The fully invariant subgroups of reduced
algebraically compact groups

By A. MADER (Honolulu, Hawaii)

1. Introduction. In this paper we give a description of the fully invariant sub-
groups of a reduced algebraically compact group. The approach is very much in
the spirit of KAPLANSKY’s ([5]) theory for primary modules.

The notation is the standard notation of [3].

2. Approach. We shall use following general and very easy theorem. For lattice
theoretical notions and notation see [1].

2.1 Theorem. Let A be a module over a commutative ring R, N its lattice of
Jully invariant submodules, H some meet-semilattice ( = poset with meet) and U: A ~H
a function with the following properties.

(1) U is surjective.

(2) U(af)=U(a) for every ac A and every fc End A.

(3) U(a+b) = U(a)\NU(b) for all a, be A.

(4) Whenever U(a)=U(b) then there is fc End A such that bf =a.

(5) Whenever Ne N and a, be N then there is ¢ € N such that U(c)= U(a) A\ U(b).

Then the set H* of all dual ideals of H, ordered by set inclusion, is a lattice, and the
Sunction
a:H* +-N:Hx = {a:U(a) = h for some hcH}

is a lattice isomorphism. Furthermore, Hx=a End A for some ac A iff H is a principal
dual ideal.

Proor. It follows from (2) that, for all ac 4, U(0)=U(a) and U(—a)=Ul(a).
Since U is surjective, U(0) is the largest element of H. Since H contains a largest
element, the dual of the proof of [1], p. 25, Theorem 3, goes through, and H* is a
lattice under set inclusion. By the preceding remarks, and by (2) and (3) it follows
easily that Hx€ N for every H< H*. To show that « is surjective, let N€N, and put
H = {U(a):acN}. Then U(a), U(b)¢ H implies by (5) that U(@) \U(b)€ H. If
U(a)=U(b), b N, then (4) yields that ae N, U(a)e H. Thus HeH*. Obviously
Haz>o N, and by (4) Hx = N. Finally we show that « is injective. Assume that Hx = Kz
for H, K€ H*. Let h€ H. By (1) there is a€ A such that 1= U(a). Then a € Hx = Ka,
and therefore = U(x) =k for some kK€K. Thus h€ K, and Hc K. By symmetry
H =K. The last statement of the theorem is obvious.
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Remarks. (a) Theorem 2.1 is an abstraction of Kaplansky’s ([5]) approach
to describe the fully invariant submodules of fully transitive primary modules over
a complete discrete valuation ring. In [5], H is the set of all Ulm sequences of ele-
ments of a primary module 4. The set H is a partially ordered set under the natural
pointwise ordering. By [5], Lemmas 26 and 24, H has greatest lower bounds which,
in fact, are the pointwise infimums. Now, if U(a) is the Ulm sequence of a€ 4,
then (1), (2), (3) of our theorem are automatically satisfied, (4) is Kaplansky's
assumption of full transitivity, and (5) is essentially proved on p. 60 of [5]. Thus
2.1 yields a description of the fully invariant submodules of 4. In addition, Kap-
lansky’s results show that in this case the lattice of dual ideals of Ulm sequences
is dually isomorphic with the lattice of U-sequences (see [5]). This characterization
of dual ideals cannot be duplicated for algebraically compact groups while everything
else goes through as we shall show. Hence in Kaplansky’s exposition U-sequences
should only be introduced at the very end. (b) It would be interesting to know
whether, or in which cases, (5) is a consequence of (1) through (4).

It is well known that every reduced algebraically compact group A4 is of the
form A=®"4,, the sum being extended over all primes p, where each 4, is a
complete module over the ring of p-adic integers. See [4], where a comprehensive
account of algebraically compact groups is given, pp. 77—78. This fact enables
us to reduce the problem to the case of p-adic algebraically compact groups 4,
as follows.

2.2. Theorem. Let A=3"A, where the sum is extended over all primes p,
and where each A, is a reduced module (complete or not) over the ring of p-adic
integers. Assume that for every p there is a meet-semilattice H, and a function
UP:A,,-HP sarfsj_'w'ng propemes (1) through (5). Let H = H,X...XH,X.

Define (...h,...)=(... rﬂ' h,=k, for every p. Then H is a meet- sermfamce
Define U A -H: U(( v} -( Up(a) .). Then U satisfies (1) through (5)
gy M

PROOF. (a) It is clear that H is partially ordered and has (pointwise) meets in
the given partial order.

(b) We claim that End A4 is the ring direct product of the rings End 4,. It is
clear that each A4, is fully invariant in A since A, consists exactly of those elements
of A which are g-divisible for all g #p. Observe further that A/®,4, is divisible.
Define «: End A —~End 4, X ... XEnd 4,X ... by fa=(...f,...) where f,=f|A,.
Clearly « is surjective and homomorphic. If fx=gx then @4, < ker (f—g) and
A(f—g) = A/ker (f—g) and is divisible since 4/@A4,, is divisible. Since A is reduced
A(f—g) = 0, and it follows that z is injective. In the remainder we shall identify

f and (...fp...).
(c) It is quite obvious that U satisfies (1): If (...h,...) € H, then there is a,€ 4,
with U a,)=h,. Now (...a,...)€A and U((...q,. ) ( h,...). Condition (") |s

clearly satisfied since for cvcry fEEnd A we have U((...ap.. ) )=U((...q,f...)=

=(...U/a,f)...)=(... Up/a,)...)=U((...a,...)). Condition (3) is satisfied since
u((...a, )+( % 1 ))—U[( .a,+ b, ))—( U(a,,+b) J=(... U@ )AUB,)...)=
i ¥ U (a) ]A( Uyb)...) = U(( s );’\U( ") Condition (4) follows
from thc same property of the U,. To prove (5), let (.. o)y (.o.b,...) EN where N
is some fully invariant subgroup of A. For each p, let Np denote the smallest fully
invariant subgroup of A4, containing @, and b,. By hypothesis there is ¢, €N,
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such that Uy(c,) =U,(a,) \Uyb,). By definition of N,. ¢, must be of the form
¢, = a,f,+b,g, with f,, g,€End 4,. Put f=(...f,...) and g=(...g,...). Then
(...a,..+(..b,..)g = (...c,..) €N and U((...c,...)) = (...UJc,)...) = (... U (@)
AULb,)...) = U((...a,...))AU((...b,...)).

Theorems 2.1 and 2.2 suffice to describe the lattice of fully invariant sub-
groups in some special cases. The following is a particularly simple example.

2.3. Example. Let A = ®*{4,:pcIT} where IT is a set of primes and each
A, is a (non-zero) direct sum of cyclic groups of order p. For each p, let H, = {0. ==}
with == =0, and define U,:4,—~H, by U,(0)=< and U,(a,)=0 for a,=0. Then
obviously (1) through (5) of 2. 1 are satisfied. Applying 2. 2 and then 2. | we obtain
that the lattice N of fully invariant subgroups of A is isomorphic with the lattice
of dual ideals of the partially ordered set H whose elements are at most countable
vectors with entries 0 or ==. The fully invariant subgroups of A generated by a single
element are exactly the subgroups of the type @*{4,:pcIl’} where I’ Il. The
dual ideal of H consisting of all vectors with a finite number of 0 components is
— for infinite IT — an example of a dual ideal which is not principal. The corres-
ponding fully invariant subgroup is the torsion subgroup @{4,:pcI1} of A. The
lattice of fully invariant subgroups is the same for all 4 with infinite /7.

3. The ,,Torsion” case. A reduced p-adic algebraically compact group A is
of the form A4 = B*®&C where the “torsion part™ B* is the p-adic completion of
a direct sum of cyclic p-groups, and C is a torsion free module over the ring of
p-adic integers which is complete in the p-adic topology: see [4]. p. 79. In this section
we handle the *“torsion’ case of a completion B* of a direct sum B of cyclic p-groups.
Write B=@&B; where B; is a direct sum of cyclic groups of order p’. Without loss
of generality we assume that B* is the group of all elements (x;)€&*B; such that
the heights H(x;) ~= as i -, Let H denote the poset of all Ulm-sequences of
elements of B* with the natural componentwise order. The following lemma shows
both that H has pointwise meets and that 2. 1 (5) holds.

3. 1. Lemma. Let x=(x;) and y=(y;) be given elements of B*. Let z;=x; if
H(x)=H(y,) and let z;=y, if H(y)<H(x;,). Then z =(z)cB*, H(p*z) =
=min {H(p*x), H(p*y)} and there exist f. g€ End B* such that z = xf+ yg.

ProoF. Since H(z;)=min {H(x,), H(y;)} it is clear that z=(z,) ¢ B*. Notice
that, for a, b€ B;,, H(a) = H(b) implies H(p*a) = H(p*b). Hence H(p*z) =
=minH(p*z)) =min {H(p*x,), H(p*y)}=min {H(p*x), H(p*y)}. Now let [:®*B, -
-~@*"{B;:z; = x;} and g:®*B; ~{B;:z; = y;} be the projections. Then clearly f
and g restricted to B* are endomorphisms of B* and xf+yg = z.

It remains to show that B* is fully transitive (property (4)). We need some
observations which are interesting in themselves. The subgroups (p"B*)[p‘] are
a basic type of fully invariant subgroup. We abbreviate [A, e] =(p"B*)[p°]. We use
the [A. e] to construct new fully invariant subgroups as follows. Let {/,} be a sequence
of non-negative integers such that h; ~ as i -, and let {¢;} be any sequence
of non-negative integers. Every infinite series Xz;, z;€[h;, e], converges (in the
p-adic topology) since h; - as i—~<o, and {Zz;:z,€[h;, ]} is clearly a subgroup and
fully invariant since, for all x€ End B*, « is continuous in the p-adic topology of
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B*, and thus (Zz;)x= Z(z;z). We shall show next that all fully invariant subgroups
generated by a single element are of this type.

3.2. Lemma. Given x=(x;)€ B*. Let h;=H(x;) and e;= E(x;) (=exponent).
Then x End B* = {Zz;:z;€[h;, e])}.

ProofF. Clearly x€{Zz;:z;€[h;,e]}, and, since {Zz;:z;€[h;,e]} is a fully
invariant subgroup, x End B* {Xz;:z,€[h;, ¢;]}. Conversely, let Xz, z;€[h;, e],
be given. Let b, € B; be such that x;=p"b,. Then (b;) is a direct summand of B,.
Write z; =p"y,. There is 2 € End B* such that b,x=y;. Then xz= (Zx)x = Z(x2) =
= IpM(ba) = Zptiy,=Zz;. Hence Xz;€x End B*, and this concludes the proof.

Remark. It can be shown that every fully invariant subgroup of B* generated
by a single element is uniquely of the form {Zz:z,€[h; , e, ]} where 0<i, <i, ...;
each iy is a relevant integer for B*,i.e. B, #0;: 0=h, <h;, ..., h, <i; and 0<¢; <
<e;,=<.... This approach is the one chosen by Shiffmann [7] for p-groups without
elements of infinite height.

We are now ready to prove

3.3. Lemma. B* is fully transitive.

PrOOF. Let x, y€ B* such that U(x)=U(y), i.e. H(p*x)=H(p*y) for all k.
We have to show that x€y End B*. Write x=(x;), y=(»;), and put h,=H(y,),
e,=E(y;). By 3.2 we need to show that x¢{Xz;:z;€[h;, e]}. Since H(p*x)=
=min {H(p*x;)}and similarly H(p*y)=min {H(p"y;)}. the hypothesis says that for
every given j and k there is i such that H(p*x;) = H(p*y;). Consider x;0, and put
h=H(x;), e=E(x;). Note that e +h = j. By hypothesis there is i such that /+e—
—1 = H(p*~'x,)=H(p*~'y)) = h;+e—1. Hence h=h,. Further 1 = E(p*~'y)=
=e¢;—e+1, or e=e;. Thus x;€[h, ¢]. Now let z; = Z{x;:x;€[h;, e] but
X;4[h, ¢] with k<i}. Then z;€[h;, ¢] and x=Zz;. This proves 3. 3.

We summarize the result.

3. 4. Theorem. Let B* be the p-adic completion of a direct sum of cyclic p-
groups, N its lattice of fully invariant subgroups and H the poset of all Ulm sequences
of elements of B*. Then H is a meet-semilattice with meets taken pointwise. If H*
is the lattice of dual ideals of H, then

w:H* +N:Hx = {x:U(x) = h for some heH}

is a lattice isomorphism. Furthermore Hx=x End B* if and only if H is a principal
dual ideal.

For applications it is important to know precisely which sequences {h,, h,, ...}
belong to H. The answer is contained in the following proposition.

3. 5 Proposition. Let B* and H be as before. A sequence {hy, h,, ...} of non-
negative integers and the symbol = belongs to H if and only if

(@) Osho=h,=... and hy<hyyy if byoy #oo.
(b) 4 gap hj+1 < hjsy occurs only if B, .y #0.

(¢) If all h; are finite then the sequence has infinitely many gaps.
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Proor. We show first the necessity of the conditions (a), (b), and (c). Let

x=(x;)€ B* such that h;= H(p'x).

(a) This condition is well-known and trivial.

(b) We have h; =min H(p’x;). If h;= H(p’x;) for somei # h;+ 1, then H(p/*'x;) =
=h+1= H(pf“x) and there cannol be a gap between /; and h;,,. Thus, if
lhere isa gap between h; and /., then == =h; i=H(pixy,41) and O;éx,, +1 éB,,J“

(c) Deny the claim. Then there is n such that H(p"+'x) = h,+i for all i. This
means that for each i there is k; such that H(p"*'x,) = h,+i. Since H(p"*'x,) =
=n+i+ H(x;) it follows that H{xh) = h,—n for all i. lt is easy to see that the
set {k;} is infinite, and so H(x,) = h,—n contradicts the fact that H(x;) ~ as
| g

To establish the converse let h= {h,,h,,...} be given satisfying (a), (b) and
(c). Note first that, for each i h—i=(h—h_—1)+Mh-y—h-2—1)+...+
+(hy—ho—1)+h,. The quantity h;—h;_,—1 =1 iff there is a gap between
h;-, and h;. Hence h;—i = h;—j if there is no gap between /; and &;. If there is
a gap between h; and h; and j=i. then i, —i < h;—j. We obtain x =(x;) as follows.
If a gap occurs between /i; and hj, . thcn By, .1 =0 and we choose x;, 4, €8y, 4,
such that H(x, ) = h; —; Note that E(x,,.,) = j+ 1. Otherwise Jet x;=0.
That x < B* follows from (c) We wish to calculate H(p'x)=min H(p' 'x;) for given
i. We only need to consider components x, +1 with a gap between h; and h;,,
since all other components are 0. If j <, then pt Xp,+1=0. Hence H(p' x) H(0)=
if there are no gaps h;, h;,, with j=i. In this case i; =< and we have H(p'x)=h;.
For j=i, H(p'x,, +I) = i+(h;—j). Hence, if h;, h;,, is the first gap with j=i,
then H(p'x) = H(px,uﬂ) = i+(h;—j) = i+ (h;—i) = h;. This concludes the
proof.

As an application we discuss p-pure fully invariant subgroups of B*. These
groups made their appearance in a paper by G. Roch [6]. Roch establishes invariants
for a certain class of groups (“konvergenzfreie Gruppen™). In his approach, the
p-pure fully invariant subgroups of B* (called “Torsionstypen™) play a fundamental
role.

3.6 Lemma. If N isanon-zero p-pure fully invariant subgroup of B* then N
contains the maximal torsion subgroup B of B*.

PRrOOF. By our previous results, N={x¢ B*:U(x) = h for some h¢ H} where
H ¢ H*.If the first component of each i€ His =0 then NCpB* and N=N(\pB*=
= pN. This means that N is p-divisible contradicting N 0. Hence there is h=
={0, ...}€H. If x has order p then U(x)={H(x), =, =, ...}=h, i.e. Xx¢N. By
induction on the order of x¢ B we shall show that BC N. Given x€B, E(x)=1.
By induction hypothesis 0 = px € N. Since N is p-pure there is y € N such that px =py.
Since x —y has order p or 1, x—y&N, hence xeN.

It is now easy to see when two p-pure fully invariant subgroups are isomorphic.

3.7 Proposition. Two p-pure fully invariant subgroups of B* are isomorphic
if and only if they are equal.

ProoOF. If N, M are non-zero p-pure fully invariant subgroups of B* and N = M
then this isomorphism and its inverse extend uniquely to endomorphisms of B*
since N, M are dense topological subgroups of B* and B* is complete. Since N, M
are fully invariant Nc M and McCN.
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A very useful description of the p-pure fully invariant subgroups of B* is obtain-
ed as follows. For i={h,}€H and n a natural number let h+n = {h,, h,sy, ...,
hyiis ...} If h=U(x) then h+n = U(p"x). In particular h+n € H.

3. 8 Proposition. Let HeH*. The fully invariant subgroup N corresponding
to H is p-pure in B* if and only if he H whenever h+n € H for some n.

PrOOF. Assume first that H has the stated property. Let x € B* be such that
p'xeN. Then U(x)+n = U(p"x)¢H and therefore U(x)eH, xéN. Thus N is
p-pure. Conversely, let N be p-pure and N#0. Then N> B and p"x< N implies
XEN. Given h=U(x) with h+n = U(p"x)€ H. Then p"x€ N, therefore x<N and
h=U(x)EH.

To obtain sharp existence theorems we concentrate on the simplest case of
p-pure fully invariant subgroups generated by single elements, i.e. the unique
smallest p-pure fully invariant subgroups containing given single elements. By
counting Ulm sequences, constructing suitable Ulm sequences, and by checking
when they generate the same dual ideal of the type in 3. 8, we can prove

3.9 Theorem. If B* is unbounded, then
(a) there are exactly 2% different and hence non-isomorphic p-pure fully invariant
subgroups of B* generated by single elements;
(b) B* is not countably generated as a p-pure fully invariant subgroup of itself.

Remark. By a theorem of CASTAGNA [2] every endomorphism of B* is the
sum of two automorphisms of B* if p=2. Hence, for such p, the characteristic
subgroups of B* containing B are just the fully invariant subgroups between B
and B*.

4. The mixed case. In this section we consider groups A =B*©C where B*
is the p-adic completion of a direct sum of cyclic p-groups, and where C is a reduced
torsion-free module over the ring of p-adic integers (complete or not). Let H be
the set of all Ulm sequences of elements of 4 with the natural pointwise order.
We shall show that 2. 1 applies. For B* we use again the representation used in
the previous section. A close look at the elements of 4 and their Ulm sequences
IS necessary.

4.1 Let xz=(x;)€ B*, and let n be any natural number. Let xz= X {x;: H(x;,)<n}
and let xg = x—xp. Let k,=E(xg). Then x5 = xz+x5; H(xg) = n; H(p'xp) =
=n+i for all i=k,, and H(p'xy) = H(p'xy) = n+i for i<k,. Thus k_ is the
smallest i with H(p'x,) = n+1i.

4.2 Let x€ A, x = xg+ Xc, xg€ B*, xc€C. Suppose xc#=0, and let n=H(x¢).
If xg = xp+xp as in 4.1, then H(p'x) = H(p'xy) = H(p'xp) for 0=i<k,, and
H(p'x) = H(p'xc) = n+i for i=Kk,.

The next lemma states both that H is a meet-semilattice with pointwise meets,
and that 2.1 (5) holds.

4.3 Lemma. Let x, y€ A. Then there exist z€ A, and f, g ¢ End A such that
z = xf+yg and U(z) is the pointwise infimum of U(x) and U(y).

PROOF. Write x = xg+xXc, ¥ = yg+¥c. By previous results there are fg,
gsEnd B* and zz€ B* suchthat zy = xuf5+ysgs. and H(p'zg) =min {H(p'xp),
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H(p'yg)}. This proves the lemma if x.=y.=0. Otherwise we may assume that
xc has finite height n= H(x.), and that n=H(y.). Let zc=x¢, and z = zz+ 2.
There is /¢ End A such that f=/f; on B* and f=1 on C, and there is g End A4 such
thatg=gzon B*andg=00n C. Then xf+yg = xgf+Xcf+ V€ +Vc€ =2+ Xc=2.

We shall show that U(z) is the pointwise infimum of U(x) and U(y). From
4.1 we obtain with n= H(x¢) numbers k., k,, k. for xg., yg, z5 respectively. Since,
by definition of zgz, H(p'zg) = min {H(p'xy), H(p'vg)} it follows easily that
k. = max {k,, k,}. Using 4.2 we obtain for i<k, that H(p'z) = H(p'zp) =
=min {H(p'xp), H(p'vg)} = min {H(p'y), H(p'y)}, while for i=k., we have
H(p'z)=n+i= H(p'x) = H(p'y). This proves the lemma.

The next and last lemma shows that A4 is fully transitive.

4.4 Lemma. Given x, yc¢ A such that U(x)=U(y). Then there is fcEnd A
such that yf=x.

PROOF. Let x = xg+x¢, xg€ B*, xc€C, and similarly y = yz+y¢. If yc=0,
and x.#0, then by 4. 1 there is k such that H(p'y) = H(x.)+1+1i for i=k. But
for sufficiently large i we have by 4. 2 that H(p'x) = H(x¢)+1i, leading to H(p'y) =
= H(p'x)+1 contrary to the hypothesis. Thus y.=0 implies x.=0, and in this
case the lemma holds since B* is fully transitive.

Now assume that y-#0 and x.#0. Then, by 4.2, for sufficiently large i,
H(p'y) = H(p'ye) = H(ye)+i and H(p'x) = H(p'x¢) = H(x¢) +i. Since U(x) =
=U(y) we find H(xc) = H(y¢). This is the fact which is used below. But H(x¢) =
= H(y¢) also for x-=0 so that from now on x, may or may not be zero. Put
n=H(yc). According to 4.1 write y = yg+yg+yc and x = xp+x5+xc. Let
k, and k, be as in 4. 1 with respect to n=H(y¢). _

We shall show that k., =k,. In fact, if k,=i<k,, then n+i= H(p'y) =
= H(p'x) = H(p'xp) <= n+1i, a contradiction. It follows that U(yz) = U(xp) since
for i<k, we have H(p'yg)=H(p'y)=H(p'x)=H(p'xp) and, fori=k,, H(p'xp) =
=oo, Since B* is fully transitive there is fz€ End B* such that ygzf=xp. Since
H(yg)=n, H(xg)=n, and H(xcs)=n (from above), there is f¢ End 4 such that
f=fp on B* and ycf=xp+xc—ypfp. Then yf=ypfp+ypfp+xp+Xc—Vpfa=x.

We summarize the result.

4.5 Theorem. Let A = B*$C where B* is the p-adic completion of a direct
sum of cyclic p-groups, and where C is a reduced torsionfree module over the ring
of p-adic integers (complete or not). Let N be the lattice of fully invariant subgroups

of A and H the poset of all Ulm sepuences of elements of B*. Then H is a meet-
semilattice with meets taken pointwise. If H* is the lattice of dual ideals of H, then

w:H*+-N:Hx = {x:U(x) = h for some hecH}

is a lattice isomorphism. Furthermore, Hx = x End B* if and only if H is a principal
dual ideal.

Remark. If x€A4 = B*®C, x = xz+x¢, then U(x)=U(xp) AU(xc). The
sequences U(xy) are characterized in 3.5, while U(xe) = {non+1,n+2,..}
where n= H(x). This characterizes the elements of H.

20 D
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The following easy proposition — which we state without proof — gives a
simple description of the fully invariant subgroups of 4 = B*@C in terms of the
fully invariant subgroups of B*.

4. 6 Proposition. Let A = B*@C where B* is the p-adic completion of a direct
sum of cyclic p-groups, and where C is a reduced torsion-free module over the ring
of p-adic integers (complete or not). Then the set of fully invariant subgroups of A
is the set of all groups of the form N -+ p"A where N is a fully invariant subgroup of
B*, and 0=n=w.

5. The general case. Theorems 4.5, 2.2, and 2. 1 immediately yield the fol-
lowing result.

Theorem. Let A be a reduced algebraically compact group. Write A=3"A,,
where each A, is a reduced algebraically compact module over the ring of p-adic inte-
gers, and the summation is extended over all primes p. For every a=(...a,...)c A
let U(a)=(...U(a,)...), and let H be the set all U(a) ordered componentwise. Then
H is a meet-semilattice with pointwise meets. Let H* be the lattice of dual ideals of H.
Then the function

w:H*+N:Hz = {acA:U(a) = h for some hcH}

is a lattice isomorphism of H* with the lattice N of all fully invariant subgroups of A.
Furthermore, Hr=a End A for some a< A if and only if H is principal.
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