Abelian pseudo lattice ordered groups

By PAUL CONRAD') (New Orleans) and J. ROGER TELLER ?) (Washington}

1. Introduction

Throughout this paper only (additive) abelian groups will be considered. An
o-ideal C of a po-group G is a directed subgroup of G such that 0=g=c<C and
g€G, imply g€C. A value of 0=g<cG is an o-ideal M of G which is maximal with
respect to gé M. Let

M(g) = {MSG|M is a value of g} and M*(g)= N M(g).

Two positive elements a, b€ G are pseudo disjoint (p-disjoint) if a€ M*(b) and
bec M*(a), and G is a pseudo lattice ordered group (p-group) if each g€G has a
representation g = a — b, where @ and b are p-disjoint.

Throughout this paper G will always denote an abelian p-group

The concept of a p-group was introduced in [2] and we shall make use of the
theory developed there. In particular, a, bcG* = {gcG|g=0} are p-disjoint if
and only if
*) c=a and b implies nc=a and b for all n=0.

Thus, each lattice ordered group (/-group), and hence each totally ordered group
(o-group) is a p-group. ,

In [5], the main result asserts that G is also a Riesz group. Our first result shows
that (*) is sufficient for a Riesz group H to be a p-group. Moreover, it is shown
in [5] that, if @ and b are p-disjoint in G, then {0=m¢ G|m=a and b} is a convex
subsemigroup of G* and hence, is the positive cone for an o-ideal

H(a,b) = [{0=mcG|m=a and b}]

where [S] denotes the subgroup generated by the subset S of G. Also, H(a, b)
C M*(a) 1 M*(b), and clearly, G is an /-group if and only if H(a, b) = 0 for each
pair of p-disjoint elements a, b of G. Most of the results in this paper point up
the similarity between p-groups and /-groups. The measure of the difference is the
set of o-ideals H(a, b).

') Supported by grant GP 9004 from the National Science Foundation.
) Supported by National Science Foundation institutional grant GP2114 to Georgetown
University,
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Let  be a homomorphism of a po-group A4 into a po-group B. We say 1 is an
o-homomorphism if

(A7)NB*S (A*) T &SB*.

If A and B are p-groups, then t is a p-homomorphism if t maps p-disjoint pairs onto
p-disjoint pairs. Each p-homomorphism t is an e-homomorphism and so, if 7 is
one-to-one, then both 7 and ="' preserve order. In section 2 we derive the standard
isomorphism theorems for p-groups.

In section 3 we introduce the concept of the positive and negative parts of
an element of G and also the absolute value of such an element, namely.

gt=a+H(ab), g =b+H(ab), gl = g*+¢~ = a+b+H(ab)

where g = a—b with @ and b p-disjoint. These definitions are independent of a
and b, and if G is an /-group then these are the usual definitions. Also, most of the
usual properties of these concepts for /-groups remain true for p-groups.

In section 4 we investigate the o-ideal H of G that is generated by all the o-ideals
H(a, b). For example, if K is an o-ideal of G. then G/K is an /-group if and only if
K2 H. We also show, that each p-group G is a p-subgroup of a p-group V., where
V'* is the union of lattice cones, and then investigate when G is the union of lattice
cones.

In section 5 we show that a reasonably large class of p-groups are o-homo-
morphic images of /~groups.

Theorem 1.1. For a Riesz group H, the following are equivalent.

(i) H is a p-group.

(11) Each he H has a representation h = a —b, where aand bc H* and c =a and b
implies nc=a and b for all n=0.

(iii) For each g€ H, there is ac H* such that g =a, and whenever 0 and g=x,
then a = x+h for some he M*(a) \M*(a—g).

ProOF. Let H be a Riesz group. By Theorem 4. 5 of [2] we have (i) implies (ii)
and by Theorem 3. 1 of [5], (iii) implies (i). To complete the proof, suppose g< H
and g = a— b where a and b satisfy the conditions of (ii). Then ac H* and g=a.
If 0 and g = x€H, then H, a Riesz group, implies there is z< H such that 0 and
g=z=a and x. Let h = a—z=0, then x+h = a.

If /=0, then a=x so suppose 1=0. Clearly, a=handsince z=g, h =a—z =
=a—g = bsoh=aand b. By (ii), nh=a and b for all n=0. If M is a value of a
and hé M, then M = M+h and M+nh = n(M+h) = M+a for all n=0. But
by (3. 4) of [2). M'/M is o-simple, where M’ is the intersection of all o-ideals of H
that properly contain M. Since M +a £ M’/M. it follows that M +a = n(M +h)
for some n=0, a contradiction. Thus, he M. A similar argument for b yields
heM*(@) N M*(b) = M*(a) ) M*(a—2g).
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I1. The isomorphism theorems for p-groups
We denote by O(G). the set of all o-ideals of G.

Theorem 2. 1. The set O(G) is a complete distributive sublattice of the lattice of all
subgroups of G. Moreover,

AA(VyB)) = V(AAB,)) for A, B,c0(G).

Proor. By Theorem 4. 3 in [2], O(G) is closed with respect to arbitrary inter-
section. This theorem now follows from Theorem 5. 6 in [4] which asserts that for
a Riesz group, O(G) is a distributive sublattice of the lattice of all subgroups of G.

Proposition 2. 2. Suppose K< O(G).
(i) If a and b are p-disjoint in G, then K+a and K+ b are p-disjoint in G/K
and H(K+a, K+b) = %ﬁ'b]

(1) If X and Y are p-disjoint in G/K, then X = K+u and Y = K+ v where u
and v are p-disjoint in G.

ProoOF. (i) If @ and b are p-disjoint in G, then K+a and K+ b are p-disjoint
in G/K by (ii) of Theorem 1. 1 and

(K+H(a,b))/K = {K+x|xcH(a,b)} = [{K+x|0 = xcH(a, b)}].

If 0 = x€ H(a, b). then x=a and b so K=K+x = K+a and K+b. Therefore,
K+xe H(K+a, K+b). Conversely, if K = Xe H(K+a, K+b) where X = K+x
and 0<=x € G, then K <= K+x = K+a and K+ b, so there exists k,, k, € K such
that k, +x = a and k, +x = b. Since K is directed, there is k € K such that k=k,
and k, and hence, k+x and O=a and b. Also, there is z€ G such that C
and k+x =:z=a and b. It follows that zc¢H(a,b) and K=K+x =
= K+z¢(K+H(a.b))/K which is convex, so X = K+x¢c(K+H(a,b))/K.
(ii) Let X = K+xand Y= K+y be p-disjoint in G/K with 0=x and y in G,
and x —y = a—b where a and b are p-disjoint in G. Then K+a and K + b are p-dis-
joint, K+x = K+a+K+m and K+y = K+b+ K+m where K+m € H(K +a,
K+b) = (K+ H(a.b))/K. (See [5].) So, without loss of generality, m¢c H(a, b)
and hence, # = a+m and v = b+ m are p-disjoint.

Remark. One should now be able to prove that if X, ..., X, are (pairwise)
p-disjoint in G/K, then there are p-disjoint elements x,,...,x, in G such that
X; = K+ x; for 1 =i=n, but we have not been able to do so.

Induced Homomorphism Theorem. Ler A, B, C and D be p-group and «, f and é be
p-homomorphisms such that

o PSR
t t
'] | B
dt0p

Further suppose that 6 is onto and that K(8)2 = K(f), where K(3) = kernel 6.

15 D
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(a) There exists a unique p-homomorphism o* of D into C so that the diagram
cammutes.
(b) «* is an o-isomorphism if and only if K(8)S K(f)z~".

Proor. This is a standard result from group theory so we need only show «*
is a p-homomorphism. If x and y are p-disjoint in D, then by the last proposition,
there exist p-disjoint elements @ and b in A such that @é=x and bd=y. Thus,
xo* =adx* =anff and yo* =bda* =baff are p-disjoint in C.

Corollary 1. If A, BEO(G) and A< B, then B[A is an o-oideal of G/A and
the natural isomorphism of G|/B onto (G/A)/(BJA) is a p-isomorphism.

~ PROOF. Clearly, B/A is an o-ideal of G/A4 and the natural homomorphisms
%, fp and o are p-homomorphisms.

G/B (G/A)/(B/A)
t '
s B

G—* -Gl

Moreover, K(d)a2=Bxz=B/A=K(f) and K(f)z~' = (B/A)z~'= B= K(9). The
corollary follows by (b) of the theorem.

Corollary 2. If A, BEO(G), then the natural isomorphism of (A+ B)/A onto
B/(A[) B) is a p-isomorphism.

PrROOF. A+ B € O(G) and hence, is a p-group. It follows that (4 + B)/A and
B/(ANB) are p-groups and we have

B/(ANB) (A+B)/A
t t
d iﬂ
B—*-<-A+B
where, K(0)a=(ANB)a=ANBEA=K(p) and K(f)x~'= AN B = K(J).

Definition. A subgroup K of G is a p-subgroup if each k€ K has a represen-
tation k = a—b, where a and b are p-disjoint in G and belong to K.

In [2], Theorem 4. 3, it is shown that each M € 0(G) is a p-subgroup. In fact,
if g = a— b€ M where a and b are p-disjoint in G. then a and b€ M and are p-disjoint
in M. If = is a p-homomorphism of a p-group A into a p-group B, then clearly,
Amis a p-subgroup of B.

Lemma 2.3. (i) If M is a p-subgroup of G (or merely directed), then Mo =
={xcGla=x=b, for a,bc M} is the o-ideal of G generated by M. (ii) If AcO0(G)
and B is a p-subgroup of G, then A(|B ¢ O(B).

Proor. (i) Clearly, Mo is a convex subgroup of G that contains M. If x€ Mo,
then x=5b< M and since M is directed, there is m £ M such that 0 and h=m. Thus,
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Mo is directed and Mo is an o-ideal of G. Clearly, each o-ideal containing M must
contain Me.

(ii) If x € AN B. then x = u—v where v and v are p-disjoint in G and belong
to B. But A¢O(G)souand ve A and A Bis directed. Moreover, if0=x<y<A4( B
and x< B, then x ¢ A\ B and so A() B is convex in B.

Remark. If 4€0(G) and B is a p-subgroup, then is 4+ B a p-subgroup?
If so, then in Corollary 2, we need only assume 4<O0(G) and B is a p-subgroup.
This version of Corollary 2 is, of course, true for /-groups. Is the intersection of two
p-subgroups a p-subgroup? Both of these conjectures seem rather dubious and this
probably where the analogy between /-groups and p-groups breaks down.

Proposition 2. 4. A p-subgroup K of G is a p-group, but a subgroup of G that is a
p-group in the induced order need not be a p-subgroup.

Proor. If k is an element of a p-subgroup K of G, then k = a—b where a and
b are p-disjoint in G and belong to K. Let M be an o-ideal of K that is maximal
without a. If a< Mo, then O0=ag=meM, so ac M, a contradiction. Thus, ai§ Ma
so Mg = N, a value of a in G. Hence, bc NN K 2 M and a § NN K, which
by the last Lemma is an o-ideal of K. Therefore, hc N K = M. Example (7. 4)
establishes the remainder of the proposition.

II1. Principal o-ideals and absolute values of an element

For a subset § of G we define G(S) to be the o-ideal generated by S. Then
G(S) is the intersection of all e-ideals of G that contain S. If 0 = g€ G, then

G(g) = [{x€G|0=x=ng for some n=0}]

and G(g) is the intersection of all convex subgroups of G that contain g, ([2] p. 207)

Proposition 3. 1. Suppose g = a— bc G, where a and b are p-disjoint.
(1) G(g) = G(a+b) = G(a)+G(b).
(1) G(a) "\ G(b)= H(a, b)= H(na, nb) for all n=0. Thus, H(a, b) is the inter-
section of all o-ideals (or convex subgroups) of G that contain a or b.
(iii) x, yeG* are p-disjoint if and only if x and y = G(x) N G(p).

ProoF. (i) This is clear if g=0. So suppose g=0, then there exists z<G(g)
such that z=g = a—b and 0, and so z+b = a. By 4. 5in [2], it follows that 2z=a.
Thus, a, b= G(g) so G(a+b) S G(g). Since a, b G(a+b), g€ G(a+b), so we have
G(a+b) 2 G(g).

G(a)+ G(b) is an o-ideal that contains @+ b and any o-ideal containing a+ b
must contain G(a) and G(b). Therefore, G(a+b) = G(a)+ G(b).

(i) Clearly, H(a, b)S H(na, nb). Suppose, by way of contradiction, that
0 = x€ H(na, nb) but x£a. Then there exists a value M of x —a such that M +x =
> M+a=M and since M+na= M+x we have M+a > M. Thus, MEN
avalueofaand N+x = N+a = N. But nbh< N so xé N, a contradiction. Therefore,
H(a, b) = H(na, nb).
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If 0 = x€H(a, b), then x=a and x<=»b and so x€G(a)1G(b). Conversely,
if 0 = x€G(a)1G(b), then 0= x=na and nb for some n=0 so that x ¢ H(na,nb) =
= H(a, b).

(ii) If x and y are p-disjoint and u € G(x)(G(y), then let 0 and
u=veG(x)NG(y) = H(x,y). Thenu=v=xand y. Conversely, suppose that x
and y = G(x)NG(y). If z=x and y, then there exists we G such that 0 and
z=w=xand y so we G(x)NG(y) and nz = nweG(x)NG(y) = x and y. Thus,
by Theorem 4. 5 in [2], x and y are p-disjoint.

Theorem 3. 2. If g = a —bc G where a and b are p-disjoint, then

G(® _ G@+G®h) _ G 5 G®) _ G@ - G(@)
G@NGb)  H(ab)  H(@b)~ H@b) G ~ G(b)

where || denotes the cardinal sum.

G@ _  G@ _ Gbh)+G@ G
e Hab) ~ G@NGo)  Gb) _ Gb)

by the above proposition and Corollary 2 to the I. H. T., so the first and last parts
follow from the above theory

Let H= H(a, b) and for x€G(a) and y€ G(b) define the map

H4+x+y - (H+x,H+Y)

G(a)+G(b) . G(a) — G(b)
of H into 7 =

If H+x+y =H+X+7 for X€G(a) and y€G(b), then x—X+y—yeH < G(b)
and y—y€G(b). Thus, x—X€G(a)[1G(b) = H, and similarly, y — y€ H. Therefore,
G(ﬂ)+G(b) G(a)|_ G(b)

H

To complete the proof it suffices to show that H + y +x H implies H +x= H
and H+y = H. Now H+x+y = H implies there exists h ¢ H such that h+x+y=0
so we may assume x+y = 0, x = x, —x, and y = y, —y, where x,, x, and Yis V2
are p-disjoint palrs in G. Since G(a) and G(b) are o-ideals and \EG(a) 1~G(b}
we have x,,x, €G(a) and y,, y, €G(b).

By way of contradiction, suppose x,4 H. Then HS M, a value of x, and
xX;EM. Now

the map is an isomorphism of

(M+x)ANM+py)=M+x)\N(M+y,) =M

Forif M+z = M+x, and M+y,, then m; +z = x, and m,+z = y, for some
my,mycM. Let my, m,=méeM, then there exists reG such that 0 and m+:
=t =x, and y,. Thus, t€G@NGMB)=HEM and so M+z = M+t = M.
Hence, (M +x,) \(M +y,) = M and similarly, (M +x,)\(M +y,) = M.
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If M’ is the o-ideal of G that covers M, then M’/M is an archimedean o-group
and each positive element in (G/M)N(M’/M) exceeds every element in M’'/M
([2]. 4. 6). Thus, it follows that y;,y,¢M and so M+x+y = M —x, = M which
contradicts the fact that x + y is positive. Therefore, x,c Hand H+x = H+x, = H.
Similarly, H+y = H+y, = H. The proof is complete.

Consider ¢ = a—bcG where a and b are p-disjoint and define the positive
and negative parts and the absolute value of g as follows,

gt =a+H(@b), g~ =b+H(@b), |g|=g*+8" =a+b+H(a,b).

If G is an /-group, then H(a, b)=0 and these agree with the standard definitions
in [groups. In [5] it is shown that g = x —y, where x and y are p-disjoint, if and
only if x = a+m and y = b+m for some m¢ H(a, b). Thus,

g* = {xcG|g = x—y; x,y p-disjoint},

g~ = {y€G|g = x—y; x, y p-disjoint}.
In particular,

(1) g*Ug"SG* and |g|=g if and only if g=0, )
(ii) 0cg* if and only if g=0, if and only if g* =0, if and only if g = —(g~),
(iii) 0cg- if and only if g=0, if and only if g= =0, if and only if g=g*.
Thus, if g=0, then |g| consists of strictly positive elements. We next derive some
of the useful properties of g*, g~ and |g|.

@ gtr=g"; (g =g* |—-gl =g g—(@&*)=—-(")

PROOF. —g = b—aso(—g)* = b+ H(a,b) =g and(—g)- =a+H(a, b) =
=gt|—-gl=(-8)*+(—8)" =g~ +g*=|gl. Also, g—-(g*)=(a—b)—a+
+H(a,b) = —b+H(a, b) = —(g").

(b) lg| = {x+y|g = x—y: x, y p-disjoint} if and only if H(a, b) is divisible
by 2.

PrROOF Let H=H(a, b), A = {x+ylg = x—y; x,y p-disjoint} and assume
lg|=A. If heH, then a+b+helgl = A and so a+b+h = (a+m)+(b+m)
where me H. Thus, h=2m and so H is divisible by 2. Clearly, (g = g*+g~ 24.
If H is divisible by 2 and z€ |g|, then z = a+b+m = a+b+2m =a+m+b+m
for some m, me H. Thus, z€ A.

In the following theory we make use of the fact that g¥, g— and |g| are cosets.
Thus. we define n|g| by coset addition

nlg = lgl+...+ gl = na+nb+ H(a, b)
and note that n g|= {nx|x€|g|} if and only if H(a, f;) is divisible by .
(c) (ng)*=n(g*): (ng)~=n(g-); nl|g|=Ing| for all n=0.

PROOF. ng = na—nb where na and nb are p-disjoint and H (na, nb)= H(a, b).
Thus, (ng)* = na+ H(a,b) = n(a+ H(a, b)) = n(g*). Similarly, (ng)-=n(g"),
Ing| = (ng)* +(ng)~ = n(g* +g~) = n|g|.
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For subsets 4 and B of G we define A<B if a<b for all ac A, b B. Then
= is a partial order on the familty of all subsets of G, and clearly, |g/ =0, and
|g!=0 if and only if g=0.

@ @ g*=lgl, g =gl
(i) If g=0 and 0 <=m<n for integers m and n, then m|g <n|g.

Proor. (i) We must show a+H(a,b) = a+ b+ H(a,b). For x,y<H(a,b),
a+x = a+b+y if and only if x—y = b, and the latter holds by (iii) of Propo-
sition 3. 1. Thus, g* =|g| and similarly, g~ =|g.

(i) If xém|g| and y€n|g| withO<=m <n, then x = ma+mb+hand y = na+
+nb+k where h, k€ H(a, b). Thus, y—x = (n—m)(a+b)+k—he| (n—m}g = 0.

() For x,y€G and n=>0, |[x|=|y| if and only if n|x|=nly|.

PrROOF. Suppose |x| = a+b+H(a. b), |y| = u+v+ H(a, b) where a, b and
u, v are pairs of p-disjoint elements and n=0. If |x|=|y|, then H(a, b)=H(u, v)
and so n|x|=n|y|. Suppose |x|<|y! and consider n(a+b)+scn|x| = n(a+b)+
+H(a, b) and n(u+v)+1€n|y|. Let € H(a, b) such that §=0 and s, and 7€ H(u, v)
such that 7=0 and r. Then,

nla+b)+s =n(@a+b)+5s = n(@a+b+5), and n(u+v+1i) = n(u+v)+i =

= mu+v)+r.
Thus, since a+b+5< u+v+i we have
n(@a+b)y+s = n(a+b+5) = n(u+v+i) = n(u+rv)+t.

Therefore, n|x|<n|y|.

On the other hand, if n|x|=n|y|, then H(a, b)= H(u, v) and since G/H(a, b)
is semiclosed (nX positive implies X is positive for X € G/H(a, b)) we have |x| =]y
Suppose that nlx|<n|y| and consider a+b+s € [x| and w+v+1 € |y]. Then
n(a+b+s) € n|x| and n(u+v+1) € nly so n(a+b+s) <= n(u+v+t). Therefore
since G is semiclosed, a+b+s <= u+v+1t so |[x|<|y.

(f) If u€|gl. then u and g have the same set of values and if M is a value of
u, then M+u = M+g or M+u = M—g.

Proor. If uclg|, then u = a+b+h where hc H(a, b). In [2] it is shown that
g and a + b have the same set of values and in [5] it is shown that / belongs to each
value of a+b. Thus, g and v have the same set of values. If M is a value of u, then
either ac M and M+u = M+b=M—-gorbeM and M+u = M+a = M+g.

(g) |lg+h| = 2|g|+2|h| with equality if and only if g=h=0.

Proor. This is clear if g+h = 0. So suppose g+h # 0, g = a—b and
h = x—y where a, b and x, y are pairs of p-disjoint elements and consider u ¢ |g + A
and ve2lg|+2/h|. Thenv = 2(a+b+x+y)+p+qwherepc H(a, b)and g€ H(x,y).
Let 0 and p=céH(a, b) and 0 and ¢=dcH(x,y). Then, v = 2(a+c+b+c)+
+2(x+d+y+d) =w. leta=a+c¢, b=b+c¢, X = x+d, and y = y+d. Then
g =a—band h=x—j with a, b and X, j p-disjoint. It suffices to show w<w,
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Let M be a value of u, then by (f), M is also a value of g+h and M+u = M+
+é&(g+h) where ¢ = +1. Now

() Mta=M+2a, M+tx= M-+2X,

M+b=M+2b, M+j= M+2j.
Thus,
2 M4+u=M+e(g+h)=M+2(G+b+x+75)= M+w.

If we have equality in (2), then we must have equality in (1), so a, b, X, and j< M.
Hence, g+ he M, a contradiction. Therefore, uw and M+4+u = M+ w.

Let N be a value of w—u. If uéN, then N+u = N = N+w. If u¢ N, then
NS M, a value of u, and by the above, M +u < M +w so we must have M = N.
Therefore, N+u = N+ w for all values N of w—u and so w=>uwu.

Proposition 3. 3. For G, the following are equivalent.

(1) G is an l-group.

(2) |g+h| = |g|+|h| for all g, heG.

(3) g* is a single element for each g<G.

(4) If x and y are p-disjoint, then H(x,y)=0.

Proor. Clearly, (1) implies (2) and since g* = a+ H(a, b), (3), (4), and (1)
are equivalent. Suppose (2) holds, x and y are p-disjoint and 0 <cé€ H(x, y). Let
g=xand h =—y. Then g+h =x—y, |g+h = x+y+H(x,y) and |g|+|h| =
= x+y. Since x+y+c £ x+y we have |g+h| £ |g|+|h|, a contradiction. Thus,
H(x, y)=0 and (2) implies (4).

Proposition 3.4. A subgroup C is an o-ideal of G if and only if |x|=|c| and
ceC imply xeC.

Proor. Consider 0 # ¢ = a—b<C where a and b are p-disjoint. If c€ O(G),
then @ and b€ C so a+beC. Let x = u—véG where « and v are p-disjoint, then
ut+v+H@v) = |x| = |c| =a+b+H(ab). If |x|<|c|, then u+v <a+b <
= 2(a+b). If |x|=lc|. then u+v+ H(u,v) = a+b+ H(a, b) implies H(u,v) =
= H(a,b) and u+v+h = a+b for some hce H(a,b). Now —h =a =a+b so
u+v = 2(a+b>b). Thus,

0=y and v =u+v =a+beC

sou, vand x = u—veC.

Conversely, suppose the condition is satisfied and ¢ = a—b = a+b = x.
Then, |x| = a+b = 2a+2b+H(a,b) = |2c|. Thus, x€C so C is directed. If
O0=y=ceC, then |y|=|c| so y€C and C is convex. Hence, C is an o-ideal.

Proposition 3.5. G(g) = G(/g)) = G(g*)+G(g~) = {x€G||x| = nlg| for
some n=0}. .

PrOOF. Let g = a—b with a and b p-disjoint, then G(g) = G(a+b) =
= Ga)+G(b). If 0<=xcG(a), then x=nacG(g*) for some n=>=0 and so G(a)=
CG(g*). If xegt, then x = a+m, me H(a, b) and since H(a, b)) S G(a), we have
x €G(a). Therefore, G(a)=G(g*) and similarly, G(b)=G(g~) so G(g) = G(g*)+
+G(g™). If 0=xcG(g), then x = n(a+b) and a+bcG(/g)) so G(g) < (Glg).
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If z€|g.,then z = a+b+m where méc H(a, b)) S G(a) S G(a+b)so z€G(a+bh) =
= G(g). Hence, |g/SG(g) and, since G(|g|) is the o-ideal generated by |g|, we
have G(l¢)S G(g).

Let X={x€G|lx|=n|g| for some n=0} and assume g=0. Now ngcG(g)
so if |x|=n|g|=Ing|, then xc G(g) by Proposition 3. 4. Thus, G(g)=X. Equality
will be established if we can show X is a group, for then X is an o-ideal that contains
g and so X=G(g). If x and y<€ X, then |x—y| = 2|x| +2|—y| = 2|x|+2|y| where
|x| and |y| =n|g| for some n=0. Thus, x —y| = 4n/g| so x—y< X and X is a group.

Proposition 3. 6. If S is a subgroup of G and G is divisible by 2, then
T={xcS|y|=|x| implies ycS}
is the largest o-ideal of G contained in S.

The proof is straightforward and will be omitted.

1V. The o-ideal H and prime and lex o-ideals

Let H=V{H(a, b)| a and b are p-disjoint in G}.
Theorem 4. 1. For K€ O(G), the following are equivalent.
(1) G/K is an l-group.

(2) K2H.

Proor. If G/K is an /-group and a and b are p-disjoint in G, then K+a and
K+b are p-disjoint in G/K and (K+a)\(K+b) = K. If 0=me H(a, b) then
K=K+m=K+aand K+bso K+m = K. Thus, mé K and H(a, b)S K. There-
fore, K= H.

Conversely, suppose that K= H and let XcG/K. Then X = K+g = (K+a)—
— (K +b) where by Proposition 2. 2 we may assume a and b are p-disjoint in G.
By the same proposition,

H(K+a,K+b) = (K+ H(a, b))/K = K.
Thus, (K+a)AN(K+b) = K and G/K is an [group.
Corollary 1. G is an I-group if and only if H=0.
Corollary 2. The following are equivalent.

(a) There exists an o-ideal K of G such that both K and G/K are I-groups.
(b) H is an l-group.

Proor. If (a) is true, then K2 H and so H is an /-ideal of K and, in particular,
H is an [-group. The converse is trivial.

Corollary 3. If {G;l6€ 4} is a set of o-ideals of G such that each G|G; is an
I-group. then G[(N{G4ld€4}) is an l-group.

ProOF. Fach G;2H so N{G,)6c4)}2H.
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Definition. An o-ideal M of G is prime if G/M is an o-group.
Proposition 4. 2. H= (| {M|M is a prime o-ideal of G}.

Proor. If M is a prime o-ideal of G, then G/M is an o-group, so by Theorem
4.1, M2 H. Therefore, HS N {M|M is a prime o-ideal of G}. If 0 <g€ G\ H, then
since G/H is an /-group, there exists a prime /-ideal .# of G/H that does not contain
H +g (any /l-ideal maximal without H + g will do). Now .# =M/H where M is
an o-ideal of G and G/M = (G/M)/(M|H), an o-group. Thus, M is a prime o-ideal
of G and g4 M. Hence, we have shown. g¢ H implies g4 [ {M|M is a prime o-ideal
of G}. Therefore, it follows that H= () {M M is a prime o-ideal of G}.

Proposition 4. 3. For M ¢ O(G), the following are equivalent.
(1) M is prime.

(2) The o-ideals of G that contain M form a chain.

(3) If a and b are p-disjoint in G, then ac M or be M.

ProoOF. (1) implies (2). There is a one-to-one, inclusion preserving correspon-
dence between the o-ideals of G that contain M and the o-ideals of G/M. Clearly,
the latter form a chain.

(2) implies (3). If aé¢ M and b4 M, then there exists a value 4 of a such that
A =2 M and a value B of b such that B= M. But then 4 and B are comparable, which
contradicts the fact that @ and b are p-disjoint.

(3) implies (1). If M+g € G/M, then g = a—b where a and b are p-disjoint.
Either be M and M +g = M+a = M,oracMand M+g = M—b = M. There-
fore, G/M is an o-group.

Remark. Each subgroup M of G that satisfies (3) is clearly a p-subgroup and
any subgroup that contains a prime o-ideal satisfies (3). A subgroup M of an /-group
satisfies (3) if and only if M contains a prime /-ideal, but we have been unablc to
prove this for p-groups.

Corollary 1. If ... 2...G3D ... is a chain of prime o-ideals of G, then (\Gyis
a prime o-ideal. In particular, each prime o-ideal contains a minimal prime o-ideal.

Proor. This is an immediate consequence of (3).

Definition. An /l-ideal of G is an o-ideal which is also a lattice with respect
to the induced partial order. Example (7. 3) shows that the join of two /lideals of
G need not be an /-ideal.

Proposition 4.4. If A is an l-ideal of G and a,bc A, then a /\;b is the g. I. b.
of aand b in G, and a\/ 4b is the L.u.b. of aand b in G. Thus, the set of l-ideals of
G is closed with respect to intersections and joins of chains.

PROOF. Let 4 be an /-ideal of G. If x=a and b, then since G is Riesz, there
is y€G such that x=y=a and (aA\,b) =y =b. Since A is convex, y€ A so alb=y.
Thus, x=a /\4,b and so a/\,b is the g.1. b. of @ and b in G. A dual argument estab-
lishes the remainder of the proposition.

Definition. An o-ideal C of G is lex if x¢ G*\ C implies x=>C.
It follows at once that an o-ideal C of G is lex if and only if each strictly posi-
tive element in G/C consists of positive elements. Let C, and C, be two lex o-ideals
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of G anu suppose cthat 0=geC,\C,. Then g=C,> —g and hence, C,EC,.
Therefore, the set .Z of all lex o-ideals of G form a chain (with 0 as the least element
and G as the largest element).

Z is closed with respect to joins and intersections. For let .# be a subset of
Z and consider J=UJ and K=NJ. If geG*\J, then gcG*\ T for all Te.¥
and so g=T forall TeS. Hence, g=J. If gcG* K, then g4 T for some 7T¢.5
and g=T2K.

Since the join of a chain of /-ideals is an /-ideal, there exists a largest lex o-ideal
L of G which is also an /-ideal. We next show that there exists a smallest lex o-ideal
S such that G/S is an /-group. For let . be the collection of all lex o-ideals T of
G such that G/T is an /-group, and let S=(1.#. Then S is a lex o-ideal and by
Corollary 3 to Theorem 4. 1, G/S is an /-group.

Note that the following are equivalent: G is an /-group; H=0; §=0; L=G;
G/L is an o-group. For if G/L is an o-group, then G is a lexicographic extension
of the /-group L by the o-group G/L and so, G is an /-group.

Proposition 4. 5. If G is an [-group, then 0=S=H< L=G. If G is not an I-group,
then LEHCS. If S is not prime, then S=H.

PrOOF. We have established the part when G is an /-group. So suppose G is
not an /~-group. Then G/L is not an o-group so there exist strictly positive elements
X and Y in G/L that are p-disjoint. By Proposition 2.2, X = L+xand Y= L4y
where x and y are p-disjoint in G. Since x, y¢G*\ L, we have x, y=>L and so
LS H(x,y)S H. Since G/S is an /-group, Proposition 4. 1 establishes HE S. If §
is not prime, then by Proposition 4. 3, there exists « and b p-disjoint in G such that
a4 S and b¢ S. Thus, a,b=S so SC H(a, b)) H.

Proposition 4. 6. For G, the following are equivalent.

(1) G is a lexicographic extension of an I-group by an I-group.

(2) G/L is an l-group (or equivalently HZ L).

(3) S is an Il-group.

4 SESL.

(5 S=H and H is an l-group.

(6) G is a lexicographic extension of the l-group H by the I-group G/ H.

Proor. Clearly, (1), (2), and (3) are equivalent, (2) implies (4), (5) implies (6)
and (6) implies (1).

(4) implies (3). S is an /-ideal of L and hence, S is an /-group.

(3) implies (5). If S is an /-group but not prime, then S= H by the last propo-
sition. If S is prime, then G is a lexicographic extension of S by the o-group G/S
and so G is an /-group. Hence, H=S=0.

V. The p-group V(4, Hy)

Let H; be a po-group for each 6 in a po-set 4 and let V=V (4, H;) be the
set of all A-vectors v=(..., vy, ...) where vs€ Hs, for which the support S(v) =
={d € 4|v; =0}, contains no infinite ascending chains. Define 0 =v < V to be positive
if v;=0 for each maximal element &< S(v) (that is, if each maximal component
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is positive). Then V isa po-group [1] and it can be shown that ¥ is a p-group if and
only if each Hj is a p-group. If each Hj is an o-group, then V is a p-group (the proof
of Theorem 4. 8 in [2] establishes this) and in [I] it is shown that V is an /-group
if and only if 4 is a root sytem (that is, for each y€4, {§€4|6 =7} is a chain).

Theorem 5. 1. If each H; is an o-group, then V =V(4, Hy) is a p-group and
V* is the union of lattice cones.

PrOOF. Let H; be an o-group for each d€ 4, then V is a p-group by the above.
Let D be a trivially ordered subset of 4. Well order D as 8,,08,, ... 0,.0,4¢, ...
and for each u, let

D, = {‘5€A|5‘=5,. and d<4, for any 1‘-::“}.

We assign a new partial order to 4 by defining « to be greater than f if x=9,
for some 0,€D and feD,. Let Ap be the set 4 with this new partial order.
Then clearly, 4, is a root system and this partial order is weaker than the given
partial order. The following is a “picture” of the new partial order. The /-group

8 5

&% %] .«. . A\LUDIUD]
Dy (trivially ordered) D, (trivially ordered)  (trivially ordered)

Vp=V(4,, Hy) is the large direct sum of the H; and V is a subgroup of V. If
ve V, then S(vV,p0)< S(v) so (vV,0) € V and hence, V is an /-subgroup of V. Next,
V+2VNVy and so V*2 U(VNVy) for all trivially ordered subsets D of 4.

Now consider v€ ¥* and let D be the set of maximal elements in S(v). Then
v has exactly the same maximal components in V, so ve V(1 Vy. Therefore,
V+=1J(VNVg) for all trivially ordered subsets D of V.

Corollary 1. If A contains only a finite number of trivially ordered subsets,
then V* is the union of a finite number of lattice cones.

Corollary 2. Each p-group G is a p-subgroup of a p-group V for which V*
is the union of lattice cones.

PrROOF. By Theorem 4. 10 in [2], G is p-isomorphic to a p-subgroup of ¥V (4, R;)
where each R;=R.

An obvious question is whether or not G* is the union of lattice cones. A partial
answer makes use of the following construction. For elements « and f in a po-set
A we define a~f if,

(1) =z and p are comparable,

(2) the closed interval determined by « and f is a chain,

(3) o is comparable to « if and only if  is comparable to f§, for all d € 4.

I) ~ is an equivalence relation.
Let & denote the equivalence class that contains %, and define

G<f if @=p and ax<p.
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I1) The set A={ZxcA4} is partially ordered with respect to this definition
and A is a root system f and onlyi if 4 is a root system.

I11) A is finite if and only if Ac ontains only a finite number of maximal chains.

The proofs of I—III are reasonably straightforward and we shall omit them.

Now as in [2], let 4=A4(G) be an index set for the set of all pairs (G% G;) of
o-ideals of G such that G, is maximal without some g< G, and G? covers G;. Each
G°/G; is o-isomorphic to a subgroup of the additive group R of real numbers with
the natural order. Let A be as above and for each A€ A, define

H*= |G H, = G,.
2C A xEA

Then each H*\ H; is an o-group. For if xc H*\ H;, then x€G*\ G, for some
2c4and x = a—b where @ and b are p-disjoint in . Since x is a value of x, it
must be a value of a or of b. If a€ G*\G,, then b€ G, and, since no value of b is
comparable to », béH,. Thus, H,+x = H,4+a = H,, and if bcG*\G,,
then H,+x= HA—b - H;_.

For p, vé A, p<=v if and only if H*S H, and also

(1) 0=geG implies ge H*\ H; for some A€ A.

(2) g&¢H* implies gc H*\ H, for some A<=pucA.
Now if G is divisible, then it can be shown that there exists a p-isomorphism of
G into V(A, H*\ H;), but we make no use of this result.

Theorem 5. 2. If G is divisible and A contains only a finite number of maximal
chains, then A is finite and G=V(A, H*|H;) where each H*|H; is an o-group. In
particular, G* is the union of a finite number of lattice cones.

Proor. By III, A is a finite po-set and by (3. 1) in [2] each o-ideal is a pure sub-
group of G and hence, divisible. Thus. each H* is a direct summand of G so
G =H*® D*. Consider g¢ G and A€ A, we can write g¢ = g; +d; where g,¢ H”
and d; € D*. Define

gt = (.., H;+ 25, ...).

It is clear that 7 is a homomorphism of G into V and because of (1), T is an one-
to-one. It is easy to check that the following are equivalent: g=0; H,+g = H,
for all /¢ A such that ge H*\ H;; each maximal component of g7 is positive. There-
fore, t is an o-isomorphism of G into Gt.

To prove 7 is onto, consider 0 = v e V. To show there is a y € G such that yr=v
we will use induction on the cardinality of

T,={i€AlA=u for some u€ S(v)}.

Let H; +g be a maximal component of v and suppose (*) there exists #<G such
that Z is the only value of #in A and H,+h = H;+g. Let s = v— ht. Then clearly
T, is a proper subset of T, and so by induction there is x € G such that xt =s. Hence,
(x+h)t =s+ht = v and 1 is onto.

We may, without loss of generality, assume g =0. Let «,, ..., %, be the values
of g in 4. Note that 4 having only a finite number of maximal chains implies that
g is finite valued. Then A;,=4;, 1 =i=n are the values of g in A. By (4. 10) in [2],
for each i=2, ..., n we may select 0=k, €G with o, as its only value and such that



Abelian pseudo lattice ordered groups 237

G,+8+k; <G, Let k =k, +... +k,. Then O=keH; \H, and H;, +g+k <
= H’,1 for i=2, ...,n.

Suppose g+A€H‘\H and H, +~g+k > H;. Then g& H,; for otherwise

H,+g+k=H,+k=H,. If g&H‘ then H*S H;, for some j=1,2,....n and
smceg+keH“CH .f:lnd,g,rehﬁi’,1 . it follows that k £ H; .. Butthen H; +g+k < H,,
a contradiction, Therefore, gc H*\H and hence, 2= 4,. Thus, g-i—k has exactly onc
positive value 4,. Now g+k = a—b where a and b are p-disjoint and it follows
that the values of a are the positive values of g + k, namely 4,. Moreover, H; +g =
=H, +g+k = H;,,+a—b = H; +a. This establishes (*) and the proof is
complete.

Remark. If G is an /-group, then the following are equivalent: A contains
only a finite number of maximal chains: G has a finite basis; G has only a finite
number of minimal primes. Thus, the last theorem is the structure theorem for an
abelian /-group with a finite basis. See [1, p. 161].

VI. p-groups which are o-homomorphic images of /-groups

This section is devoted to proving the following result.

Theorem 6. 1. If G is a divisible p-group and A= A(G) contains only a finite
number of maximal chains, then there exists an l-group H with a finite basis and a
trivially ordered subgroup C of H such that G and H/C are o-isomorphic.

In order to prove this, we first derive two lemmas. Suppose that I and A are
po-sets and 0 is a map of I' onto A such that

(i) x=p implies af) < 0
(ii) 20 =p0 implies 70=a0 for some y<pf
where 7={d0crl|d=y}. Let H=X(I', H) and G=2X(A, G;) where the H, and

G are o-groups such that H,=G; if y0=4, and Z(I'". H,)(Z(A. G);) is the subgroup
of elements with finite suppon in V(I', H)(V(A, G))). For he H, we define hn<G

as follows
(hr); = Zh],.

=i

Lemma A. 7 is an o-homomorphism of H onto G and so G = H/K(rn). Moreover,
K(m) is trivially ordered.

PROOF. (gn); +(hm), = D g, + 2 h, = 2 (g+h), = ((g+h)n);

0=4i 8= A yo=A

and hence, 7 is a homomorphism of H onto G. Consider 0= /¢ H with maximal
components h, , ..., h, and let {y,...,7,}=S.
(1) If 9,0 is maximal in S0, then (in), =0 for all 2=7,0 and

Um)-,.'a— 2 h,.
7,0=7,0

For if 2=1y,0 and (hn); #0, then there exists y €' such that 4,=0 and y0 =4. But
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then y=y; for some j and y,0 <4 = y0 = 3,0 which contradicts the maximality of
7.0. Therefore, (hn), =0 for all A=7y,0. Now, by definition,

(m)yo = > h,.

W0=v;0

Suppose that 4,70 and y0=7y,0. Then y=y; for some j, and if y<y;, then y,0=
=70 = 7,0 which again contradicts the maximality of y,0. Thus, y =7y; and (1) holds.

(2) If 0<h€ H, then 0<hn. In particular K(=n) is trivially ordered. For if y,0
is maximal in S0, then by (1), (hn),, is a positive maximal component of sz and
so it suffices to show that these are the only maximal components of /. If (hn);
is a maximal component of /i, then there exists y€I" such that /4,0 and y0 = A.
Now y=1y; for some j and so A=7y0=1y,0=y,0 where 7,0 is maximal in Sf. Thus,
(hm),,o is @ maximal component of hn and so, 4= 1y,0.

(3) If hmr=0, then there exists 0 <=x& H such that xz =/An. We use induction
on the number s of elements in the support of /. The result is clear if s=1.

Case 1. There exists a maximal element y,0 in SO for which the summation
c¢= > h,, contains at least two terms. In /i replace 4, by c and replace each of

e
70= 7,

the other h,, in this summation by 0. This defines k € H such that kn = hn and the
number of elements in the support of /i is less than s. Thus, by induction, there
exists 0 =x€ H such that xn=kn =hn.

Case 11. y,0 maximal in S0 implies (in),,=h, =0. We may assume /i is not
positive and hence, there exists a maximal component h,,<0. Since hr =0, y,0 <
=70 where y,0 is maximal in S0. By property (ii), there exists y-=7; such that

70=7,0. For each element v¢7,0, pick an element y,€7 such that y 6 =v and
define k¢ H as
k,, = 2 hs.
P

6E7;

and all other components of k are zero. Now replace all the &, =0, a€7; by zero
and add this result of /i to k. This gives an element 7€ H with one less negative maxi-
mal component than / and such that 1 = hn. We proceed in this way to get 0 =x¢ H
such that xn = hn. This completes the proof.

Lemma B. If A is a finite po-set, then there exists a finite root system I’ and a
mapping 0 of I onto A such that

(i) x<p implies =0 < B0
(i1) %< B0 implies 70 =a0 for some y <3

Proor. Call 2€ A a branch point if there exists u|v in A such that A<=y and
v, and no element of A occurs between 4 and u or between 4 and v (that is, u and
v cover 1),

Let 4 be a minimal branch point. Select two o-isomorphic copies 7, and 7,
of Z andlet; map Z; o-isomorphically onto Z, i=1,2. Let A, =(A\J)UZ, UZ,.
We use the natural partial order on each of the three parts of A,, and define

a

Ry S W W I e O s i e
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where u, v, v;, v,, ..., v, are all the elements in A which cover A. Let 0, be the
map on A, defined as
the identity on A\Z
&=1%, on A
¥, on /Z,

A routine argument establishes that 0, satisfies (i) and (ii). Now A, has one less
branch point than A. Thus, after a finite number of steps we obtain a (finite) root
system I' and the desired mapping 6.

Proof of Theorem 6. 1. By Theorem 4. 2, we may assume that G = V(A4, G;)
where the G; are o-groups and A is finite. By Lemma B, there exists a finite root
system I” and a mapping 0 of I" onto A that satisfies (i) and (ii). Let 4 by the /-group
V(Ir, H,) where H,=G, if y0=4. Then by Lemma A, there is an o-homomorphism
m of H onto G with K(m) trivially ordered. Clearly H has a finite basis and
G = H/K(n).

It follows from Theorems 5.2 and 6. 1 that if G is a finite dimensional real
p-space, then G is the union of vector lattice cones, and there exists a finite dimen-
sional vector lattice H with a trivially ordered subspace C such that G and H/C are
o-isomorphic. :

VII. Examples

(7. 1) We first give a method of constructing p-groups from /~-groups. Suppose
that 0=H,cH,c...cH,CH,,,C... CHyz=H is a well ordered chain of /-ideals
of an /-group H where, H,= U H, for all y <=« if « is a limit ordinal. Then for each
0=he H there exists an « such that h< H,, ,\H,. Define 1c H to be positive if
h=0or heH, . ,\H, and H,+h = H,. We denote the original order of H by
< and the new order by <.

Proposition 7. 1. <1 isapartial order that extends the given order < . Each l-ideal N
of (H, <) such that H,= NS H,, , for some 2 is an o-ideal of (H,<). If he H,, \\H,,
the thenvalues of h in (H, <) are the values of h in (H, <) between H, and H,, ,.
Each H,., is a lexicographic extension of the p-group H, by the l-group H,. ,/H,.

The proof is straightforward but long: so we omit it.

(7. 2) An example of a finite dimensional vector lattice H with a trivially ordered
(hence convex) subspace C such that H/C is not a Riesz group, and hence, not a
p-group.

Let H = RI=IR[¥IR*IR and C = {(x, —x,x, —x)|x€ R}. Each coset in H/C
has a representation (0, x, y, z) 4+ C and the following are equivalent.

() O0,x,y,2)+C = C,
(i1) (b.x—b,y+ b, z—b) = 0 for some bR,
(ii) b=0,x=b,y = —b,z=b for some bER,
(iv) x=0,z=0, and y= —min {x, z} (i.e let b=min {x, z}). Thus, it follows
that

(00 01 _'_]9 I)‘{'C}

{(0,0,0, N+C
C

(0, Is .33 Is l)+C
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where (0,0,0,1)+C and (0, 1, —1. 1)+ C are not comparable. We show
0,0, —1, I)+C}
C)=©,p,qr)+C=(0,0,0,1)+C

implies (0, p, ¢. r)=(0,0, 0, 1) and so G is not a Riesz group.
Now,

C=(0,p.q.r)+C implies p=0, ¢g=-—min{p,r}
C=(0,pqg+1.r—1)+C implies r—-1=0

C=(, —-p, —q,1=r)+C impliecs —p=0, 1—r =0, —g = —min {—p,
1-r}.

Thus, p=0, r=1 and so ¢=0.

A simpler example where C is nota subspace is the following. G = R =R,
C = {(x, —x)|x is rational}. The following are equivalent.

(i) C+(a.b) = C,

(ii) (a+q,b—¢q) = 0, for some g<Q (=the set of all rational numbers),

(iii) b = ¢ = —a, for some g<Q,

(iv) b =—acQ or a+b = 0.

It follows that 2 = {C+(a, —a)lac R} is a trivially ordered subgroup of ¥ =G/C
and ¥ is a lexicographic extension of Z by the o-group %/Z. Thus, % is o-simple
and hence, not a p-group. However, % is a Riesz group.

(7.3) G = RBR® R with (a, b, ¢) positive if a=0 and =0, or =0 and
b=0, or a=b=0 and ¢=0. Then G is a p-group and P, = {0} R“=Rand P, =
= R&®{0}@® R are prime [-ideals of G, but P,|JP,=G is not an /-ideal.

(7.4) An example of an /-group H with a subgroup S that is an /-group with
respect to the induced partial order, but not an /-subgroup.

Let 0K be an abelian /-group; let H = K[+ K|+ K and

S={(xp,x+p)|x,yeK} = K+IK.

For 0<=keK, (2k, —k, k)VO = (2k,0, k)¢ S where 0 denotes the identity of
S. Thus, S is not an /-subgroup of H but (x,y, z)Vsf = (xV0.»VO0. (xV0)+
+(yV0))¢S and S is a lattice in the induced partial order.

(7.5) Let S={e;/0€4} be a basis for the real vector space H. Assign a partial
order to S (or equivalently to 4) and consider h = hgs, + -+ + /65 in H. Define
h; to be a maximal component of /i if &;0 and 4;=0 for all 6,=4¢,. and define
h to be positive if each maximal component of /4 is positive. Then H is a real p-space
and we say S is an order determining basis for H. Note that

H=3(4, R,).

Conversely, suppose H is a real po-vector space and S is a basis of positive elements
such that

(i) x=f implies R*eg,>¢; or R*e,<¢g; or R*e,le,,
# f #
(ii) &5,, ..., 85 ll&s implies (x,&5 + ... +x,85 )|e; for all O<=x;€R.

Then it can be shown that H is a p-space and S is an order determining basis.
We conclude by listing the following.
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Open Questions

(N If P,, ..., P, are lattice cones for a group H and P=P,U-.-UP, is a cone
for H, then is (H, P) a p-group?
(2) Is each p-group the homomorphic image of an /-group?

Added in proof: The Answer to questiont (1) above is, no. J. JAKUBIK [3]
answers some of the other open questions. For a p-group G he has proven the
following results.

A subgroup M of G contains a prime o-ideal if and only if a and b p-disjo-
int in G implies a€ M or be M.

If A is an o-ideal and B a p-subgroup of G then A+ B is a p-subgroup of G.

The intersection of p-subgroups need not be a p-subgroup.
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