , where a is a transcendental real number, b any real num-
ber and ¢ any rational number. Then it can be verified that f(x) R[x] " zR[x] = (0),
where x:[g [l)] Hence f(x) R[x)] is not an essential right ideal of R[x]. However,

f(x) is a regular element of R[x], because f(x) has regular leading coefficient.
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