Typically real polynomials

By W. C. ROYSTER and T. J. SUFFRIDGE (Lexington, Ky.)

- 1. Introduction. Let TR denote the class of normalized functions f analytic and typically real in the unit disk E. That is, f is of the form $f(z) = z + c_2 z^2 + c_3 z^3 + \ldots$ in E and satisfies in E the condition $\operatorname{Im} f(z) \cdot \operatorname{Im} (z) \ge 0$. This class of functions was introduced by W. ROGOSINSKI ([2]) and has been studied extensively. In this paper we initiate a study of polynomials $P_n(z) = z + a_2 z^2 + \ldots + a_n z^n$ which belong to TR, that is, $P_n(z)$ is typically real in E. It is known that $|c_k| \le k$, $k = 2, 3, \ldots$. For $n \le 5$ we find the exact bounds on a_k , $k \le n$. We find also the coefficient regions for the cubic $z + a_2 z^2 + a_3 z^3$ and the odd polynomial $z + a_3 z^3 + a_5 z^5$. In everything which follows the a_k are real.
 - 2. Main Theorem. Let R(u) be a polynomial such that

(1)
$$R(\cos \theta) = \sum_{k=1}^{n} a_k \frac{\sin k\theta}{\sin \theta} = \frac{\operatorname{Im} \{P_n(e^{i\theta})\}}{\sin \theta}.$$

It follows that $P_n \in TR$ if and only if $R(\cos \theta) \ge 0$ for all θ , $-\pi \le \theta < \pi$. Let $u = \cos \theta$. Then (1) can be written $R(u) = A \sum_{j=1}^{n-1} b_j u^j$, $-1 \le u \le 1$. For fixed k, we determine the various forms R(u) may assume in order that a_k be extremal.

Lemma 1. Let b_j be real, $0 \le j \le n-1$ and $b_{n-1} = 1$ and suppose $\sum_{j=0}^{n-1} b_j u^j$ is either non-negative or non-positive for all u in $-1 \le u \le 1$. Then there exist unique real a_j , $1 \le j \le n$, $a_1 = 1$, such that

(2)
$$\sum_{k=1}^{n} a_k \frac{\sin k\theta}{\sin \theta} = 2^{n-1} a_n \sum_{j=0}^{n-1} b_j u^j$$

and $P_n(z) = \sum_{k=1}^n a_k z^k$ belongs to the class TR.

PROOF. First, let us write

(3)
$$(\sin \theta)u^{j} = \sum_{k=1}^{j+1} c_{kj} \sin k\theta, \quad c_{kj} \text{ real}, \quad 1 \leq k \leq j+1.$$

Then

(4)
$$2^{n-1}a_n \sum_{j=0}^{n-1} b_j u^j = 2^{n-1}a_n \sum_{j=0}^{n-1} b_j \sum_{k=1}^{j+1} c_{kj} \frac{\sin k\theta}{\sin \theta} = 2^{n-1}a_n \sum_{k=1}^{n} \sum_{j=k-1}^{n-1} b_j c_{kj} \frac{\sin k\theta}{\sin \theta}$$

which yields

(5)
$$\frac{a_k}{a_n} = 2^{n-1} \sum_{j=k-1}^{n-1} b_j c_{kj}.$$

In what follows denote the right-hand side of (5) by d_k .

It is clear, using induction and equation (3) that $c_{j+1,j} = 2^{-j}$, so that (5) holds for k = n, that is, $d_n = 1$. Let a_k/a_n be given by (5) for $2 \le k \le n-1$. We note that $d_1 \ne 0$, for if $d_1 = 0$ then $\sum_{k=1}^n d_k \frac{\sin k\theta}{\sin \theta}$ has constant sign and $\sum_{k=2}^n d_k \sin \theta \sin k\theta$ has constant sign which implies Re $\{z^{-1}(1-z^2)\sum_{k=2}^n d_k z^k\}$ does not change sign on |z|=1 and hence in |z|<1. But this polynomial has a zero at z=0 and hence must be identically zero, contradicting $d_n=1$. Therefore $d_1\ne 0$ and we define $a_n=1/d_1$. Thus the a_k , $2\le k \le n$, are uniquely determined by the equation $a_k=a_nd_k$ which proves (2). By a similar argument, using $a_1=1$, we can show Re $\{z^{-1}(1-z^2)\sum_{k=1}^n a_k z^k\} > 0$ for |z|<1 which proves $P_n\in TR$.

Lemma 2. Let $P_n(z)$ be a polynomial of degree n and let k be fixed, $2 \le k \le n$. Suppose that among all polynomials in TR of degree n the kth coefficient a_k assumes its extreme value for $P_n(z)$. Then it suffices to assume that all the zeros of R(u) are real.

PROOF. Let b be real, $c \ge 0$ and suppose $u = b + i\sqrt{c}$ is a zero of R(u). Then $R(u) = 2^{n-1}a_n(u^2 - 2bu + b^2 + c)Q(u)$. Let Q and b be fixed. Then a_k , $1 \le k \le n$, depends upon c. By Lemma 1, each $c \ge 0$ determines a polynomial $P_n(z)$ which belongs to the class TR. Since each coefficient in $R(u)/a_n$ is linear in a_k/a_n , $1 \le k \le n$, and each coefficient in $2^{n-1}(u^2 - 2bu + b^2 + c)Q(u)$ is linear in c we have $1/a_n = A_1c + B_1$ and $a_k/a_n = A_kc + B_k$, $2 \le k \le n$, A_k and B_k constants for $1 \le k \le n$. Hence $a_k = (A_kc + B_k)(A_1c + B_1)^{-1}$ and the extreme values for a_k must occur when c = 0 (assuming $a_n \ne 0$).

Lemma 3. Under the hypothesis of Lemma 2, it suffices to assume that all the zeros of R(u) are situated in the closed interval [-1, 1].

PROOF. Suppose $R(u) = 2^{n-1}a_n(u-b)Q(u)$ where b > 1 (or b < -1). By Lemma 1, $P_n \in TR$ for each b in the open interval $(1, \infty)$ (or $(-\infty, -1)$). By an argument similar to the one given in the proof of Lemma 2 we see that no extreme value of a_k can occur in $(1, \infty)$ unless a_k , $2 \le k \le n$, is independent of b, in which case we may take b = 1.

Since all zeros of R(u) lying in the open interval (-1, 1) must be zeros of even multiplicity we have the following result.

Theorem 1. Let $P_n(z)$ be a polynomial of degree n $(a_n \neq 0)$ and let k, $1 < k \leq n$, be fixed. If among all polynomials of degree n belonging to the class TR the kth co-

efficient a_k assumes its extreme value for $P_n(z)$, then R(u) has the form

(6)
$$R(u) = \pm 2^{n-1} a_n (1 \pm u) \prod_{j=1}^{\frac{n-2}{2}} (u - \gamma_j)^2$$

for n even, where $-1 \le \gamma_j \le 1$, $1 \le j \le (n-2)/2$ and

(7)
$$R(u) = -2^{n-1} a_n (1 - u^2) \prod_{j=1}^{\frac{n-3}{2}} (u - \gamma_j)^2$$

or

(8)
$$R(u) = 2^{n-1} a_n \prod_{j=1}^{\frac{n-1}{2}} (u - \gamma_j)^2$$

for n odd, where $-1 \le \gamma_j \le 1$, $1 \le j \le (n-1)/2$.

When n is even we find max a_k and min a_k , for all $P_n \in TR$, by taking R(u) in the form given by (6), where the positive signs are chosen. Indeed, $-P_n(-z) = \sum_{k=1}^{n} (-1)^{k-1} a_k z^k$ belongs to the class TR and leaves the coefficients with odd subscript unchanged while changing the sign of the coefficients with even subscript. Further, if R is given by (6) with positive signs chosen, then

(9)
$$\operatorname{Im} \left\{ \frac{-P_n(-e^{i\theta})}{\sin \theta} \right\} = -R(-u) = -2^{n-1}a_n(1-u) \prod_{j=1}^{\frac{n-2}{2}} (u-\beta_j)^2 \text{ where } \beta_j = -\gamma_j$$

which implies the extreme values for the coefficients with odd subscript will be the same for either choice of sign in (6) while $|a_k|$ will be the same for either choice of sign. Thus for even k, $\min a_k = -\max |a_k|$ and $\max a_k = \max |a_k|$ where the extrema are taken over all $P_n \in TR$.

3. Coefficient bounds. Using the preceding results we calculate the extreme values for a_k , $2 \le k \le n$, $2 \le n \le 5$.

n=2. It is easy to verify that $P_2(z)=z+a_2z^2$ is typically real if and only if $|a_2| \le 1/2$.

n=3. The polynomial $P_3(z)=z+a_2z^2+a_3z^3$ belongs to TR if and only if $R(u)=4a_3u^2+2a_2u+1-a_3 \ge 0$. According to Theorem 1, $R(u)=-4a_3(1-u^2)$ which yields $a_2=0$, $a_3=-1/3$ or $R(u)=4a_3(\gamma^2-2\gamma u+u^2)$, $|\gamma| \le 1$, which yields $|a_2| \le 1$, $|a_3| \le 1$. Hence $|a_2| \le 1$, $|a_3| \le 1$ with equality for the polynomials $|a_2| \le 1$, $|a_3| \le 1$ and $|a_2| \le 1$.

In the case n=3 we can find the coefficient region V in the a_2 , a_3 plane. The equations of the boundary (∂V) of V are determined in part by finding the envelope of the family of lines bounding the half-planes $R(u) = 2ua_2 + (4u^2 - 1)a_3 + 1 \ge 0$. The envelope is the ellipse $a_2^2 + 4(a_3 - \frac{1}{2})^2 = 1$. A short calculation shows that ∂V is that portion of the line $2a_2 - 3a_3 = 1$ between the points $\left(0, -\frac{1}{3}\right)$ and $\left(\frac{4}{5}, \frac{1}{5}\right)$,

the upper arc of the ellipse between the points $\left(\frac{4}{5}, \frac{1}{5}\right)$ and $\left(-\frac{4}{5}, \frac{1}{5}\right)$ and the portion of the line $-2a_2 - 3a_3 = 1$ between the points $\left(-\frac{4}{5}, \frac{1}{5}\right)$ and $\left(0, -\frac{1}{3}\right)$.

If in addition to being typically real $P_3(z)$ is univalent in the unit disk, it was shown in [1] that the coefficient region for the univalent cubic is the intersection

of V and the half-plane $a_3 \leq \frac{1}{3}$.

 $n=4. \text{ For } n=4, \ R(u)=1-a_3+(2a_2-4a_4)u+4a_3u^2+8a_4u^3 \ge 0 \text{ and by Theorem 1} \text{ we have } R(u)=8a_4(1+u)(\gamma-u)^2, \ |\gamma|\le 1 \text{ which yields } a_4=[2(4\gamma^2-2\gamma+1]^{-1}, \ a_3=(1-2\gamma)(4\gamma^2-2\gamma+1)^{-1}, \ a_2=(1-4\gamma+2\gamma^2)(1-2\gamma+4\gamma^2)^{-1}. \text{ First, let us note } a_4=2^{-1}[(2\gamma-\frac{1}{2})^2+\frac{3}{4}]^{-1}\le \frac{2}{3} \text{ with equality for } \gamma=\frac{1}{4}, \text{ that is, } P_4(z)=z+\frac{1}{6}z^2+\frac{2}{3}z^3+\frac{2}{3}z^4. \text{ A simple argument involving only elementary calculus shows that } -1/3\le a_3\le 1, \ |a_2|\le (1+\sqrt{7})/3 \text{ with equality for the polynomials } z-\frac{1}{3}z^2-\frac{1}{3}z^3+\frac{1}{6}z^4, z+z+z^3+\frac{1}{2}z^4 \text{ and } z+\frac{1+\sqrt{7}}{3}z^2+\frac{6+4\sqrt{7}}{21}z^3+\frac{14-\sqrt{7}}{42}z^4.$

n=5. When n=5, R(u) takes the form $R(u)=1-a_3+a_5+(2a_2-4a_4)u+(4a_3-12a_5)u^2+8a_4u^3+16a_5u^4$ and according to Theorem 1, R(u) must be of the form

(10)
$$R(u) = -16a_5(1-u^2)(u-\gamma)^2 \quad |\gamma| \le 1$$

or

(11)
$$R(u) = 16a_5(u - \gamma_1)^2(u - \gamma_2)^2, \quad |\gamma_1| \le 1, \quad |\gamma_2| \le 1.$$

If R(u) is given by (10) then $a_5 = -\frac{1}{2}(1+6\gamma^2)^{-1}$, $a_4 = \gamma(1+6\gamma^2)^{-1}$, $a_3 = \frac{1}{2}(1-4\gamma^2)(1+6\gamma^2)^{-1}$ and $a_2 = -4\gamma(1+6\gamma^2)^{-1}$. Again, simple arguments lead to the following inequalities, $-1/2 \le a_5 < 0$, equality for $\gamma = 0$; $|a_4| \le \sqrt{6}/6$, equality for $\gamma = \sqrt{6}/6$; $-3/14 \le a_3 \le 1/2$, equality for $\gamma = 1$ and 0; $|a_2| \le \sqrt{6}/3$, equality for $\gamma = -\sqrt{6}/6$.

If R(u) is given by (11) we have, setting $\gamma_1 = b$ and $\gamma_2 = c$, $a_5 = \frac{1}{2}(1 + 2b^2 + 2c^2 + 8bc + 8b^2c^2)^{-1/2} = \frac{1}{2}((b+c)^2 + 8\left(bc + \frac{1}{4}\right)^2 + 1/2)^{-1}$ which gives $0 < a_5 \le 1$ with equality for b = -c and bc = -1/4, that is b = 1/2, c = -1/2. Also, we get $a_4 = -4a_5(b+c)$, $a_3 = a_5(3 + 4b^2 + 4c^2 + 16bc)$ and $a_2 = -8a_5(b+c)(1 + 2bc)$. Again, long but elementary calculations yield $|a_4| \le 1$, $-(\sqrt{5}-1)/2 \le a_3 \le \frac{1+\sqrt{5}}{2}$ and $|a_2| \le \sqrt{2}$. The sharp bounds for a_5 , that is, $a_5 = -\frac{1}{2}$ and $a_5 = 1$ are given by $P_5(z) = z + \frac{1}{2}z^3 - \frac{1}{2}z^5$ and $P_5(z) = z + z^3 + z^5$, respectively. The

sharp bounds for a_4 occur for $P_5(z) = z - z^2 + z^3 - z^4 + \frac{1}{2}z^5$, for a_3 , $P_5(z) =$

$$=z+\frac{1\pm\sqrt{5}}{2}z^3+\frac{5\pm\sqrt{5}}{10}z^5 \text{ and for } a_2, \ P_5(z)=z-\sqrt{2}z^3+\frac{5}{4}z^3-\frac{\sqrt{2}}{2}z^4+\frac{1}{4}z^5.$$

Employing the methods of Theorem 1 will yield bounds on the coefficients for n > 5, however, the end result does not seem to justify the laborious calculations involved.

4. Coefficient regions. It is interesting to note that in the case of the odd polynomial $P_5(z) = z + a_3 z^3 + a_5 z^5$ we can find the coefficient region V in the a_3 , a_5 plane. The boundary of V is determined in a manner similar to the case n=3, that is, by determining the envelopes of half-planes $R(u) = (4u^2 - 1)a_3 + (16u^4 - 12u^2 + 1)a_5 + 1 \ge 0$ which yields the ellipse $a_3^2 - 2a_3a_5 + 5a_5^2 - 4a_5 = 0$.

Since R(u) is an even function of u and $R(u) \ge 0$ for all u, $0 \le u \le 1$, $R(0) = -a_3 + a_5 + 1 \ge 0$ and $R(1) = 3a_3 + 5a_5 + 1 \ge 0$ are two boundary half-planes. The line R(0) = 0 is tangent to the ellipse at (3/2, 1/2) and intersects the line R(1) = 0 at (1/2, -1/2). The line R(1) = 0 intersects the ellipse at (-1/2, 1/10). Hence the coefficient region is bounded by the line $-a_3 + a_5 + 1 = 0$ from (1/2, -1/2) to (3/2, 1/2), the upper arc of the ellipse from (3/2, 1/2) to (-1/2, 1/10) and the line $3a_3 + 5a_5 + 1 = 0$ from (-1/2, 1/10) to (1/2, -1/2). The extreme values of a_5 are $a_5 = 1$ and $a_5 = -1/2$ and the extreme values for a_3 are $a_3 = \frac{1}{2}(1 \pm \sqrt{5})$.

It was proved in [1] that $P_n(z) = z + a_2 z^2 + ... + a_n z^n$ is univalent in $|z| \le 1$ if and only if Lim Sup $(|b_n(\alpha)|)^{1/n} \le 1$ for all α , $|\alpha| = 1$, $\alpha \ne 1$, where

(12)
$$b_n(\alpha) = \frac{(-1)^n}{1-\alpha} \det(c_{ij})$$

where $c_{ij}=a_2\lambda_2(\alpha)$, i=j, $c_{ij}=1$, i=j+1, $c_{ij}=0$, j>i+1, $c_{ij}=a_{k+2}\lambda_{k+2}(\alpha)$, i=j+k, $i=1,2,\ldots,n$; $j=1,2,\ldots,n$; $k=0,1,\ldots,n-1$ and $\lambda_1(\alpha)=1$, $\lambda_k(\alpha)=1+\alpha+\ldots+\alpha^{k-1}$. If we apply this condition to the polynomial $P_5(z)=z+a_3z^3+a_5z^5$ and denote det (c_{ij}) by R_n we get the recursive relation $R_n+a_3\lambda_3(\alpha)R_{n-2}+a_5\lambda_5(\alpha)R_{n-4}=0$. The roots of the auxillary equation are of the form

$$[(-a_3\lambda_3(\alpha)\pm(a_3^2\lambda_3^2(\alpha)-4a_5\lambda_5(\alpha))^{1/2})/2]^{1/2}$$
.

Hence a necessary and sufficient condition on the complex numbers a_3 and a_5 for the polynomial $z + a_3 z^3 + a_5 z^5$ to be univalent in |z| < 1 is that

(13)
$$|a_3 \lambda_3(\alpha) \pm (a_3^2 \lambda_3^2(\alpha) - 4a_5 \lambda_5(\alpha))^{1/2}| \leq 2$$

for all α satisfying $|\alpha| = 1$, $\alpha = 1$.

Set
$$\gamma = 4\cos^2\left(\frac{\theta}{2}\right)$$
. Then $\lambda_5(\alpha)/\lambda_3^2(\alpha) = 1 - \gamma/(\gamma - 1)^2 = A/4$. The condition (13)

now becomes $|(\gamma - 1)a_3|| - 1 \pm (1 - Aa_5/a_3^2)^{1/2}| \le 2$. An analysis of this inequality leads to families of half-planes whose boundaries are given by $(\gamma - 1)a_3 - ((\gamma - 1)^2 - \gamma)a_5 = 1$ and $-(\gamma - 1)a_3 - ((\gamma - 1)^2 - \gamma)a_j = 1$. The intersection of these half-planes determines a convex region in the a_3a_5 plane which is the intersection of the two ellipses $a_3^2 \pm 2a_3a_5 + 5a_5^2 - 4a_5 = 0$ and the three half-planes,

 $a_5 \le 1/5$, $3a_3 + 5a_5 \ge -1$ and $3a_3 - 5a_5 \ge 1$. This is the coefficient region for P(z). The region is symmetric with respect to the a_5 -axis. In the right half-plane $a_3 \ge 0$, the boundary consists of the segment of the line $3a_3 - 5a_5 = 1$ between the point (0, -1/5) and the point (1/2, 1/10), the boundary of the ellipse $a_3^2 + 2a_3a_5 + 5a_5^2 - 4a_5 = 0$ from the point (1/2, 1/10) to the point (3/5, 1/5) and the line segment from the point (3/5, 1/5) to the point (0, 1/5). We note that the point (3/5, 1/5) on the boundary yields the greatest value of a_3 and a_5 . Thus the extremal polynomial is $z + \frac{3}{5}z^3 + \frac{1}{5}a_5$.

In the univalent case one can consider the coefficient regions for the trinomial $z + a_k z^k + a_{2k-1} z^{2k-1}$ employing the above method. One obtains a difference equation whose roots r_k can be found, then employ an analysis of the inequality $|r_k| \le 1$.

This research was supported by National Science Foundation Grant G. P. 8223.

References

- [1] V. Cowling and W. Royster, Domains of variability for univalent functions, *Proc. Amer. Math. Soc.* 19 (1968), 767—772.
- [2] W. Rogosinski, Über positive harmonische Entwicklungen and typisch-reelle Potenzreihen, Math. Z. 35 (1932), 93—121.

(Received March 25, 1969.)