Typically real polynomials
By W. C. ROYSTER and T. J. SUFFRIDGE (Lexington, Ky.)

1. Introduction. Let TR denote the class of normalized functions f analytic
and typically real in the unit disk E. That is, f is of the form f(z) = z+¢,z22+
+c3z23+ ... in E and satisfies in E the condition Im f(z)-Im (z) = 0. This class
of functions was introduced by W. RoGosiNski ([2]) and has been studied exten-
sively. In this paper we initiate a study of polynomials P,(z) = z+a,z? +... +a,z"
which belong to TR, that is, P,(z) is typically real in E. It is known that ¢, =k,
k=2,3,.... For n=5 we find the exact bounds on @, k=n. We find also the
coefficient regions for the cubic z +a,z? +a3z* and the odd polynomial z+a;z3+
+asz5. In everything which follows the a, are real.

2. Main Theorem. Let R(«) be a polynomial such that

sink0 _ Im {P,(e")}
sinf sin 0 "

(1 R(cos ) = k;: ay

It follows that P, TR if and only if R(cos#)=0 for all , —n = 0 < n. Let
n—1

u=cos 0. Then (1) can be written R(u)=A > b, —1 = u = 1. For fixed &,
j=1

} =
we determine the various forms R(#) may assume in order that @, be extremal.

n—1
Lemma 1. Let b; be real, 0 = j = n—1 and b,_, =1 and suppose > b’ is
j=0

J=
either non-negative or non-positive for all u in —1 = u = 1. Then there exist unique
real a;, 1=j=n, a;=1, such that

P01 SRS S
) ,Z,“*—s.-no = 2 a, 2 b;u

and P,(2) = k;‘ 2" belongs to the class TR.

Proor. First, let us write

Jj+1

3) (sin0)u = k_Zl ey sink0d, ¢ real, 1=k=j+1.



308 W. C. Royster and T. J. Suffridge

Then
n=1  j+ sin k0 R v sin k6

=1 =n-lg i i sin0
4) a, Z bjw =2 ‘; ;; % sin 0 oy k;: j=k2:1 bie sin 0
which yields

n—-1
a
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In what follows denote the right-hand side of (5) by d,.
It is clear, using induction and equation (3) that c‘_,.,. ,“,-=2'f, so that (5) holds
for k =n, that is, d,=1. Let a@,/a, be given by (5) for 2 = k = n— 1. We note that

d, #0; forif d;=0then 34,50k
k=1 sin 0

constant sign which implies Re {z‘ ¥1 —zz) 2' d,z*} does not change sign on |z| =1

has constant sign and 2 d, sin 0 sin k0 has

and hence in |z] <=1. But this polynomial has a zero at z=0 and hence must be
identically zero, contradicting d,=1. Therefore d,#0 and we define a,=1/d,.
Thus the a,, 2=k =n, are uniquely determined by the equation @, =a,d, which

proves (2). By a similar argument, using @, = 1, we can show Re {z~ (1 —z3) 3 q,z*}>
k=1
=0 for |z] <=1 which proves P,<TR.

Lemma 2. Let P,(z) be a polynomial of degree n and let k be fixed, 2=k =n.
Suppose that among all polynomials in TR of degree n the k'™ coefficient a, assumes
its extreme value for P,(z). Then it suffices to assume that all the zeros of R(u) are real.

PROOF. Let b be real, ¢=0 and suppose u = b+i)c is a zero of R(u). Then
R(u) = 2" 'a,(u? —2bu+b*+c)Q(u). Let Q and b be fixed. Then q,, |1 =k =n,
depends upon ¢. By Lemma 1, each ¢ =0 determines a polynomial P,(z) which
belongs to the class TR. Since each coefficient in R(u)/a, is linear in a,/a,. | =k =n,
and each coefficient in 2"~ "(u? —2bu+b*+¢)Q(u) is linear in ¢ we have l/a, =
= A,c+ B, and a,a, = A,c+ B, 2=k=n, A, and B, constants for 1=k=n.
Hence a, = (Ayc+ B)(A,c+ B,)~' and the extreme values for @, must occur
when ¢=0 (assuming a, #0).

Lemma 3. Under the hypothesis of Lemma 2, it suffices to assume that all the
zeros of R(u) are situated in the closed interval [—1, 1].

PrOOF. Suppose R(u)=2""'a,(u—b)Q(u) where b=1 (or b < —1). By Lemma
1, P,c TR for each b in the open interval (1, =) (or (—==, —1)). By an argument
similar to the one given in the proof of Lemma 2 we see that no extreme value of
a, can occur in (I, =) unless a,, 2=k =n, is independent of b, in which case we
may take b=1.

Since all zeros of R(u) lying in the open interval (— 1, 1) must be zeros of even
multiplicity we have the following result.

Theorem 1. Let P,(z) be a polynomial of degree n (a,#0) and let k, 1 <k =n,
be fixed. If among all polynomials of degree n belonging to the class TR the k™ co-
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efficient a, assumes its extreme value for P,(z), then R(u) has the form

n—2
(6) Rw) = +2"'a,(1 +u) [] (u—7y)?
j=1
Jor n even, where —1 =y;=1,1=j = (n—2)/2 and
n-3
2
©) Rw) = -2""'a,(1—u?) [] (u—1)?
or e
_u—l
2
) R =2""a, [[ (=)

Jor n odd, where —1=y;=1, 1=j= (n—1)/2.

When #n is even we find max @, and min g, for all P, TR, by taking R(u) in
the form given by (6), where the positive signs are chosen. Indeed, —P,(—2) =

= > (—1)"'q:z* belongs to the class TR and leaves the coefficients with odd
ko]
subscript unchanged while changing the sign of the coefficients with even subscript.

Further, if R is given by (6) with positive signs chosen, then

n—2

el

=—R(—u)=-2""'a,(1-u) ﬁ (u—B;)* where B; = —7y;
j=1

i0
® {__ P.(—e ;}
sin 0
which implies the extreme values for the coefficients with odd subscript will be the
same for either choice of sign in (6) while |g;| will be the same for either choice
of sign. Thus for even k, ming, = —max |a,| and max g, =max |a,| where the
extrema are taken over all P,€TR.

3. Coefficient bounds. Using the preceding results we calculate the extreme
values for a,, 2=k=n, 2=n=5.

n=2. It is easy to verify that P,(z) = z+a,z? is typically real if and only
if |a,|=1/2.

n=3. The polynomial P,(z) = z+a,z?+ayz* belongs to TR if and only if
R(u) = dasu* +2a,u+1—ay = 0. According to Theorem 1, R(u) = —4a;(1 —u?)
which yields @, =0, a; = —1/3 or R(u) = 4a;(y*—2yu+u?), |y| =1, which yields

1

3 = ay = 1 with equality for the polynomials

la;|=1, ay=1. Hence |a,|=1, —

z4+2z2+323, z—1 2% and z+23.

In the case n=3 we can find the coefficient region V in the a,, a; plane. The
equations of the boundary (d¥) of V are determined in part by finding the envelope
of the family of lines bounding the half-planes R(u) = 2ua, +(4u* —az+1 = 0.
The envelope is the ellipse a3 +4(a;—1)*> = 1. A short calculation shows that

oV is that portion of the line 2a, —3a; = | between the points [0, —;] and [: ;)
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the upper arc of the ellipse between the points (: i ;} and [-: : ;} and the portion

of the line —2a, —3a; = 1 between the points [—‘; . ;l and (0, —;] ;

If in addition to being typically real P,(z) is univalent in the unit disk, it was
shown in [1] that the coefficient region for the univalent cubic is the intersection
of V and the half-plane a;=1.

n=4. Forn=4, R(u)=1—a; +(2a, —4a,)u +4au* +8a,u* =0 and by Theo-
rem | we have R(u) = 8a,(1 +u)(y —u)? |yl =1 which yields a, ={2(4y* =2y +1]"1,
ay =(1=2y)@y*=2y+1)"Y, a, = (1—-4y+2y3)(1 =2y +4y%)~-'. First, let us
note a, = 2-'[(2y—3)?+3]"! = § with equality for y=1, that is, P,(2) =

1 2 2 3 ; ’
=z+ 622+—3-z3+ 3 z*. A simple argument involving only elementary calculus

shows that —1/3 =a; =1, la,) = (1+)7)/3 with equality for the polynomials

PR TN P I, 147 ,,, 6+417 , 14—V,

z —3—-5 ——3—5 +§a sy 212 +z +—2—.u da'{‘ 3 +— 21 v 4 47 .
n=35. When n=35, R(u) takes the form R(v) = 1 —a;+as+(2a, —4a,)u+

4 (4a, — lZas)u2+804u3+l6asu4 and according to Theorem 1, R(u) must be of

the form

(10) R(u) = —16as(1 —u>)(u—7v)* |yl=1
or
(11) R(u) = 16as(u—7,)%(u—1y,)% |nl=1, |y.l=L

If R(u) is given by (10) then as =—;—(l+6y2)“, a, = y(1+6y3)"1,

a4 = —]— (1—4y>)(1 +6y>)~"' and a, = —4y(1 +-6y3)~'. Again, simple arguments

lead to the following inequalities, —1/2 = a5 <0, equality for y=0: |a, _lt’)f(i
equality for y=)6/6: —3/14=a;=1/2, equality for y=1 and 0: |a, =)6/3,
equality for y= —}6/6.

% < : |
If R(u) is given by (11) we have, setting y,=b and y,=c, a; = =l +2b%+

2
+2¢2 +8bc + 8b%¢?) 112 =%((f7+¢")2 +8[b£‘+ ‘]‘] +1/2)~' which gives 0<as=1

with equality for b= —c¢ and bc= —1/4, that is b=1/2, ¢= —1/2. Also, we get
a, = —4asy(b+c), ay = as(3 +4b* +4c2+16bc) and a, = —8as(b+c)(1+2bc).

Again, long but elementary calculations yield |a,|=1. ~(I'5—!)/"’ =g, =
1+¥5 o _ 1
= f|_'2_|'_ - and |a,| =}2. The sharp bounds for as, that is, as= — 5 and a5 =1
|

z5 and Ps(z) = z 423+ 25, respectively. The

1| —

are given by Ps(z) = z+ 723
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sharp bounds for a, occur for Ps(z) = :-—zz+z3—z“+—;z5, for a;, Ps(z) =

PR - o - SEPWNS. - ) L BT Y DTN . W
=z 5 Z 5 0 ° and for a,., Ps(z) =z—)2:z +44 B 3 +—4A.

Employing the methods of Theorem 1 will yield bounds on the coefficients
for n =35, however, the end result does not seem to justify the laborious calculations

involved.

4. Coefficient regions. It is interesting to note that in the case of the odd poly-
nomial Ps(z) = z+a,z° +asz® we can find the coefficient region V in the a,, a;
plane. The boundary of V is determined in a manner similar to the case n=3,
that is, by determining the envelopes of half-planes R(u) = (4u? —1)a;+
+(16u* —12u? + 1)as +1 = 0 which yields the ellipse a3 —2a;a5+ 5a% —4as = 0

Since R(u) is an even function of ¥ and R(x)=0 for all u, 0=u=1, R(0) =
=—ay+as+1 =0 and R(l) = 3a;+5as+1 = 0 are two boundary half-planes.
The line R(0)=0 is tangent to the ellipse at (3/2, 1/2) and intersects the line R(1)=0
at (1/2, —1/2). The line R(1)=0 intersects the ellipse at (—1/2, 1/10). Hence the
coefficient region is bounded by the line —a;+as+1 = 0 from (1/2, —1/2) to
(3/2,1/2), the upper arc of the ellipse from (3/2,1/2) to (—=1/2, 1/10) and the line
3a;+5as+1 =0 from (—=1/2,1/10) to (1/2, —1/2). The extreme values of as

are as;=1 and as= —1/2 and the extreme values for a; are a; = :l)_ (1+ V'5).

It was proved in [l1] that P,(z) = z+a,z® +... +a,z" is univalent in |z|=1
if and only if Lim Sup (|b,(2)|)'"=1 for all o, |x|=1, =1, where

(12) b,(2) = ( )

~det (c;;)

where ¢;;=a,4,(2), i=j, c;=1, i =j+1, ¢;=0, j=i+], ¢;;=a304,(2),
i=j+k, i=1,2, ..,n; j=1,2,...,n; k=0,1,...,n—1 and 4;,(x)=1, A (2)=
= 1 +a+...+" 1. If we apply this condition to the polynomial Ps(z) = z+a;z°+
+asz® and denote det (¢;;) by R, we get the recursive relation R,+a3A;(2)R,_,+
+asis(2)R,_, = 0. The roots of the auxillary equation are of the form

[(—azis(2)+ (a3 23 (2) — das 25(2))'/3)/2] V2.

Hence a necessary and sufficient condition on the complex numbers @, and ag for
the polynomial z+ a;z® +az3 to be univalent in |z| <1 is that

(13) a3 23 (2) £ (a3 73 (2) — 4as s (2)) /3 = 2
for all z satisfying |z/=1, a=1.
Set y=4 cos? [g] Then As(2)/A2(2)=1—7y/(y— 1)* = A/4. The condition (13)

now becomes |(y—1)as||—1+(1 —Aas/a3)!/?| = 2. An analysis of this inequ-
ality leads to families of half-planes whose boundaries are given by (y —1)a;—

—((y—1)?*=9y)as =1 and —(y—Das;—((y—=1)*—7)a; = 1. The intersection of
these half-planes determines a convex rcglon in the aja; plane which is the inter-
section of the two ellipses a3 + 2a,a5+ 5a3 —4as = 0 and the three half-planes,
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as=1/5, 3a;+5as = —1 and 3a;—5as = 1. This is the coefficient region for
P(z). The region is symmetric with respect to the as-axis. In the right half-plane
a; =0, the boundary consists of the segment of the line 3a; —5Sas = 1 between
the point (0, —1/5) and the point (1/2, 1/10), the boundary of the ellipse a3 + 2a;a5+
+5a% —4as = 0 from the point (1/2, 1/10) to the point (3/5,1/5) and the line segment
from the point (3/5, 1,5) to the point (0, 1/5). We note that the point (3/5, 1/5) on the
boundary yields the greatest value of a; and as. Thus the extremal polynomial is
- 3 -3 1
zZ++ 5 z¥ 5 ds.

In the univalent case one can consider the coefficient regions for the trinomial
z+a2* +ay,_,z** ! employing the above method. One obtains a difference equation
whose roots r, can be found, then employ an analysis of the inequality |r|=1.
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