Abelian pseudo lattice ordered groups

By PAUL CONRAD1) (New Orleans) and J. ROGER TELLER2) (Washington)

I. Introduction

Throughout this paper only (additive) abelian groups will be considered. An o-ideal C of a po-group G is a directed subgroup of G such that $0 \le g \le c \in C$ and $g \in G$, imply $g \in C$. A value of $0 \ne g \in G$ is an o-ideal M of G which is maximal with respect to $g \notin M$. Let

$$M(g) = \{M \subseteq G | M \text{ is a value of } g\} \text{ and } M^*(g) = \bigcap M(g).$$

Two positive elements $a, b \in G$ are pseudo disjoint (p-disjoint) if $a \in M^*(b)$ and $b \in M^*(a)$, and G is a pseudo lattice ordered group (p-group) if each $g \in G$ has a representation g = a - b, where a and b are p-disjoint.

Throughout this paper G will always denote an abelian p-group

The concept of a p-group was introduced in [2] and we shall make use of the theory developed there. In particular, $a, b \in G^+ = \{g \in G | g \ge 0\}$ are p-disjoint if and only if

(*) $c \le a$ and b implies $nc \le a$ and b for all n > 0.

Thus, each lattice ordered group (I-group), and hence each totally ordered group

(o-group) is a p-group.

In [5], the main result asserts that G is also a Riesz group. Our first result shows that (*) is sufficient for a Riesz group H to be a p-group. Moreover, it is shown in [5] that, if a and b are p-disjoint in G, then $\{0 \le m \in G | m \le a \text{ and } b\}$ is a convex subsemigroup of G^+ and hence, is the positive cone for an o-ideal

$$H(a, b) = [\{0 \le m \in G | m \le a \text{ and } b\}]$$

where [S] denotes the subgroup generated by the subset S of G. Also, $H(a, b) \subseteq M^*(a) \cap M^*(b)$, and clearly, G is an l-group if and only if H(a, b) = 0 for each pair of p-disjoint elements a, b of G. Most of the results in this paper point up the similarity between p-groups and l-groups. The measure of the difference is the set of o-ideals H(a, b).

Supported by grant GP 9004 from the National Science Foundation.
 Supported by National Science Foundation institutional grant GP2114 to Georgetown University.

Let τ be a homomorphism of a po-group A into a po-group B. We say τ is an o-homomorphism if

$$(A\tau) \cap B^+ \subseteq (A^+) \ \tau \subseteq B^+.$$

If A and B are p-groups, then τ is a p-homomorphism if τ maps p-disjoint pairs onto p-disjoint pairs. Each p-homomorphism τ is an o-homomorphism and so, if τ is one-to-one, then both τ and τ^{-1} preserve order. In section 2 we derive the standard isomorphism theorems for p-groups.

In section 3 we introduce the concept of the positive and negative parts of

an element of G and also the absolute value of such an element, namely,

$$g^+ = a + H(a, b),$$
 $g^- = b + H(a, b),$ $|g| = g^+ + g^- = a + b + H(a, b)$

where g = a - b with a and b p-disjoint. These definitions are independent of a and b, and if G is an l-group then these are the usual definitions. Also, most of the usual properties of these concepts for l-groups remain true for p-groups.

In section 4 we investigate the o-ideal H of G that is generated by all the o-ideals H(a, b). For example, if K is an o-ideal of G, then G/K is an I-group if and only if $K \supseteq H$. We also show, that each p-group G is a p-subgroup of a p-group V, where V^+ is the union of lattice cones, and then investigate when G^+ is the union of lattice cones.

In section 5 we show that a reasonably large class of *p*-groups are *o*-homomorphic images of *l*-groups.

Theorem 1.1. For a Riesz group H, the following are equivalent.

(i) H is a p-group.

(ii) Each $h \in H$ has a representation h = a - b, where a and $b \in H^+$ and $c \le a$ and b implies $nc \le a$ and b for all n > 0.

(iii) For each $g \in H$, there is $a \in H^+$ such that $g \leq a$, and whenever 0 and $g \leq x$, then $a \leq x + h$ for some $h \in M^*(a) \cap M^*(a - g)$.

PROOF. Let H be a Riesz group. By Theorem 4. 5 of [2] we have (i) implies (ii) and by Theorem 3. 1 of [5], (iii) implies (i). To complete the proof, suppose $g \in H$ and g = a - b where a and b satisfy the conditions of (ii). Then $a \in H^+$ and $g \le a$. If 0 and $g \le x \in H$, then H, a Riesz group, implies there is $z \in H$ such that 0 and $g \le z \le a$ and x. Let $h = a - z \ge 0$, then $x + h \ge a$.

II. The isomorphism theorems for p-groups

We denote by O(G), the set of all o-ideals of G.

Theorem 2. 1. The set O(G) is a complete distributive sublattice of the lattice of all subgroups of G. Moreover,

$$A \wedge (\vee_{\Gamma} B_{\nu}) = \vee_{\Gamma} (A \wedge B_{\nu})$$
 for $A, B_{\nu} \in O(G)$.

PROOF. By Theorem 4. 3 in [2], O(G) is closed with respect to arbitrary intersection. This theorem now follows from Theorem 5. 6 in [4] which asserts that for a Riesz group, O(G) is a distributive sublattice of the lattice of all subgroups of G.

Proposition 2. 2. Suppose $K \in O(G)$.

- (i) If a and b are p-disjoint in G, then K+a and K+b are p-disjoint in G/K and $H(K+a,K+b)=\frac{K+H(a,b)}{K}$.
- (ii) If X and Y are p-disjoint in G/K, then X = K+u and Y = K+v where u and v are p-disjoint in G.

PROOF. (i) If a and b are p-disjoint in G, then K+a and K+b are p-disjoint in G/K by (ii) of Theorem 1.1 and

$$(K+H(a,b))/K = \{K+x|x\in H(a,b)\} = [\{K+x|0 \le x\in H(a,b)\}].$$

If $0 \le x \in H(a, b)$, then $x \le a$ and b so $K \le K + x \le K + a$ and K + b. Therefore, $K + x \in H(K + a, K + b)$. Conversely, if $K < X \in H(K + a, K + b)$ where X = K + x and $0 < x \in G$, then $K < K + x \le K + a$ and K + b, so there exists $k_1, k_2 \in K$ such that $k_1 + x \le a$ and $k_2 + x \le b$. Since K is directed, there is $k \in K$ such that $k \le k_1$ and k_2 and hence, k + x and $0 \le a$ and k_3 . Also, there is $k \in K$ such that $k \le k_3$ and $k_3 \in K + x \le a$ and $k_3 \in K + x$ and $k_4 \in K + x$ and $k_5 \in K +$

Remark. One should now be able to prove that if $X_1, ..., X_n$ are (pairwise) p-disjoint in G/K, then there are p-disjoint elements $x_1, ..., x_n$ in G such that $X_i = K + x_i$ for $1 \le i \le n$, but we have not been able to do so.

Induced Homomorphism Theorem. Let A, B, C and D be p-group and α , β and δ be p-homomorphisms such that

$$D \xrightarrow{\alpha} C$$

$$\delta \mid \qquad \qquad \mid \beta$$

$$A \xrightarrow{\alpha} B$$

Further suppose that δ is onto and that $K(\delta)\alpha \subseteq K(\beta)$, where $K(\delta) = kernel \delta$.

- (a) There exists a unique p-homomorphism α^* of D into C so that the diagram commutes.
 - (b) α^* is an o-isomorphism if and only if $K(\delta) \subseteq K(\beta) \alpha^{-1}$.

PROOF. This is a standard result from group theory so we need only show α^* is a *p*-homomorphism. If x and y are *p*-disjoint in D, then by the last proposition, there exist *p*-disjoint elements a and b in A such that $a\delta = x$ and $b\delta = y$. Thus, $x\alpha^* = a\delta\alpha^* = a\alpha\beta$ and $y\alpha^* = b\delta\alpha^* = b\alpha\beta$ are *p*-disjoint in C.

Corollary 1. If $A, B \in O(G)$ and $A \subseteq B$, then B/A is an o-oideal of G/A and the natural isomorphism of G/B onto (G/A)/(B/A) is a p-isomorphism.

PROOF. Clearly, B/A is an o-ideal of G/A and the natural homomorphisms α , β and δ are p-homomorphisms.

$$G/B \qquad (G/A)/(B/A)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \beta$$

$$G \xrightarrow{\alpha} G/A$$

Moreover, $K(\delta)\alpha = B\alpha = B/A = K(\beta)$ and $K(\beta)\alpha^{-1} = (B/A)\alpha^{-1} = B = K(\delta)$. The corollary follows by (b) of the theorem.

Corollary 2. If $A, B \in O(G)$, then the natural isomorphism of (A+B)/A onto $B/(A \cap B)$ is a p-isomorphism.

PROOF. $A + B \in O(G)$ and hence, is a *p*-group. It follows that (A + B)/A and $B/(A \cap B)$ are *p*-groups and we have

$$B/(A \cap B) \quad (A+B)/A$$

$$\downarrow \beta \qquad \qquad \uparrow \beta$$

$$B \xrightarrow{\alpha} A + B$$

where, $K(\delta)\alpha = (A \cap B)\alpha = A \cap B \subseteq A = K(\beta)$ and $K(\beta)\alpha^{-1} = A \cap B = K(\delta)$.

Definition. A subgroup K of G is a *p-subgroup* if each $k \in K$ has a representation k = a - b, where a and b are p-disjoint in G and belong to K.

In [2], Theorem 4. 3, it is shown that each $M \in O(G)$ is a *p*-subgroup. In fact, if $g = a - b \in M$ where *a* and *b* are *p*-disjoint in *G*, then *a* and $b \in M$ and are *p*-disjoint in *M*. If π is a *p*-homomorphism of a *p*-group *A* into a *p*-group *B*, then clearly, $A\pi$ is a *p*-subgroup of *B*.

Lemma 2.3. (i) If M is a p-subgroup of G (or merely directed), then $M\sigma = \{x \in G \mid a \le x \le b, \text{ for } a, b \in M\}$ is the o-ideal of G generated by M. (ii) If $A \in O(G)$ and B is a p-subgroup of G, then $A \cap B \in O(B)$.

PROOF. (i) Clearly, $M\sigma$ is a convex subgroup of G that contains M. If $x \in M\sigma$, then $x \le b \in M$ and since M is directed, there is $m \in M$ such that 0 and $b \le m$. Thus,

 $M\sigma$ is directed and $M\sigma$ is an o-ideal of G. Clearly, each o-ideal containing M must contain $M\sigma$.

(ii) If $x \in A \cap B$, then x = u - v where u and v are p-disjoint in G and belong to B. But $A \in O(G)$ so u and $v \in A$ and $A \cap B$ is directed. Moreover, if $0 < x < y \in A \cap B$ and $x \in B$, then $x \in A \cap B$ and so $A \cap B$ is convex in B.

Remark. If $A \in O(G)$ and B is a p-subgroup, then is A+B a p-subgroup? If so, then in Corollary 2, we need only assume $A \in O(G)$ and B is a p-subgroup. This version of Corollary 2 is, of course, true for l-groups. Is the intersection of two p-subgroups a p-subgroup? Both of these conjectures seem rather dubious and this probably where the analogy between l-groups and p-groups breaks down.

Proposition 2. 4. A p-subgroup K of G is a p-group, but a subgroup of G that is a p-group in the induced order need not be a p-subgroup.

PROOF. If k is an element of a p-subgroup K of G, then k = a - b where a and b are p-disjoint in G and belong to K. Let M be an o-ideal of K that is maximal without a. If $a \in M\sigma$, then $0 \le a \le m \in M$, so $a \in M$, a contradiction. Thus, $a \notin M\sigma$ so $M\sigma \subseteq N$, a value of a in G. Hence, $b \in N \cap K \supseteq M$ and $a \notin N \cap K$, which by the last Lemma is an o-ideal of K. Therefore, $b \in N \cap K = M$. Example (7.4) establishes the remainder of the proposition.

III. Principal o-ideals and absolute values of an element

For a subset S of G we define G(S) to be the o-ideal generated by S. Then G(S) is the intersection of all o-ideals of G that contain S. If $0 < g \in G$, then

$$G(g) = [\{x \in G | 0 \le x \le ng \text{ for some } n > 0\}]$$

and G(g) is the intersection of all convex subgroups of G that contain g, ([2] p. 207)

Proposition 3.1. Suppose $g = a - b \in G$, where a and b are p-disjoint.

- (i) G(g) = G(a+b) = G(a) + G(b).
- (ii) $G(a) \cap G(b) = H(a, b) = H(na, nb)$ for all n > 0. Thus, H(a, b) is the intersection of all o-ideals (or convex subgroups) of G that contain a or b.
 - (iii) $x, y \in G^+$ are p-disjoint if and only if x and $y \ge G(x) \cap G(y)$.

PROOF. (i) This is clear if g = 0. So suppose $g \neq 0$, then there exists $z \in G(g)$ such that z > g = a - b and 0, and so z + b > a. By 4. 5 in [2], it follows that $2z \ge a$. Thus, $a, b \in G(g)$ so $G(a + b) \subseteq G(g)$. Since $a, b \in G(a + b)$, $g \in G(a + b)$, so we have $G(a + b) \supseteq G(g)$.

G(a) + G(b) is an o-ideal that contains a + b and any o-ideal containing a + b

must contain G(a) and G(b). Therefore, G(a+b) = G(a) + G(b).

(ii) Clearly, $H(a, b) \subseteq H(na, nb)$. Suppose, by way of contradiction, that $0 \le x \in H(na, nb)$ but $x \ne a$. Then there exists a value M of x - a such that $M + x > M + a \ge M$ and since $M + na \ge M + x$ we have M + a > M. Thus, $M \subseteq N$ a value of a and $N + x \ge N + a > N$. But $nb \in N$ so $x \in N$, a contradiction. Therefore, H(a, b) = H(na, nb).

If $0 \le x \in H(a, b)$, then x < a and x < b and so $x \in G(a) \cap G(b)$. Conversely, if $0 \le x \in G(a) \cap G(b)$, then $0 \le x \le na$ and nb for some n > 0 so that $x \in H(na, nb) = H(a, b)$.

(iii) If x and y are p-disjoint and $u \in G(x) \cap G(y)$, then let 0 and $u \le v \in G(x) \cap G(y) = H(x, y)$. Then $u \le v \le x$ and y. Conversely, suppose that x and $y \ge G(x) \cap G(y)$. If $z \le x$ and y, then there exists $w \in G$ such that 0 and $z \le w \le x$ and y so $w \in G(x) \cap G(y)$ and $nz \le nw \in G(x) \cap G(y) \le x$ and y. Thus, by Theorem 4. 5 in [2], x and y are p-disjoint.

Theorem 3. 2. If $g = a - b \in G$ where a and b are p-disjoint, then

$$\frac{G(g)}{G(a)\cap G(b)} = \frac{G(a)+G(b)}{H(a,b)} \cong \frac{G(a)}{H(a,b)} \stackrel{[\pm]}{=} \frac{G(b)}{H(a,b)} \cong \frac{G(g)}{G(a)} \stackrel{[\pm]}{=} \frac{G(g)}{G(b)}$$

where |+ | denotes the cardinal sum.

PROOF.
$$\frac{G(a)}{H(a,b)} = \frac{G(a)}{G(a) \cap G(b)} \cong \frac{G(b) + G(a)}{G(b)} = \frac{G(g)}{G(b)}$$

by the above proposition and Corollary 2 to the I. H. T., so the first and last parts follow from the above theory

Let H = H(a, b) and for $x \in G(a)$ and $y \in G(b)$ define the map

$$H+x+y \rightarrow (H+x, H+y)$$

of
$$\frac{G(a)+G(b)}{H}$$
 into $\frac{G(a)}{H} = \frac{G(b)}{H}$.

If $H+x+y=H+\overline{x}+\overline{y}$ for $\overline{x}\in G(a)$ and $\overline{y}\in G(b)$, then $x-\overline{x}+y-\overline{y}\in H\subseteq G(b)$ and $y-\overline{y}\in G(b)$. Thus, $x-\overline{x}\in G(a)\cap G(b)=H$, and similarly, $y-\overline{y}\in H$. Therefore, the map is an isomorphism of $\frac{G(a)+G(b)}{H}$ onto $\frac{G(a)}{H}|\underline{+}|\frac{G(b)}{H}$.

To complete the proof it suffices to show that $H+y+x \ge H$ implies $H+x \ge H$ and $H+y \ge H$. Now $H+x+y \ge H$ implies there exists $h \in H$ such that $h+x+y \ge 0$ so we may assume $x+y \ge 0$, $x=x_1-x_2$ and $y=y_1-y_2$ where x_1, x_2 and y_1, y_2 are p-disjoint pairs in G. Since G(a) and G(b) are o-ideals and $x \in G(a)$, $y \in G(b)$ we have $x_1, x_2 \in G(a)$ and $y_1, y_2 \in G(b)$.

By way of contradiction, suppose $x_2 \in H$. Then $H \subseteq M$, a value of x_2 and $x_1 \in M$. Now

$$(M+x_2) \wedge (M+y_1) = (M+x_2) \wedge (M+y_2) = M.$$

For if $M+z \le M+x_2$ and $M+y_1$, then $m_1+z \le x_2$ and $m_2+z \le y_1$ for some $m_1, m_2 \in M$. Let $m_1, m_2 \ge m \in M$, then there exists $t \in G$ such that 0 and $m+z \le x_2$ and x_1 . Thus, $t \in G(a) \cap G(b) = H \subseteq M$ and so $x_1 \in M+x_2 = M$. Hence, $x_2 \in M+x_3 = M$ and similarly, $x_2 \in M+x_3 = M$.

If M' is the o-ideal of G that covers M, then M'/M is an archimedean o-group and each positive element in $(G/M) \setminus (M'/M)$ exceeds every element in M'/M ([2], 4. 6). Thus, it follows that $y_1, y_2 \in M$ and so $M+x+y=M-x_2 < M$ which contradicts the fact that x+y is positive. Therefore, $x_2 \in H$ and $H+x=H+x_1 \ge H$. Similarly, $H+y=H+y_1 \ge H$. The proof is complete.

Consider $g = a - b \in G$ where a and b are p-disjoint and define the positive and negative parts and the absolute value of g as follows,

$$g^+ = a + H(a, b), \quad g^- = b + H(a, b), \quad |g| = g^+ + g^- = a + b + H(a, b).$$

If G is an *l*-group, then H(a, b) = 0 and these agree with the standard definitions in *l*-groups. In [5] it is shown that g = x - y, where x and y are p-disjoint, if and only if x = a + m and y = b + m for some $m \in H(a, b)$. Thus,

$$g^+ = \{x \in G | g = x - y; x, y \text{ p-disjoint}\},\$$

$$g^- = \{y \in G | g = x - y; x, y \text{ p-disjoint}\}.$$

In particular,

(i) $g^+ \cup g^- \subseteq G^+$ and |g| = g if and only if $g \ge 0$,

(ii) $0 \in g^+$ if and only if $g \le 0$, if and only if $g^+ = 0$, if and only if $g^- = -(g^-)$,

(iii) $0 \in g^-$ if and only if $g \ge 0$, if and only if $g^- = 0$, if and only if $g = g^+$. Thus, if $g \ne 0$, then |g| consists of strictly positive elements. We next derive some of the useful properties of g^+ , g^- and |g|.

(a)
$$(-g)^+ = g^-$$
; $(-g)^- = g^+$; $|-g| = |g|$; $g - (g^+) = -(g^-)$

PROOF. -g = b - a so $(-g)^+ = b + H(a, b) = g^-$ and $(-g)^- = a + H(a, b) = g^+ |-g| = (-g)^+ + (-g)^- = g^- + g^+ = |g|$. Also, $g - (g^+) = (a - b) - a + H(a, b) = -b + H(a, b) = -(g^-)$.

(b) $|g| = \{x + y | g = x - y; x, y \text{ p-disjoint}\}$ if and only if H(a, b) is divisible by 2.

PROOF Let H = H(a, b), $A = \{x + y | g = x - y; x, y \text{ p-disjoint}\}$ and assume |g| = A. If $h \in H$, then $a + b + h \in |g| = A$ and so a + b + h = (a + m) + (b + m) where $m \in H$. Thus, h = 2m and so H is divisible by 2. Clearly, $|g| = g^+ + g^- \supseteq A$. If H is divisible by 2 and $z \in |g|$, then $z = a + b + m = a + b + 2\overline{m} = a + \overline{m} + b + \overline{m}$ for some $m, \overline{m} \in H$. Thus, $z \in A$.

In the following theory we make use of the fact that g^+ , g^- and |g| are cosets. Thus, we define n|g| by coset addition

$$|n|g| = |g| + ... + |g| = na + nb + H(a, b)$$

and note that $n|g| = \{nx|x \in |g|\}$ if and only if H(a, b) is divisible by n.

(c)
$$(ng)^+ = n(g^+)$$
; $(ng)^- = n(g^-)$; $n|g| = |ng|$ for all $n \ge 0$.

PROOF. ng = na - nb where na and nb are p-disjoint and H(na, nb) = H(a, b). Thus, $(ng)^+ = na + H(a, b) = n(a + H(a, b)) = n(g^+)$. Similarly, $(ng)^- = n(g^-)$, $|ng| = (ng)^+ + (ng)^- = n(g^+ + g^-) = n|g|$.

For subsets A and B of G we define A < B if a < b for all $a \in A$, $b \in B$. Then \leq is a partial order on the familty of all subsets of G, and clearly, $|g| \geq 0$, and |g| = 0 if and only if g = 0.

- (d) (i) $g^+ \leq |g|$, $g^- \leq |g|$.
- (ii) If $g \neq 0$ and 0 < m < n for integers m and n, then m|g| < n|g|.

PROOF. (i) We must show $a+H(a,b) \le a+b+H(a,b)$. For $x, y \in H(a,b)$, $a+x \le a+b+y$ if and only if $x-y \le b$, and the latter holds by (iii) of Proposition 3.1. Thus, $g^+ \le |g|$ and similarly, $g^- \le |g|$.

- (ii) If $x \in m|g|$ and $y \in n|g|$ with 0 < m < n, then x = ma + mb + h and y = na + mb + k where $h, k \in H(a, b)$. Thus, $y x = (n m)(a + b) + k h \in |(n m)g| > 0$.
 - (e) For $x, y \in G$ and n > 0, $|x| \le |y|$ if and only if $n|x| \le n|y|$.

PROOF. Suppose |x| = a+b+H(a,b), |y| = u+v+H(a,b) where a,b and u,v are pairs of p-disjoint elements and n>0. If |x|=|y|, then H(a,b)=H(u,v) and so n|x|=n|y|. Suppose |x|<|y| and consider $n(a+b)+s\in n|x|=n(a+b)+H(a,b)$ and $n(u+v)+t\in n|y|$. Let $\bar{s}\in H(a,b)$ such that $\bar{s}\geq 0$ and s, and $\bar{t}\in H(u,v)$ such that $\bar{t}\leq 0$ and t. Then,

$$n(a+b)+s \le n(a+b)+\overline{s} \le n(a+b+\overline{s})$$
, and $n(u+v+\overline{t}) \le n(u+v)+\overline{t} \le n(u+v)+\overline{t}$

$$\leq n(u+v)+t$$
.

Thus, since $a+b+\bar{s} < u+v+\bar{t}$ we have

$$n(a+b)+s \le n(a+b+\overline{s}) < n(u+v+\overline{t}) \le n(u+v)+t.$$

Therefore, n|x| < n|y|.

On the other hand, if n|x| = n|y|, then H(a, b) = H(u, v) and since G/H(a, b) is semiclosed (nX positive implies X is positive for $X \in G/H(a, b)$) we have |x| = |y|. Suppose that n|x| < n|y| and consider $a+b+s \in |x|$ and $u+v+t \in |y|$. Then $n(a+b+s) \in n|x|$ and $n(u+v+t) \in n|y|$ so n(a+b+s) < n(u+v+t). Therefore since G is semiclosed, a+b+s < u+v+t so |x| < |y|.

(f) If $u \in |g|$, then u and g have the same set of values and if M is a value of u, then M + u = M + g or M + u = M - g.

PROOF. If $u \in |g|$, then u = a+b+h where $h \in H(a, b)$. In [2] it is shown that g and a+b have the same set of values and in [5] it is shown that h belongs to each value of a+b. Thus, g and u have the same set of values. If M is a value of u, then either $a \in M$ and M+u = M+b = M-g or $b \in M$ and M+u = M+a = M+g.

(g) $|g+h| \le 2|g|+2|h|$ with equality if and only if g=h=0.

PROOF. This is clear if g+h=0. So suppose $g+h\neq 0$, g=a-b and h=x-y where a,b and x,y are pairs of p-disjoint elements and consider $u\in |g+h|$ and $v\in 2|g|+2|h|$. Then v=2(a+b+x+y)+p+q where $p\in H(a,b)$ and $q\in H(x,y)$. Let 0 and $p\geq c\in H(a,b)$ and 0 and $q\geq d\in H(x,y)$. Then, $v\geq 2(a+c+b+c)+2(x+d+y+d)=w$. Let $\bar{a}=a+c$, $\bar{b}=b+c$, $\bar{x}=x+d$, and $\bar{y}=y+d$. Then $g=\bar{a}-\bar{b}$ and $h=\bar{x}-\bar{y}$ with \bar{a} , \bar{b} and \bar{x} , \bar{y} p-disjoint. It suffices to show u< w.

Let M be a value of u, then by (f), M is also a value of g+h and M+u=M+ $+\varepsilon(g+h)$ where $\varepsilon=\pm 1$. Now

(1) $M \pm \bar{a} \leq M + 2\bar{a}$, $M \pm \bar{x} \leq M + 2\bar{x}$, $M \pm \bar{b} \leq M + 2\bar{b}$, $M \pm \bar{y} \leq M + 2\bar{y}$.

Thus,

(2) $M+u=M+\varepsilon(g+h)\leq M+2(\bar{a}+\bar{b}+\bar{x}+\bar{y})=M+w.$

If we have equality in (2), then we must have equality in (1), so \bar{a} , \bar{b} , \bar{x} , and $\bar{y} \in M$. Hence, $g + h \in M$, a contradiction. Therefore, $u \neq w$ and M + u < M + w.

Let N be a value of w-u. If $u \in N$, then N+u=N < N+w. If $u \notin N$, then $N \subseteq M$, a value of u, and by the above, M+u < M+w so we must have M=N. Therefore, N+u < N+w for all values N of w-u and so w>u.

Proposition 3. 3. For G, the following are equivalent.

(1) G is an l-group.

(2) $|g+h| \le |g| + |h|$ for all $g, h \in G$.

(3) g^+ is a single element for each $g \in G$.

(4) If x and y are p-disjoint, then H(x, y) = 0.

PROOF. Clearly, (1) implies (2) and since $g^+ = a + H(a, b)$, (3), (4), and (1) are equivalent. Suppose (2) holds, x and y are p-disjoint and $0 < c \in H(x, y)$. Let g = x and h = -y. Then g + h = x - y, |g + h| = x + y + H(x, y) and |g| + |h| = x + y. Since $x + y + c \not\equiv x + y$ we have $|g + h| \not\equiv |g| + |h|$, a contradiction. Thus, H(x, y) = 0 and (2) implies (4).

Proposition 3. 4. A subgroup C is an o-ideal of G if and only if $|x| \le |c|$ and $c \in C$ imply $x \in C$.

PROOF. Consider $0 \neq c = a-b \in C$ where a and b are p-disjoint. If $c \in O(G)$, then a and $b \in C$ so $a+b \in C$. Let $x = u-v \in G$ where u and v are p-disjoint, then $u+v+H(u,v)=|x| \leq |c|=a+b+H(a,b)$. If |x|<|c|, then u+v<a+b<<a>(2(a+b)). If |x|=|c|, then u+v+H(u,v)=a+b+H(a,b) implies H(u,v)=a+b+B(a,b) and u+v+b=a+b for some $h \in H(a,b)$. Now a=a+b+B(a,b) so a=a+b+B(a,b). Thus,

$$0 \le u$$
 and $v \le u + v \le a + b \in C$

so u, v and $x = u - v \in C$.

Conversely, suppose the condition is satisfied and $c = a - b \le a + b = x$. Then, $|x| = a + b \le 2a + 2b + H(a, b) = |2c|$. Thus, $x \in C$ so C is directed. If $0 \le y \le c \in C$, then $|y| \le |c|$ so $y \in C$ and C is convex. Hence, C is an o-ideal.

Proposition 3.5. $G(g) = G(|g|) = G(g^+) + G(g^-) = \{x \in G | |x| \le n |g| \text{ for some } n > 0\}.$

PROOF. Let g = a - b with a and b p-disjoint, then G(g) = G(a + b) = G(a) + G(b). If $0 < x \in G(a)$, then $x \le na \in G(g^+)$ for some n > 0 and so $G(a) \subseteq G(g^+)$. If $x \in g^+$, then x = a + m, $m \in H(a, b)$ and since $H(a, b) \subseteq G(a)$, we have $x \in G(a)$. Therefore, $G(a) = G(g^+)$ and similarly, $G(b) = G(g^-)$ so $G(g) = G(g^+) + G(g^-)$. If $0 < x \in G(g)$, then $x \le n(a + b)$ and $a + b \in G(|g|)$ so $G(g) \subseteq G(g|g|)$.

If $z \in |g|$, then z = a+b+m where $m \in H(a,b) \subseteq G(a) \subseteq G(a+b)$ so $z \in G(a+b) = G(g)$. Hence, $|g| \subseteq G(g)$ and, since G(|g|) is the o-ideal generated by |g|, we have $G(|g|) \subseteq G(g)$.

Let $X = \{x \in G \mid |x| \le n \mid g \mid \text{ for some } n > 0\}$ and assume $g \ne 0$. Now $ng \in G(g)$ so if $|x| \le n \mid g \mid = |ng|$, then $x \in G(g)$ by Proposition 3. 4. Thus, $G(g) \supseteq X$. Equality will be established if we can show X is a group, for then X is an o-ideal that contains g and so $X \supseteq G(g)$. If x and $y \in X$, then $|x-y| \le 2|x|+2|-y| = 2|x|+2|y|$ where |x| and $|y| \le n \mid g \mid$ for some n > 0. Thus, $|x-y| \le 4n \mid g \mid$ so $x-y \in X$ and X is a group.

Proposition 3. 6. If S is a subgroup of G and G is divisible by 2, then

$$T = \{x \in S \mid |y| \le |x| \text{ implies } y \in S\}$$

is the largest o-ideal of G contained in S.

The proof is straightforward and will be omitted.

IV. The o-ideal H and prime and lex o-ideals

Let $H = V\{H(a, b) | a \text{ and } b \text{ are } p\text{-disjoint in } G\}$.

Theorem 4. 1. For $K \in O(G)$, the following are equivalent.

- (1) G/K is an l-group.
- (2) K⊇H.

PROOF. If G/K is an I-group and a and b are p-disjoint in G, then K+a and K+b are p-disjoint in G/K and $(K+a) \wedge (K+b) = K$. If $0 \le m \in H(a,b)$ then $K \le K+m \le K+a$ and K+b so K+m = K. Thus, $m \in K$ and $H(a,b) \subseteq K$. Therefore, $K \supseteq H$.

Conversely, suppose that $K \supseteq H$ and let $X \in G/K$. Then X = K + g = (K + a) - (K + b) where by Proposition 2. 2 we may assume a and b are p-disjoint in G. By the same proposition,

$$H(K+a, K+b) = (K+H(a, b))/K = K.$$

Thus, $(K+a) \wedge (K+b) = K$ and G/K is an *l*-group.

Corollary 1. G is an l-group if and only if H=0.

Corollary 2. The following are equivalent.

- (a) There exists an o-ideal K of G such that both K and G/K are l-groups.
- (b) H is an l-group.

PROOF. If (a) is true, then $K \supseteq H$ and so H is an l-ideal of K and, in particular, H is an l-group. The converse is trivial.

Corollary 3. If $\{G_{\delta}|\delta\in\Delta\}$ is a set of o-ideals of G such that each G/G_{δ} is an l-group, then $G/(\cap\{G_{\delta}|\delta\in\Delta\})$ is an l-group.

PROOF. Each $G_{\delta} \supseteq H$ so $\cap \{G_{\delta} | \delta \in \Delta\} \supseteq H$.

Definition. An o-ideal M of G is prime if G/M is an o-group.

Proposition 4. 2. $H = \bigcap \{M | M \text{ is a prime } o\text{-ideal of } G\}.$

PROOF. If M is a prime o-ideal of G, then G/M is an o-group, so by Theorem 4.1, $M \supseteq H$. Therefore, $H \subseteq \bigcap \{M \mid M \text{ is a prime } o\text{-ideal of } G\}$. If $0 < g \in G \setminus H$, then since G/H is an l-group, there exists a prime l-ideal \mathcal{M} of G/H that does not contain H+g (any l-ideal maximal without H+g will do). Now $\mathcal{M}=M/H$ where M is an o-ideal of G and $G/M \cong (G/M)/(M/H)$, an o-group. Thus, M is a prime o-ideal of G and $G/M \cong (G/M)/(M/H)$ is a prime G-ideal of G. Therefore, it follows that G is a prime G-ideal of G.

Proposition 4. 3. For $M \in O(G)$, the following are equivalent.

(1) M is prime.

(2) The o-ideals of G that contain M form a chain.

(3) If a and b are p-disjoint in G, then $a \in M$ or $b \in M$.

PROOF. (1) implies (2). There is a one-to-one, inclusion preserving correspondence between the o-ideals of G that contain M and the o-ideals of G/M. Clearly, the latter form a chain.

- (2) implies (3). If $a \notin M$ and $b \notin M$, then there exists a value A of a such that $A \supseteq M$ and a value B of b such that $B \supseteq M$. But then A and B are comparable, which contradicts the fact that a and b are p-disjoint.
- (3) implies (1). If $M+g \in G/M$, then g=a-b where a and b are p-disjoint. Either $b \in M$ and $M+g=M+a \ge M$, or $a \in M$ and $M+g=M-b \le M$. Therefore, G/M is an o-group.

Remark. Each subgroup M of G that satisfies (3) is clearly a p-subgroup and any subgroup that contains a prime o-ideal satisfies (3). A subgroup M of an l-group satisfies (3) if and only if M contains a prime l-ideal, but we have been unable to prove this for p-groups.

Corollary 1. If ... \supset ... $G_{\delta} \supset$... is a chain of prime o-ideals of G, then $\bigcap G_{\delta}$ is a prime o-ideal. In particular, each prime o-ideal contains a minimal prime o-ideal.

PROOF. This is an immediate consequence of (3).

Definition. An *l-ideal* of G is an o-ideal which is also a lattice with respect to the induced partial order. Example (7.3) shows that the join of two *l*-ideals of G need not be an *l*-ideal.

Proposition 4. 4. If A is an l-ideal of G and $a, b \in A$, then $a \land_A b$ is the g. l. b. of a and b in G, and $a \lor_A b$ is the l.u.b. of a and b in G. Thus, the set of l-ideals of G is closed with respect to intersections and joins of chains.

PROOF. Let A be an I-ideal of G. If $x \le a$ and b, then since G is Riesz, there is $y \in G$ such that $x \le y \le a$ and $(a \land_A b) \le y \le b$. Since A is convex, $y \in A$ so $a \land_A b = y$. Thus, $x \le a \land_A b$ and so $a \land_A b$ is the g.l. b. of a and b in G. A dual argument establishes the remainder of the proposition.

Definition. An o-ideal C of G is lex if $x \in G^+ \setminus C$ implies x > C.

It follows at once that an o-ideal C of G is lex if and only if each strictly positive element in G/C consists of positive elements. Let C_1 and C_2 be two lex o-ideals

of G and suppose that $0 < g \in C_1 \setminus C_2$. Then $g > C_2 > -g$ and hence, $C_2 \subseteq C_1$. Therefore, the set \mathcal{L} of all lex o-ideals of G form a chain (with 0 as the least element and G as the largest element).

 \mathscr{L} is closed with respect to joins and intersections. For let \mathscr{I} be a subset of \mathscr{L} and consider $J = \bigcup \mathscr{I}$ and $K = \bigcap \mathscr{I}$. If $g \in G^+ \setminus J$, then $g \in G^+ \setminus T$ for all $T \in \mathscr{I}$ and so g > T for all $T \in \mathscr{I}$. Hence, g > J. If $g \in G^+ \setminus K$, then $g \notin T$ for some $T \in \mathscr{I}$ and $g > T \supseteq K$.

Since the join of a chain of *l*-ideals is an *l*-ideal, there exists a largest lex *o*-ideal L of G which is also an *l*-ideal. We next show that there exists a smallest lex *o*-ideal S such that G/S is an *l*-group. For let \mathcal{I} be the collection of all lex *o*-ideals T of G such that G/T is an *l*-group, and let $S = \bigcap \mathcal{I}$. Then S is a lex *o*-ideal and by Corollary 3 to Theorem 4. 1, G/S is an *l*-group.

Note that the following are equivalent: G is an l-group; H=0; S=0; L=G; G/L is an o-group. For if G/L is an o-group, then G is a lexicographic extension of the l-group L by the o-group G/L and so, G is an l-group.

Proposition 4. 5. If G is an l-group, then $0 = S = H \subseteq L = G$. If G is not an l-group, then $L \subseteq H \subseteq S$. If S is not prime, then S = H.

PROOF. We have established the part when G is an I-group. So suppose G is not an I-group. Then G/L is not an o-group so there exist strictly positive elements X and Y in G/L that are p-disjoint. By Proposition 2. 2, X = L + x and Y = L + y where x and y are p-disjoint in G. Since $x, y \in G^+ \setminus L$, we have x, y > L and so $L \subseteq H(x, y) \subseteq H$. Since G/S is an I-group, Proposition 4. 1 establishes $H \subseteq S$. If S is not prime, then by Proposition 4.3, there exists a and b p-disjoint in G such that $a \notin S$ and $b \notin S$. Thus, a, b > S so $S \subseteq H(a, b) \subseteq H$.

Proposition 4. 6. For G, the following are equivalent.

- (1) G is a lexicographic extension of an l-group by an l-group.
- (2) G/L is an l-group (or equivalently $H \subseteq L$).
- (3) S is an 1-group.
- (4) $S \subseteq L$.
- (5) S = H and H is an l-group.
- (6) G is a lexicographic extension of the l-group H by the l-group G/H.

PROOF. Clearly, (1), (2), and (3) are equivalent, (2) implies (4), (5) implies (6) and (6) implies (1).

- (4) implies (3). S is an *l*-ideal of L and hence, S is an *l*-group.
- (3) implies (5). If S is an *l*-group but not prime, then S = H by the last proposition. If S is prime, then G is a lexicographic extension of S by the o-group G/S and so G is an *l*-group. Hence, H = S = 0.

V. The p-group $V(\Delta, H_{\delta})$

Let H_{δ} be a po-group for each δ in a po-set Δ and let $V = V(\Delta, H_{\delta})$ be the set of all Δ -vectors $v = (..., v_{\delta}, ...)$ where $v_{\delta} \in H_{\delta}$, for which the support $S(v) = \{\delta \in \Delta | v_{\delta} \neq 0\}$, contains no infinite ascending chains. Define $0 \neq v \in V$ to be positive if $v_{\delta} > 0$ for each maximal element $\delta \in S(v)$ (that is, if each maximal component

is positive). Then V is a po-group [1] and it can be shown that V is a p-group if and only if each H_{δ} is a p-group. If each H_{δ} is an o-group, then V is a p-group (the proof of Theorem 4. 8 in [2] establishes this) and in [1] it is shown that V is an l-group if and only if Δ is a root sytem (that is, for each $\gamma \in \Delta$, $\{\delta \in \Delta \mid \delta \ge \gamma\}$ is a chain).

Theorem 5.1. If each H_{δ} is an o-group, then $V = V(\Delta, H_{\delta})$ is a p-group and V^+ is the union of lattice cones.

PROOF. Let H_{δ} be an o-group for each $\delta \in \Delta$, then V is a p-group by the above. Let D be a trivially ordered subset of Δ . Well order D as $\delta_1, \delta_2, \ldots \delta_{\mu}, \delta_{\mu+1}, \ldots$ and for each μ , let

$$D_{\mu} = \{ \delta \in \Delta | \delta < \delta_{\mu} \text{ and } \delta < \delta_{\nu} \text{ for any } \nu < \mu \}.$$

We assign a new partial order to Δ by defining α to be greater than β if $\alpha = \delta_{\mu}$ for some $\delta_{\mu} \in D$ and $\beta \in D_{\mu}$. Let Δ_D be the set Δ with this new partial order. Then clearly, Δ_D is a root system and this partial order is weaker than the given partial order. The following is a "picture" of the new partial order. The *l*-group

 $V_D = V(\Delta_D, H_\delta)$ is the large direct sum of the H_δ and V is a subgroup of V_D . If $v \in V$, then $S(v \vee_D 0) \subseteq S(v)$ so $(v \vee_D 0) \in V$ and hence, V is an I-subgroup of V_D . Next, $V^+ \supseteq V \cap V_D^+$ and so $V^+ \supseteq \cup (V \cap V_D^+)$ for all trivially ordered subsets D of Δ .

Now consider $v \in V^+$ and let D be the set of maximal elements in S(v). Then v has exactly the same maximal components in V_D so $v \in V \cap V_D^+$. Therefore, $V^+ = \bigcup (V \cap V_D^+)$ for all trivially ordered subsets D of V.

Corollary 1. If Δ contains only a finite number of trivially ordered subsets, then V^+ is the union of a finite number of lattice cones.

Corollary 2. Each p-group G is a p-subgroup of a p-group V for which V^+ is the union of lattice cones.

PROOF. By Theorem 4. 10 in [2], G is p-isomorphic to a p-subgroup of $V(\Delta, R_{\delta})$ where each $R_{\delta} = R$.

An obvious question is whether or not G^+ is the union of lattice cones. A partial answer makes use of the following construction. For elements α and β in a po-set Δ we define $\alpha \sim \beta$ if,

(1) α and β are comparable,

(2) the closed interval determined by α and β is a chain,

(3) δ is comparable to α if and only if δ is comparable to β , for all $\delta \in \Delta$.

I) \sim is an equivalence relation.

Let $\tilde{\alpha}$ denote the equivalence class that contains α , and define

$$\tilde{\alpha} < \tilde{\beta}$$
 if $\tilde{\alpha} \neq \tilde{\beta}$ and $\alpha < \beta$.

II) The set $\Lambda = \{\tilde{\alpha} | \alpha \in \Delta\}$ is partially ordered with respect to this definition and Λ is a root system f and only if Δ is a root system.

III) Λ is finite if and only if Λ c ontains only a finite number of maximal chains. The proofs of I—III are reasonably straightforward and we shall omit them.

Now as in [2], let $\Delta = \Delta(G)$ be an index set for the set of all pairs (G^{δ}, G_{δ}) of o-ideals of G such that G_{δ} is maximal without some $g \in G$, and G^{δ} covers G_{δ} . Each G^{δ}/G_{δ} is o-isomorphic to a subgroup of the additive group R of real numbers with the natural order. Let Λ be as above and for each $\lambda \in \Lambda$, define

$$H^{\lambda} = \bigcup_{\alpha \in \lambda} G^{\alpha} \qquad H_{\lambda} = \bigcap_{\alpha \in \lambda} G_{\alpha}.$$

Then each $H^{\lambda} \setminus H_{\lambda}$ is an o-group. For if $x \in H^{\lambda} \setminus H_{\lambda}$, then $x \in G^{\alpha} \setminus G_{\alpha}$ for some $\alpha \in \lambda$ and x = a - b where a and b are p-disjoint in G. Since α is a value of x, it must be a value of a or of b. If $a \in G^{\alpha} \setminus G_{\alpha}$, then $b \in G_{\alpha}$ and, since no value of b is comparable to α , $b \in H_{\lambda}$. Thus, $H_{\lambda} + x = H_{\lambda} + a > H_{\lambda}$, and if $b \in G^{\alpha} \setminus G_{\alpha}$, then $H_{\lambda} + x = H_{\lambda} - b < H_{\lambda}$.

For μ , $\nu \in \Lambda$, $\mu < \nu$ if and only if $H^{\mu} \subseteq H_{\nu}$ and also

(1) 0≠g∈G implies g∈H^λ\H_λ for some λ∈Λ.
(2) g∈H^λ implies g∈H^μ\H_μ for some λ<μ∈Λ.

Now if G is divisible, then it can be shown that there exists a p-isomorphism of G into $V(\Lambda, H^{\lambda} \setminus H_{\lambda})$, but we make no use of this result.

Theorem 5. 2. If G is divisible and Δ contains only a finite number of maximal chains, then Λ is finite and $G \cong V(\Lambda, H^{\lambda}/H_{\lambda})$ where each H^{λ}/H_{λ} is an o-group. In particular, G^+ is the union of a finite number of lattice cones.

PROOF. By III, Λ is a finite po-set and by (3. 1) in [2] each o-ideal is a pure subgroup of G and hence, divisible. Thus, each H^{λ} is a direct summand of G so $G = H^{\lambda} \oplus D^{\lambda}$. Consider $g \in G$ and $\lambda \in \Lambda$, we can write $g = g_{\lambda} + d_{\lambda}$ where $g_{\lambda} \in H^{\lambda}$ and $d_{\lambda} \in D^{\lambda}$. Define

$$g\tau = (..., H_{\lambda} + g_{\lambda}, ...).$$

It is clear that τ is a homomorphism of G into V and because of (1), τ is an one-to-one. It is easy to check that the following are equivalent: g>0; $H_{\lambda}+g>H_{\lambda}$ for all $\lambda \in \Lambda$ such that $g \in H^{\lambda} \setminus H_{\lambda}$; each maximal component of $g\tau$ is positive. Therefore, τ is an o-isomorphism of G into $G\tau$.

To prove τ is onto, consider $0 \neq v \in V$. To show there is a $y \in G$ such that $y\tau = v$ we will use induction on the cardinality of

$$T_v = \{ \lambda \in \Lambda | \lambda \le \mu \text{ for some } \mu \in S(v) \}.$$

Let $H_{\lambda} + g$ be a maximal component of v and suppose (*) there exists $h \in G$ such that λ is the only value of h in Λ and $H_{\lambda} + h = H_{\lambda} + g$. Let $s = v - h\tau$. Then clearly T_s is a proper subset of T_v and so by induction there is $x \in G$ such that $x\tau = s$. Hence, $(x+h)\tau = s + h\tau = v$ and τ is onto.

We may, without loss of generality, assume g > 0. Let $\alpha_1, \ldots, \alpha_n$ be the values of g in Δ . Note that Δ having only a finite number of maximal chains implies that g is finite valued. Then $\lambda_i = \tilde{\alpha}_i$, $1 \le i \le n$ are the values of g in Δ . By (4. 10) in [2], for each $i = 2, \ldots, n$ we may select $0 > k_i \in G$ with α_i as its only value and such that

 $G_{\alpha_i}+g+k_i < G_{\alpha_i}$. Let $k=k_2+\ldots+k_n$. Then $0>k\in H_{\lambda_1}\setminus H_{\lambda_i}$ and $H_{\lambda_1}+g+k< H_{\lambda_i}$ for $i=2,\ldots,n$.

Suppose $g+k \in H^{\lambda} \setminus H_{\lambda}$ and $H_{\lambda}+g+k > H_{\lambda}$. Then $g \in H_{\lambda}$; for otherwise $H_{\lambda}+g+k = H_{\lambda}+k \leq H_{\lambda}$. If $g \in H^{\lambda}$, then $H^{\lambda} \subseteq H_{\lambda_{j}}$ for some j=1,2,...,n and since $g+k \in H^{\lambda} \subseteq H_{\lambda_{j}}$ and $g \in H_{\lambda_{j}}$, it follows that $k \in H_{\lambda_{j}}$. But then $H_{\lambda_{j}}+g+k < H_{\lambda_{j}}$, a contradiction. Therefore, $g \in H^{\lambda} \setminus H_{\lambda}$ and hence, $\lambda = \lambda_{1}$. Thus, g+k has exactly one positive value λ_{1} . Now g+k=a-b where a and b are p-disjoint and it follows that the values of a are the positive values of g+k, namely λ_{1} . Moreover, $H_{\lambda_{1}}+g=H_{\lambda_{1}}+g+k=H_{\lambda_{1}}+a-b=H_{\lambda_{1}}+a$. This establishes (*) and the proof is complete.

Remark. If G is an I-group, then the following are equivalent: Δ contains only a finite number of maximal chains; G has a finite basis; G has only a finite number of minimal primes. Thus, the last theorem is the structure theorem for an abelian I-group with a finite basis. See [1, p. 161].

VI. p-groups which are o-homomorphic images of l-groups

This section is devoted to proving the following result.

Theorem 6.1. If G is a divisible p-group and $\Delta = \Delta(G)$ contains only a finite number of maximal chains, then there exists an l-group H with a finite basis and a trivially ordered subgroup C of H such that G and H/C are o-isomorphic.

In order to prove this, we first derive two lemmas. Suppose that Γ and Λ are po-sets and θ is a map of Γ onto Λ such that

- (i) $\alpha < \beta$ implies $\alpha \theta < \beta \theta$
- (ii) $\alpha \theta < \beta \theta$ implies $\bar{\gamma} \theta = \bar{\alpha} \theta$ for some $\gamma < \beta$

where $\bar{\gamma} = \{\delta \in \Gamma | \delta \leq \gamma\}$. Let $H = \Sigma(\Gamma, H_{\gamma})$ and $G = \Sigma(\Lambda, G_{\lambda})$ where the H_{γ} and G_{λ} are o-groups such that $H_{\gamma} = G_{\lambda}$ if $\gamma \theta = \lambda$, and $\Sigma(\Gamma, H_{\gamma})(\Sigma(\Lambda, G)_{\lambda})$ is the subgroup of elements with finite support in $V(\Gamma, H_{\gamma})(V(\Lambda, G_{\lambda}))$. For $h \in H$, we define $h\pi \in G$ as follows

$$(h\pi)_{\lambda} = \sum_{\gamma\theta=\lambda} h_{\gamma}.$$

Lemma A. π is an o-homomorphism of H onto G and so $G \cong H/K(\pi)$. Moreover, $K(\pi)$ is trivially ordered.

Proof.
$$(g\pi)_{\lambda} + (h\pi)_{\lambda} = \sum_{\gamma\theta = \lambda} g_{\gamma} + \sum_{\gamma\theta = \lambda} h_{\gamma} = \sum_{\gamma\theta = \lambda} (g+h)_{\gamma} = ((g+h)\pi)_{\lambda}$$

and hence, π is a homomorphism of H onto G. Consider $0 \neq h \in H$ with maximal components $h_{\gamma_1}, \ldots, h_{\gamma_n}$ and let $\{\gamma_1, \ldots, \gamma_n\} = S$.

(1) If $\gamma_i \theta$ is maximal in $S\theta$, then $(h\pi)_{\lambda} = 0$ for all $\lambda > \gamma_i \theta$ and

$$(h\pi)_{\gamma_i\theta} = \sum_{\gamma_i\theta=\gamma_i\theta} h_{\gamma_j}.$$

For if $\lambda > \gamma_i \theta$ and $(h\pi)_{\lambda} \neq 0$, then there exists $\gamma \in \Gamma$ such that $h_{\gamma} \neq 0$ and $\gamma \theta = \lambda$. But

then $\gamma \leq \gamma_j$ for some j and $\gamma_i \theta < \lambda = \gamma \theta \leq \gamma_j \theta$ which contradicts the maximality of $\gamma_i \theta$. Therefore, $(h\pi)_{\lambda} = 0$ for all $\lambda > \gamma_i \theta$. Now, by definition,

$$(h\pi)_{\gamma_i\theta}=\sum_{\gamma\theta=\gamma_i\theta}h_{\gamma}.$$

Suppose that $h_{\gamma} \neq 0$ and $\gamma \theta = \gamma_i \theta$. Then $\gamma \leq \gamma_j$ for some j, and if $\gamma < \gamma_j$, then $\gamma_i \theta = \gamma \theta < \gamma_i \theta$ which again contradicts the maximality of $\gamma_i \theta$. Thus, $\gamma = \gamma_i$ and (1) holds.

(2) If $0 < h \in H$, then $0 < h\pi$. In particular $K(\pi)$ is trivially ordered. For if $\gamma_i \theta$ is maximal in $S\theta$, then by (1), $(h\pi)_{\gamma_i \theta}$ is a positive maximal component of $h\pi$ and so it suffices to show that these are the only maximal components of $h\pi$. If $(h\pi)_{\lambda}$ is a maximal component of $h\pi$, then there exists $\gamma \in \Gamma$ such that $h_{\gamma} \neq 0$ and $\gamma \theta = \lambda$. Now $\gamma \leq \gamma_j$ for some j and so $\lambda = \gamma \theta \leq \gamma_j \theta \leq \gamma_k \theta$ where $\gamma_k \theta$ is maximal in $S\theta$. Thus, $(h\pi)_{\gamma_k \theta}$ is a maximal component of $h\pi$ and so, $\lambda = \gamma_k \theta$.

(3) If $h\pi > 0$, then there exists $0 < x \in H$ such that $x\pi = h\pi$. We use induction

on the number s of elements in the support of h. The result is clear if s = 1.

Case I. There exists a maximal element $\gamma_i\theta$ in $S\theta$ for which the summation $c=\sum\limits_{\gamma_j\theta=\gamma_i\theta}h_{\gamma_j}$ contains at least two terms. In h replace h_{γ_i} by c and replace each of the other h_{γ_j} in this summation by 0. This defines $k\in H$ such that $k\pi=h\pi$ and the number of elements in the support of h is less than s. Thus, by induction, there exists $0 < x \in H$ such that $x\pi=k\pi=h\pi$.

Case II. $\gamma_i\theta$ maximal in $S\theta$ implies $(h\pi)_{\gamma_i\theta} = h_{\gamma_i} > 0$. We may assume h is not positive and hence, there exists a maximal component $h_{\gamma_j} < 0$. Since $h\pi > 0$, $\gamma_j\theta < \gamma_i\theta$ where $\gamma_i\theta$ is maximal in $S\theta$. By property (ii), there exists $\gamma < \gamma_i$ such that $\bar{\gamma}\theta = \bar{\gamma}_j\theta$. For each element $v \in \bar{\gamma}_j\theta$, pick an element $\gamma_v \in \bar{\gamma}$ such that $\gamma_v\theta = v$ and define $k \in H$ as

$$k_{\gamma_{\nu}} = \sum_{\substack{\delta\theta = \nu \\ \delta \in \bar{\gamma}_{+}}} h_{\delta}.$$

and all other components of k are zero. Now replace all the $h_{\alpha} \neq 0$, $\alpha \in \bar{\gamma}_j$ by zero and add this result of h to k. This gives an element $t \in H$ with one less negative maximal component than h and such that $t\pi = h\pi$. We proceed in this way to get $0 < x \in H$ such that $x\pi = h\pi$. This completes the proof.

Lemma B. If Λ is a finite po-set, then there exists a finite root system Γ and a mapping θ of Γ onto Λ such that

- (i) $\alpha < \beta$ implies $\alpha \theta < \beta \theta$
- (ii) $\alpha\theta < \beta\theta$ implies $\bar{\gamma}\theta = \bar{\alpha}\theta$ for some $\gamma < \beta$

PROOF. Call $\lambda \in \Lambda$ a branch point if there exists $\mu \| v$ in Λ such that $\lambda < \mu$ and v, and no element of Λ occurs between λ and μ or between λ and v (that is, μ and v cover λ).

Let λ be a minimal branch point. Select two o-isomorphic copies $\overline{\lambda}_1$ and $\overline{\lambda}_2$ of $\overline{\lambda}$ and let ψ_i map $\overline{\lambda}_i$ o-isomorphically onto $\overline{\lambda}$, i=1, 2. Let $\Lambda_1 = (\Lambda \setminus \overline{\lambda}) \cup \overline{\lambda}_1 \cup \overline{\lambda}_2$. We use the natural partial order on each of the three parts of Λ_1 , and define

$$\lambda_1 < \mu, \nu_1, \nu_2, ..., \gamma_n, \quad \lambda_2 < \nu, \nu_1, \nu_2, ..., \nu_n$$

where μ , ν , ν_1 , ν_2 , ..., ν_n are all the elements in Λ which cover λ . Let θ_1 be the map on Λ_1 defined as

$$\theta_1 = \begin{cases} \text{the identity on } \Lambda \backslash \overline{\lambda} \\ \Psi_1 \text{ on } \lambda_1 \\ \Psi_2 \text{ on } \lambda_2 \end{cases}$$

A routine argument establishes that θ_1 satisfies (i) and (ii). Now Λ_1 has one less branch point than Λ . Thus, after a finite number of steps we obtain a (finite) root system Γ and the desired mapping θ .

Proof of Theorem 6.1. By Theorem 4.2, we may assume that $G = V(\Lambda, G_{\lambda})$ where the G_{λ} are o-groups and Λ is finite. By Lemma B, there exists a finite root system Γ and a mapping θ of Γ onto Λ that satisfies (i) and (ii). Let H by the I-group $V(\Gamma, H_{\gamma})$ where $H_{\gamma} = G_{\lambda}$ if $\gamma \theta = \lambda$. Then by Lemma Λ , there is an o-homomorphism π of H onto G with $K(\pi)$ trivially ordered. Clearly H has a finite basis and $G \cong H/K(\pi)$.

It follows from Theorems 5. 2 and 6. 1 that if G is a finite dimensional real p-space, then G^+ is the union of vector lattice cones, and there exists a finite dimensional vector lattice H with a trivially ordered subspace C such that G and H/C are o-isomorphic.

VII. Examples

(7.1) We first give a method of constructing p-groups from l-groups. Suppose that $0 = H_0 \subset H_1 \subset \ldots \subset H_\alpha \subset H_{\alpha+1} \subset \ldots \subset H_\beta = H$ is a well ordered chain of l-ideals of an l-group H where, $H_\alpha = \bigcup H_\gamma$ for all $\gamma < \alpha$ if α is a limit ordinal. Then for each $0 \neq h \in H$ there exists an α such that $h \in H_{\alpha+1} \setminus H_\alpha$. Define $h \in H$ to be positive if h = 0 or $h \in H_{\alpha+1} \setminus H_\alpha$ and $H_\alpha + h > H_\alpha$. We denote the original order of H by < and the new order by <.

Proposition 7.1. \triangleleft is a partial order that extends the given order \triangleleft . Each l-ideal N of (H, \triangleleft) such that $H_{\alpha} \subseteq N \subseteq H_{\alpha+1}$ for some α is an o-ideal of (H, \triangleleft) . If $h \in H_{\alpha+1} \setminus H_{\alpha}$, the then values of h in (H, \triangleleft) are the values of h in (H, \triangleleft) between H_{α} and $H_{\alpha+1}$. Each $H_{\alpha+1}$ is a lexicographic extension of the p-group H_{α} by the l-group $H_{\alpha+1}/H_{\alpha}$.

The proof is straightforward but long; so we omit it.

(7. 2) An example of a finite dimensional vector lattice H with a trivially ordered (hence convex) subspace C such that H/C is not a Riesz group, and hence, not a p-group.

Let H = R + R + R + R and $C = \{(x, -x, x, -x) | x \in R\}$. Each coset in H/C

has a representation (0, x, y, z) + C and the following are equivalent.

- (i) $(0, x, y, z) + C \ge C$,
- (ii) $(b, x-b, y+b, z-b) \ge 0$ for some $b \in R$,
- (iii) $b \ge 0$, $x \ge b$, $y \ge -b$, $z \ge b$ for some $b \in R$,
- (iv) $x \ge 0$, $z \ge 0$, and $y \ge -\min\{x, z\}$ (i.e let $b = \min\{x, z\}$). Thus, it follows that

$$\begin{array}{c} (0,0,-1,1)+C \\ C \end{array} \} \leq \begin{cases} (0,0,0,1)+C \\ (0,1,-1,1)+C \end{cases}$$

where (0, 0, 0, 1) + C and (0, 1, -1, 1) + C are not comparable. We show

$$(0, 0, -1, 1) + C$$

$$C$$

$$\leq (0, p, q, r) + C \leq (0, 0, 0, 1) + C$$

implies (0, p, q, r) = (0, 0, 0, 1) and so G is not a Riesz group. Now,

$$C \le (0, p, q, r) + C$$
 implies $p \ge 0$, $q \ge -\min\{p, r\}$

$$C \leq (0, p, q+1, r-1) + C$$
 implies $r-1 \geq 0$

 $C \le (0, -p, -q, 1-r) + C$ implies $-p \ge 0, 1-r \ge 0, -q \ge -\min\{-p, 1-r\}$.

Thus, p=0, r=1 and so q=0.

A simpler example where C is not a subspace is the following. G = R + R, $C = \{(x, -x) | x \text{ is rational}\}$. The following are equivalent.

(i) $C + (a, b) \ge C$,

(ii) $(a+q,b-q) \ge 0$, for some $q \in Q$ (=the set of all rational numbers),

(iii) $b \ge q \ge -a$, for some $q \in Q$,

(iv) $b = -a \in Q$ or a + b > 0.

It follows that $\mathscr{D} = \{C + (a, -a) | a \in R\}$ is a trivially ordered subgroup of $\mathscr{G} = G/C$ and \mathscr{G} is a lexicographic extension of \mathscr{D} by the o-group \mathscr{G}/\mathscr{D} . Thus, \mathscr{G} is o-simple and hence, not a p-group. However, \mathscr{G} is a Riesz group.

(7. 3) $G = R \oplus R \oplus R$ with (a, b, c) positive if a > 0 and $b \ge 0$, or $a \ge 0$ and b > 0, or a = b = 0 and $c \ge 0$. Then G is a p-group and $P_1 = \{0\} \oplus R \oplus R$ and $P_2 = R \oplus \{0\} \oplus R$ are prime l-ideals of G, but $P_1 \cup P_2 = G$ is not an l-ideal.

(7.4) An example of an l-group H with a subgroup S that is an l-group with respect to the induced partial order, but not an l-subgroup.

Let $0 \neq K$ be an abelian *l*-group; let H = K + K + K and

$$S = \{(x, y, x+y) | x, y \in K\} \cong K | + | K.$$

For $0 < k \in K$, $(2k, -k, k) \lor \theta = (2k, 0, k) \notin S$ where θ denotes the identity of S. Thus, S is not an l-subgroup of H but $(x, y, z) \lor_S \theta = (x \lor 0, y \lor 0, (x \lor 0) + (y \lor 0)) \in S$ and S is a lattice in the induced partial order.

(7.5) Let $S = \{\varepsilon_{\delta} | \delta \in \Delta\}$ be a basis for the real vector space H. Assign a partial order to S (or equivalently to Δ) and consider $h = h_1 \varepsilon_{\delta_1} + \cdots + h_n \varepsilon_{\delta_n}$ in H. Define h_i to be a maximal component of h if $h_i \neq 0$ and $h_j = 0$ for all $\delta_j > \delta_i$, and define h to be positive if each maximal component of h is positive. Then H is a real p-space and we say S is an order determining basis for H. Note that

$$H\cong \sum (\Delta, R_{\delta}).$$

Conversely, suppose H is a real po-vector space and S is a basis of positive elements such that

(i)
$$\alpha \neq \beta$$
 implies $R^+ \varepsilon_{\alpha} > \varepsilon_{\beta}$ or $R^+ \varepsilon_{\alpha} < \varepsilon_{\beta}$ or $R^+ \varepsilon_{\alpha} || \varepsilon_{\beta}$,

(ii)
$$\varepsilon_{\delta_1}, \ldots, \varepsilon_{\delta_n} \| \varepsilon_{\delta}$$
 implies $(x_1 \varepsilon_{\delta_1} + \ldots + x_n \varepsilon_{\delta_n}) \| \varepsilon_{\delta}$ for all $0 < x_i \in R$.

Then it can be shown that H is a p-space and S is an order determining basis. We conclude by listing the following.

Open Questions

(1) If $P_1, ..., P_n$ are lattice cones for a group H and $P = P_1 \cup ... \cup P_n$ is a cone for H, then is (H, P) a p-group?

(2) Is each p-group the homomorphic image of an l-group?

Added in proof: The Answer to questiont (1) above is, no. J. JAKUBIK [5] answers some of the other open questions. For a p-group G he has proven the following results.

A subgroup M of G contains a prime o-ideal if and only if a and b p-disjo-

int in G implies $a \in M$ or $b \in M$.

If A is an o-ideal and B a p-subgroup of G then A+B is a p-subgroup of G. The intersection of p-subgroups need not be a p-subgroup.

References

- [1] P. CONRAD—J. HARVEY—C. HOLLAND, The Hahn embedding theorem for Abelian lattice ordered groups, *Trans. Amer. Math. Soc.*, **108** (1963), 143—169.
- [2] P. Conrad, Representations of partially ordered Abelian groups as groups of real valued functions. Acta. Math., 116 (1966), 199—221.
- [3] L. Fuchs, Partially ordered algebraic systems, Pergamon Press 1963.

[4] L. Fuchs, Riesz groups, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 1-34.

- [5] J. JAKUBIK, On subgroups of a pseudo lattice ordered group, *Pacific J. Math.* 34 (1970), 109—115.
- 6] J. R. Teller, On Abelian pseudo lattice ordered groups, Pacific J. Math. 27 (1968), 411-419.

(Received November 18, 1968.)