A note on almost-Dedekind domains
By ELBERT M. PIRTLE, JR. (Kansas City, Mo)

1. Introduction

In this section we state the necessary background results from [1]. In the rema-
inder of this paper, R will denote a commutative integral domain with identity and
quotient field K. 7/(R) will denote the collection of non-zero fractionary ideals of
R. A fractionary ideal of the form Rx, x#0, x<K, is called a principal fractionary
ideal.

A relation < is defined on /(R) as follows: A4 < B iff every principal fractionary
ideal of R which contains A also contains B. The relation < is reflexive and transitive.
If we define = on I(R) by A=B iff A<B, and B< A, for A, B€ I(R), then = is an
equivalence relation on /(R). For A €I(R), divg(A) denotes the equivalence class
of A with respect to = and is called the divisor of 4; Z(R) denotes the set of all
such equivalence classes.

For A€I(R), we put 4 = p Rx, xe K, x#0. A fractionary ideal B of R is said

AS=Rx

to be divisorial if B=B. It follows that for A€ I(R), divg(4)=divg(A) and that
A is the unique divisorial fractionary ideal belonging to divg(A4). It also follows

— —
from the definition that 4B= AB for A, BcI(R), so that 2(R), together with
the operation + defined by divg(A4)+divg (B) = divg(4B) is a commutative
semigroup with identity 0=divg (R). Furthermore, Z(R) is a group iff R is com-
pletely integrally closed. If we define=on Z(R) by divg (4)=divg (B) iff A<B,
then Z(R) is a lattice-ordered semigroup.

2. An application of Z(R)

It is shown in [1] that the proper prime ideals in a Dedekind domain are divi-
sorial. We now apply the general theory of Z(R) to show that this property charac-
terizes. Dedekind domains in the class of one-dimensional Priifer domains.

Theorem 2. 1. Let R be a Priifer domain in which proper prime ideals are maxi-
mal. Then R is a Dedekind domain iff every minimal pirme ideal of R is divisorial.

PROOF. (<) Since R is a one-dimensional Priifer domain, R, is a rank one valua-
tion ring for each maximal ideal M of R. By [5, page 94], R= " R,,;, where M runs
over the collection of maximal ideals of R. Since R,, is completely integrally closed
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for each maximal ideal M of R, it follows that R is completely integrally closed,
so that Z(R) is a group (see [1]). Let P be any non-zero maximal (hence minimal)
prime of R. Then P(R:P) € R. If P(R:P) # R, then P(R:P) £ M for some
maximal ideal M of R. Then P> C P(R:P) S M; ie., P?C M. Thus PC M,
and so P= M since both M and P are minimal (maximal). So we have P(R:P) = P
if P(R:P) # R. But then in Z(R) we have 0 = divg (P(R:P)) = divg (P) > 0,
a contradiction (divg (P)=0 since PSR, and P=P<:R). So we must have
P(R:P) = R; i.e.,, P is invertible and hence finitely generated. Thus R is a ring
in which every prime ideal is finitely generated and so by Cohen's theorem, [6,
page 8] (see also [7]), R is Noetherian. We already have that R is integrally closed
and that prime ideals are maximal. It follows that R is a Dedekind domain.

(=) See [1].

In [4], Gilmer defines an almost-Dedekind domain (4 D-domain) to be a domain
R such that R,, is a Dedekind domain for each maximal ideal M of R. It follows
that if R is an almost-Dedekind domain then R is a Priifer domain in which prime
ideals are maximal. We can now state the following corollary.

Corollary 2.2. Let R be an almost-Dedekind domain. Then R is Dedekind
iff proper prime ideals of R are divisorial.

3. families of valuations and the construction of .«/(R)

In this section we obtain a characterization of an AD-domain R in terms of
a family F of valuations on K. The family is used to construct a partially ordered
semigroup o/(R) of fractionary ideal classes and the relation between ./(R) and
Z(R) is described.

Definition 3.1. Let v be a rank one, discrete valuation on K which is non-
negative on R. For any fractionary ideal 4 of R, put v(4)= EEEU(A)-

Theorem 3. 2. R is AD iff there is a family F of valuations on K such that.

(i) Each ve F has rank one and is discrete.
(i) R= ) R,.
vEF
(iii) R, = Rp(,, where P(v) denotes the center of v on R for each ve F.

(iv) R is the only ideal A of R such that v(A)=0 for all ve F.

PrOOF. Suppose F is a family of valuations on K which satisfies (i), (i), (iii),
(iv) above, and let P be any proper prime ideal of R. By (ii), v(P)=0 for all v€ F.
By (iv) there is v€ F such that v(P)=0. Then (0)<P S P(v)<R, where P(v)
denotes the center of v on R. Since P(v) is the center of a rank one valuation, P(v)
is a minimal prime in R. Thus P=P(v) and Rp=Rp,, =R, is a rank one, discrete
valuation ring. It follows that R is AD.

Suppose R is AD. Let F be the family of valuations on K induced by the family
of proper primes of R. It is easy to see that F satisfies (i), (ii), (iii). To see that F
satisfies (iv), let A be any proper ideal of R. Then 4 £ M for some maximal (and
hence minimal prime) ideal M of R. If v denotes the valuation on K induced by
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M, then vé F. Furthermore, v(4A)=v(M)=0. Thus R must be the only ideal A4
of R such that v(4)=0 for all v€ F, and (iv) holds.

We note that condition (iv) insures that proper prime ideals are maximal and
that valuation rings R, are identical with the quotient rings R, where P runs over
all minimal primes of R. We call F the family of essential valuations of R. In the
remainder of this section, R denotes an 4D-domain, F the family of essential valu-
ations of R.

We state the following lemmas:

Lemma 3. 3. If A, BEI(R), vE F, then v(AB) = v(A) + v(B).
Lemma 3. 4. For any principal fractionary ideal Rx and any v¢ F, v(Rx) = v(x).

Now, for A, B¢ I(R), define A ~ B iff v(A4)=uv(B) for all ve F. Then ~ is an
equivalence relation on /(R). For A<€I(R) we let [4] denote the equivalence class
of A with respect to ~ and we let @/(R) denote the set of all such equivalence classes.
We define + on /(R) by [4] +[B] = [4B], and we define = on .«/(R) by [4] =(B]
iff v(A4)=v(B) for each vé F. With these definitions .%/(R) is a commutative, partially
ordered semigroup with identity 0=[R].

Lemma 3. 5. Let A€I(R). Then, considering [A] and divg (A) as subsets of I(R),
[4] = divg (4).

PrROOF. Let B€[A]. Then v(B)=v(A) for each ve F. If A< Rx, then v(B)=
=v(A)=v(Rx)=v(x) for each ve F. Thus if b B, v(b)—v(x) = 0 for all vEF;

ie, v [i’-] =0 forallve F, so ie N R,=R, and hence BE Rx. Similarly, if BE Ry
vEF

then 4= Ry. Then A= B and divg (4) =divg (B), But then Bedivg (4).

Proposition 3. 6. The map g:/(R)—~%(R), defined by g([A]) =divg (A). is an
order-preserving homomorphism of the partially ordered semigroup <4(R) onto the
lattice-ordered group Z(R).

Proor. Lemma 3. 5 shows that g is well-defined and onto. It is easy to check
that g is a homomorphism. To see that g preserves order, recall that divg (4)=
=divg (B) iff A<B. We shall show that if [4]=[B], then A< B. Thus suppose
[4]=[B] and let A< Rx. Then v(B)=v(4)=v(x) for each ve F since [4]=[B].
As in the proof of 3. 5 we have BE Rx so that A< B.

We can now prove the following theorem.

Theorem 3. 7. Let R be an AD-domain with family F of essential valuations. The
following statements are equivalent.

(1) Every proper prime ideal of R is divisorial.

(2) Every fractionary ideal of R is divisorial.

(3) R is a Dedekind domain.

(4) S(R) is a group.

(5) The map g of </(R) onto Z(R) is an isomorphism.

PrOOF. (1)<(3). This is corollary 2. 2.

(2)=(5) If every fractionary ideal is divisorial, then for 4</(R) we have
divg (A)={A4}. But Ac[A]Sdivg (4)={A}. It follows that, considered as sets,
[4] =divg (A) so that g is 1—I1, hence an isomorphism.
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(5)=(4) Clear since Z(R) is a group.

(4)=(3) Suppose #/(R)is a group. Then if [4] £.2Z(R). there is [B] < .2/(R) such
that [4] +[B] = 0: i.e.. [AB]=[R]. Then v(AB)=0 for all v< F and so by theorem
3.2, AB=R. Thus A is invertible and hence has a finite basis so that R is Noethe-
rian and therefore Dedekind.

(3)=(2) This is found in [l], page 23.

4. Some further examples of AD-domains

Let R be an AD-domain with quotient field K and family F of essential valu-
ations. Let L be a subfield of K and put 4 = R L. We may suppose that L is the
quotient field of A, for if T is the quotient field of 4 then AS TS L, and so
ASRNTSRNL = A.

Proposition 4. 1. /f R is integral over A, then A is almost-Dedekind.

PrOOF. For v€ F, let v" denote the restriction of v to L. Let F'={v"|v€ F and
v is nontrivial on L}. Thusif v” € F’, then v"(x) #0 for some non-zero element x € L. It
is clear that each v" € F’ is a rank one discrete valuation since each v & F is a rank one
discrete valuation. Since R = ﬂ R,wehave A=RNL = (n R)NL= r‘| (R.NL) =

e ﬂ (R,N L), for if neF lS trwlal on L, then LCR For v ﬁF let A4,

_-{xeL[u (x)=0}, and let Q(v") = {) €A (}):-0} Then Q(v")=AN P(L) so Q(v")
is a non-zero minimal prime of 4 since P(v) is a non-zero minimal prime of R and
R is integral over 4. We have Ay, ,=LNRp,,=LNR,=A, for each v'¢F".

For if ; € Ag(y» then v’ (f] =0; ie, ;ELHR”:L N Rpy=A, . Thus 4y, E A4, .

X - ; 2 o
On the other hand, let 5 €A,, x,y€EA. Then v [~'-‘£0. Since v’ is a non-trivial,
» }I

rank one discrete valuation on L, there is an irreducible element 7€ A4,., such that

; = n::, where n=0 is an integer, u, w€ A are such that v(u)=0=v(w) and n€ A4

without loss of generality. Then w< Q(v"), and so f €Ay 1€, A=Ay, Now
let B be an ideal of 4 such that v"(B)=0 for all v’ € F’, where v’(B):énEr’(b).

for each v" € F’. Then v(BR)=0for all v F. For if v € Fis trivial on L, then v(BR) =0
clearly. If v€ F is such that v’ € F’, then v'(B)=v(BR)=0. Thus BR is an ideal of
R such that v(BR) =0 for all v€ F, and so BR=R. In this case, B=A. Forif B= A,
then BE M’ for some maximal ideal M” of A. Since R is integral over A, there is
a maximal ideal M of R such that M4 = M’. Then BE M, and so BREM <R,
a contradiction. So we must have B=A. Thus F’ is a family of valuations on L
satisfying the conditions of theorem 3. 2.

Proposition 4. 2. Let R be an AD-domain and let x be an indeterminate. Let

S denote the multiplicatively closed set of R[x] consisting of all monic polynomials.
Then (R[x])s is AD.
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Proor. Denote (R[x])s by R'. Let 2 be a prime ideal in R', (0)<=2?<R", and
consider R}, .

Case 1. ZNR = (0). Then K[x]S R}, and K[x] is Dedekind. Hence R}, is
Dedekind.

Case 2. 2R = P+#(0). Then P is a prime ideal in R, and 2 R[x] = PR[x].
For if not, then 21 5#0, and Z=R"', a contradiction.

Let M = R'—2. Then M, = R[x]—PR[x] & M. Now R[x]p = Rp[x] S Rj.
Let S’ denote the set of monic polynomials in Rp[x]. Then (Rp[x])s. is Dedekind
since R, is Dedekind by Lemma 2.1 of [2]. We have (Ry[x])s: S R},. For, let
z€(Rp[x]s = (R[x]p)s. Then

z= @/x"-f- a1 ga-1y +ﬁ, where f(x)€R[x],m,my,...,m,_;€R—P,
m m,_, my

Aoy von ,a"_IGR.

fx)

m
z = m'f(x)/(mm’x" + ... + majy) and g(x) = mm’x" + ... +ma; does not belong to
# since mm’ € R— P, and so g(x) € R[x] — PR[x]. Thus, z¢ R},. Since (Rp[x])s: SR}
and (Rp[x])s- is Dedekind, R} is also Dedekind.

Author’s Note: This paper constitutes part of a Ph. D. dissertation written
under the direction of Professor PAUL J. McCARTHY at the University of Kansas.
The author wishes to express his appreciation to Professor McCarthy for his counsel
and advice during the course of this work.

Then z= /[(m’x"-i—a,',_ X"V +ap)/m’], where m"=mgm, ... m,_,. Then

References

[1] N. BourBaki, Algebre Commutative, Paris, 1965.

[2] LutHer CLABORN, Dedekind domains and rings of quotients, Pacific J. Math., 15 (1965), 59—64.

[3] R. W. GiLMER, JR., Integral domains which are almost Dedekind, Proc. Amer. Math. Soc., 15
(1964), 813—8I8.

[4] O. Zariskr and P. SamuerL, Commutative Algebra, Vol. 1, Princeton, New Jersey, 1958,

Bl —, Commutative Algebra, Vol. Il, Princeton, New Jersey, 1960.

[6] M. NAGATA, Local rings, New York, 1962,

[71 R. W. GiLMer, Multiplicative ideal theory, Kingston, 1968.

( Received Oktober 31, 1968.)



