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Locally conformal Berwald spaces and
Weyl structures
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Dedicated to Professor Dr. Masao Hashiguchi on his 65th birthday.

Abstract. A differentiable manifold M is called a Finsler manifold if, to each
point of M , a normed structure on the tangent space is associated. In the present
paper, we are concerned with special Finsler manifolds, called Berwald spaces and
locally conformal Berwald spaces. These spaces have the property that each tangent
space is isometric to a fixed normed space. We show that to an arbitrary locally
conformal Berwald space, a natural conformal structure is associated, and state some
properties of Weyl structure associated with it.

1. Introduction

Let π : TM→M be the tangent bundle of a connected differentiable
manifold M . A Finsler connection on M is defined as a connection of the
pull-back E := π∗TM . If a (convex) Finsler metric is given on M , then
we can define a natural inner product on E and, from which, a Finsler
connection D : Γ(E) → Γ(TTM∗ ⊗ E) satisfying some natural conditions
(cf. Aikou [2]). For the general theory of Finsler connections, see also
Abate–Patrizio [1] and Matsumoto [10].

A Finsler manifold is said to be modeled on a Minkowski space if D
is the pull-back of a linear connection on M . As a special case, if the lin-
ear connection is symmetric, the space is called a Berwald space. In this
case, it is proved that the linear connection is the Levi-Civita connection
of a Riemannian metric on M(cf. Szabó [12]). As another special case,
a Finsler manifold is said to be Wagner if D is skew-symmetric. Such a
space has been studied in Hashiguchi [6]. In Finsler geometry, confor-
mal changes of Finsler metrics are also interesting subjects. As shown in
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Hashiguchi–Ichijyō [7], a Finsler space is conformal to a Berwald space
if and only if it is a special Wagner space. In these special Finsler space,
the essential property is that the norm of any vector field defined by the
given Finsler metric is invariant by the parallel translation with respect to
the linear connection.

In the present paper, we are concerned with conformal change of
Finsler metrics, and discuss some related topics in Finsler geometry. Espe-
cially, we are interested in the problem whether a Finsler space is locally or
globally conformal to a Berwald space. In this problem, a Weyl structure
of a conformal class plays an important role.

2. Locally conformal Berwald spaces

Let M be a connected differentiable manifold of dimension n, and
π : TM→M the tangent bundle of M . We denote by {π−1(U), (xi, yi)}
the canonical covering on TM induced from a covering {U, (xi)} by a
system of coordinate neighborhoods on M . Here and in the following, the
Latin indices take the value 1, · · · , n.

Definition 2.1. A function L defined on the total space TM is called
a Finsler metric if it satisfies the following conditions:

(1) L(x, y)≥0, and L(x, y) = 0 if and only if y =0,
(2) L(x, y) is smooth on TM − {0},
(3) L(x, ky) = kL(x, y) for ∀k > 0,
(4) the fundamental tensor field gij(x, y) := 1

2∂2L/∂yi∂yj is
positive-definite.

A manifold M with a Finsler metric L is called a Finsler manifold , and
denoted by (M, L).

Now we assume that there exists a linear connection D whose parallel
displacement preserves the norm function L(x, y) invariant. Denoting by
ωi

j =
∑

Γi
jk(x)dxk the connection form of D, the assumption is written as

follows:

(2.1) dωL :=
∑

k


 ∂L

∂xk
−

∑

l,m

ymΓl
mk(x)

∂L

∂yl


 dxk ≡ 0.

We suppose that there exists a linear connection D satisfying (2.1). If we
put

G = {A ∈ GL(n,R); f(Aξ) = f(ξ)},
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then G is a compact Lie group, and may be considered as a closed subgroup
of the orthonormal group O(n). If there exists a linear connection D
satisfying (2.1), the structure group of TM is reducible to G, that is, M
has a G-structure (Ichijyō [8]). By using the compactness of G and the
existence of bi-invariant Haar measure on G, we can proof the following
theorem by the same method as Theorem 1 in Szabó [12].

Theorem 2.1. Let (M, L) be a Finsler manifold. Suppose that there
exists a linear connection D satisfying (2.1). Then D is a metrical connec-
tion of a Riemannian metric on M .

Let (M, L) be a Finsler manifold stated in Theorem 2.1. Then each
tangent space is isometric to a fixed normed vector space TxM ∼= Rn

with the norm function f(ξ) = L(x, ξ). Such a special Finsler manifold is
studied by Ichijyō [8].

A Finsler manifold (M, L) is said to be modeled on a Minkowski space
(Rn, f), if there exists a linear connection D satisfying (2.1). Especially, if
D is symmetric, (M, L) is called a Berwald space. A Berwald space (M, L)
with flat D is called a locally Minkowski space.

As a special case of Theorem 2.1, we get

Theorem 2.2 (Szabó [12]). Let (M, L) be a Berwald space. Then,
there exists a Riemannian metric g on M whose Levi-Civita connection
coincides with the symmetric connection D.

Remark 2.1. The Riemannian metric g is not uniquely determined (cf.
Szabó [12]). We call such a metric an associated Riemannian metric for L.
For the notion of associated Riemannian metric, see also Laugwitz [9].

Example 2.1. Suppose that a Riemannian manifold (M, g) admits a
parallel non-zero vector field Y . We may assume that Y is a unit vector
field. Then M has a 1 × O(n − 1)-structure, that is, the structure group

of TM is reducible to 1 × O(n − 1) =
{(

1 0
0 A

)
; A ∈ O(n− 1)

}
. Let

sU = {s1 = Y, s2, . . . , sn} be an adapted frame of the 1 × O(n − 1)-
structure. For an arbitrary ξ =

∑
ξisi, we define its new norm L(x, ξ)

by

L(x, ξ)2 =
1
2

{
‖ξ‖2 +

√
‖ξ‖4 + 4(ξ1)4

}
,

where ‖ · ‖ means the norm with respect to g. This norm L is invariant by
the action of 1×O(n−1). Then, if we denote by ω the connection form of
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the Levi-Civita connection ∇ with respect to sU , it satisfies ω1
i = ωj

1 = 0.
Consequently L(x, y) satisfies dωL = 0.

In the following, we are concerned with conformal changes of Finsler
metrics. A conformal change of a Finsler metric L is given by the change
L → L̃(x, y) = eσ(x)L(x, y) for a smooth function σ(x) on M . For a linear
connection D with the connection form ω, because of the homogeneity (3),
we get

dωL̃ = eσ(dωL + dσ ⊗ L)

= eσ
∑

k





∂L

∂xk
−

∑

l,m

ym

(
Γl

mk(x)− δl
m

∂σ

∂xk

)
∂L

∂yl



 dxk

= eσdω−I⊗dσL.

The condition dωL̃ = 0 is equivalent to dω−I⊗dσL = 0.

Definition 2.2. A Finsler space (M, L) is said to be locally conformal
Berwald (l.c. Berwald) if there exists an open covering {Uα} with a family
of local functions {σα(x)} satisfying

dω(eσαL) = 0

for a symmetric linear connection D with the connection form ω. Es-
pecially, if Uα = M , we say (M, L) is globally conformal Berwald (g.c.
Berwald).

If (M, L) is l.c. Berwald, the metric L satisfies the following for a
smooth local function σα on Uα:

(2.4) dω−I⊗dσαL = 0.

From the homogeneity of L, we get on Uα ∩ Uβ

0 = dω−I⊗dσαL− dω−I⊗dσβ
L = −d(σβ − σα) · L.

Hence, the function σαβ := σβ − σα is locally constant on Uα ∩Uβ , and so
the forms {ω − I ⊗ dσα} define a global linear connection on M .

Moreover, because of σβγ − σαγ + σαβ = 0, the cycle {σαβ} defines
a 1-Čeach cocycle with coefficients in R, and a 1-Čeach cohomology class
[σαβ ]. Then, we have
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Proposition 2.1. A l.c. Berwald space is g.c. Berwald if and only if the

cohomology class [σαβ ] is trivial. Hence, if the first Betti number b1(M)
vanishes, (M, L) is g.c. Berwald.

Proof. If the class [σαβ ] is trivial, there exists a 0-chain {cα} with
coefficients in R such that δ{cα} = {σαβ}. Hence we have

eσα+cαL = eσβ+cβ L

on Uα ∩ Uβ , that is, {eσα+cαL} is globally defined. Moreover, because of
dcα = 0, we get

dω(eσα+cαL) = eσα+cαdω−I⊗d(σα+cα)L = eσα+cαdω−I⊗dσαL = 0,

which shows that (M,L) is g.c. Berwald. ¤

To close this section, we state on the conformal flatness of Finsler
manifolds.

Definition 2.3. A Finsler space (M,L) is said to be conformally flat
if it is locally conformal to a locally Minkowski space.

Then we have

Theorem 2.3. Let (M,L) be a l.c. Berwald space. Then, (M,L) is

conformally flat if and only if its symmetric connection D is flat.

Proof. Suppose that (M,L) is a l.c. Berwald space whose symmetric
connection D is flat. Then, there exists a covering {Uα} such that, on each
Uα, there exists a function σα satisfying dω(eσαL) = 0. Hence, if D is flat,
eσαL is locally Minkowski. Thus (M,L) is conformally flat. The converse
is trivial. ¤

Because of dω(eσαL) = eσαdω−I⊗dσαL, if (M, L) is conformally flat,
by Theorem 2.2, the forms {ω−I⊗dσα} define a metrical connection of an
associated metric g. Hence we have Dg = −2dσα⊗g, which is equivalent to
D(e2σαg) = 0. Consequently, D is the Levi-Civita connection of the local
metric e2σαg. Since D is flat, g is conformally flat. Hence Theorem 2.3
means that a l.c. Berwald space is conformally flat if and only if its D is
the Levi-Civita connection of a conformally flat Riemannian metric.

Now we shall show to construct an example of conformally flat Finsler
metric on M which admits a conformally flat Riemannian metric.
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Example 2.2. Let M be the unit sphere Sn in the Euclidean space
Rn+1. The induced metric on Sn is given by

ds2 =
4

(1 + |x|2)2
n∑

i=1

dxi ⊗ dxi.

Its metric tensor is given by gij = 4
(1+|x|2)2 δij . This metric is conformal

to the flat metric ds2
0 =

n∑
i=1

dxi ⊗ dxi, that is, (Sn, ds) is conformally flat.

We denote by D the flat connection of ds2
0 with the connection form ω.

We define a new norm function L(x, ξ) on TM by

L(x, ξ)2 :=
2

(1 + |x|2)2
{
‖ξ‖2 +

√
‖ξ‖4 + 4(ξ1)4

}
,

where we put ‖ξ‖2 =
n∑

i=1

(ξi)2. Then it is easily seen that D satisfies

dω

{
(1 + |x|2)L}

= 0. Hence (Sn, L) is a conformally flat Finsler manifold.

3. Weyl structures

The discussions in the previous section suggest us to consider a confor-
mal structure and its Weyl structure if a given Finsler space is l.c. Berwald.
In this section, we state some basic facts on Weyl structures on a conformal
manifold (cf. Gauduchon [5], Tod [13]).

Let C be a conformal structure on M , that is, C is the set of confor-
mally equivalent classes of Riemannian metrics on M . A Weyl structure
on a conformal manifold (M, C) is a linear connection D satisfying the
following conditions:

(1) D preserves the conformal class C,
(2) D is symmetric.

Here and in the following, we denote a linear connection by its covariant
derivation D : Γ(TM) → Γ(TM ⊗ TM∗).

The CO(n)-principal bundle defined by C is denoted by P , where
CO(n) is the conformal group of degree n. The condition (1) means that
a Weyl structure D is to be induced by a connection on P . In the following,
we shall identify any connection on P with a linear connection on M . Then,
(1) is equivalent to the existence of a 1-form θ satisfying

(3.1) Dg = −2θ ⊗ g
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for any representative g of C. If we take another representative g′ =
e2f(x)g, the corresponding 1-form θ′ is given by

(3.2) θ′ = θ − df.

From the condition (2), we have a representation of D as follows:

(3.3) D = ∇+ θ̃,

where ∇ is the Levi-Civita connection of g, and the End(TM)-valued 1-
form θ̃ is defined by

(3.4) θ̃XY = θ(X)Y + θ(Y )X − g(X,Y )Θ,

for the dual Θ of θ, that is, θ(X) = g(X, Θ) for ∀X ∈ Γ(TM). We note
that the 1-form θ is given by

(3.5) θ =
1
n

(Tr. ω − Tr. ωg) =
1
n

(Tr. ω − d log(det g)),

where ω (resp. ωg) is the connection form of D (resp. ∇).

Remark 3.1. A Weyl structure D is said to be closed if dθ = 0. Since
the form Tr. ω defines a connection DE of the line bundle E = ∧nTM
and Tr. Ω is the curvature of DE , a closed Weyl structure defines a flat
connection of E.

By virtue of (3.5), the closeness of a Weyl structure D does not depend
on the choice of the representative g ∈ C. If D1, D2 are Weyl structures
of (M, C), there exists a 1-form θ satisfying D1 = D2 + θ̃, where θ̃ is
defined by (3.4). Hence the set of all Weyl structures of (M, C) is an
affine space modeled on the vector space of all 1-form on M . Let D be
a closed Weyl structure of a conformal class C. Since the closeness of
the 1-form θ in (3.1) is independent on the choice of a representative g,
we put α(D) := [θ] ∈ H1(M,R). Then, the mapping α : D → α(D)
is an homomorphism from the affine space of closed Weyl structures to
the de Rham vector space H1(M,R), and ker α is the set of Levi-Civita
connections of global metrics in C.

The pair (g, θ) of a metric g in the conformal class C and the corre-
sponding 1-form θ is said to be distinguished if θ is co-closed with respect
to g, that is,

δθ := −
∑

gjk∇jθk = 0.

Let θ be the g-harmonic representative of an element of H1(M,R). For
the Levi-Civita connection ∇ of g, the Weyl structure defined by (3.3) is
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closed, and the pair (g, θ) is distinguished. Assume that M be compact
and orientable, and choose an arbitrary metric g in the conformal class
C. If D is a closed Weyl structure, the corresponding 1-form θ is closed,
and by Hodge’s decomposition, θ may be written as θ = Hθ + df , where
Hθ means the harmonic part and f is a smooth function on M . Then, by
(3.2), the 1-form θ corresponding to g̃ = e2f(x)g is harmonic. Especially,
if the 1-st Betti number b1(M) vanishes, D is the Levi-Civita connection
of a global metric in C.

The following theorem is also fundamental.

Theorem 3.1 (Gauduchon [5]). Let (M, C) be a compact, orientable
conformal manifold of dim M ≥ 3. For any Weyl structure D on (M, C),
there exists a metric g in the conformal class C, unique up to a constant
factor, such that the pair (g, θ) is distinguished.

4. Ricci curvatures

We shall consider the curvature of the Weyl structure D on a con-
formal manifold (M, C). Using the relation (3.3), we get the following
relation between the curvatures RD of D and R∇ of ∇ (cf. Besse [3]).

RD(X,Y )Z = R∇(X,Y )Z − (d∇θ̃)X,Y Z − θ̃X θ̃Y Z + θ̃Y θ̃XZ,

where d∇ : Γ(M, ∧kTM∗ ⊗End(TM)) → Γ(M, ∧ k+1TM∗ ⊗End(TM))
is the covariant derivation defined by ∇. The Ricci curvature RicD of D
is given by

(4.1)
RicD(X, Y ) = Ric∇(X,Y )− (n− 1)(∇Xθ)(Y ) + (∇Y θ)(X)

+ (n− 2)θ(X)θ(Y ) +
{
δθ − (n− 2)|θ|2} g(X,Y ),

for the one Ric∇(X, Y ) of ∇. The scalar curvature SD is given by

(4.2) SD = S∇ + 2(n− 1)δθ − (n− 1)(n− 2)|θ|2

for the one S∇ of ∇. Then we have

Proposition 4.1. Let D be a Weyl structure on a conformal manifold
(M, C). The following conditions are equivalent.

(1) dθ = 0, that is, D is closed,

(2) RicD is symmetric,

(3) D is locally the Levi-Civita connection of a local metric in C.
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Proof. The equivalence of (1) and (3) is obvious from the Weyl
change (3.2). From (4.1), we get

RicD(X, Y )− RicD(Y,X) = n{(∇Xθ)(Y )− (∇Y θ)(X)}
= ndθ(X,Y ).

This shows the equivalence of (1) and (2). ¤
From (4.2), we get the following integral formula:

∫

M

|θ|2dv =
1

(n− 1)(n− 2)

∫

M

(S∇ − SD)dv,

which shows

Corollary 4.1. If SD ≥ S∇ holds on a compact and orientable M ,
then the 1-form θ vanishes identically, and D = ∇.

In a compact and orientable (M, g), the following formulae are known.
For any vector field X on M ,

∫

M

{
Ric∇(X, X) + |∇X|2} dv =

∫

M

{
1
2
|dξ|2 + |δξ|2

}
v,

∫

M

{
Ric∇(X,X)− |∇X|2 − |δX|2} dv = −1

2

∫

M

|LXg|2dv,

where ξ is the dual of X and δX = −∑
j

∇jX
j . From these identities, we

have

Proposition 4.2 (Watanabe [14], Yano [15]). Let (M, g) be a com-
pact and orientable Riemannian manifold. For any vector field X on
(M, g), the following inequalities hold:

∫

M

{Ric∇(X, X) + |∇X|2}dv ≥ 0,

∫

M

{Ric∇(X, X)− |∇X|2 − (δX)2}dv ≤ 0.

The equalities hold if and only if X is a harmonic vector field and a Killing
vector field on (M, g) respectively.

In the following, we assume that M is compact, orientable and
dim M ≥ 3. By Theorem 3.1, for any Weyl structure D on (M,C), there
exists a unique (up to a constant factor) Riemannian metric g in C such
that the pair (g, θ) is distinguished. Then, we apply Proposition 4.2 to the
dual vector field Θ.

First we consider the case where the Weyl structure D is closed.
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Theorem 4.1. Let (M, C) be a compact and orientable conformal
manifold of dim M ≥ 3, and D a Weyl structure on (M,C) with distin-
guished pair (g, θ). Suppose that D is closed.

(1) If the Ricci curvature Ric∇ of g is non-negative, the dual Θ of θ
is a Killing vector field on (M, g).

(2) If Ric∇ is positive-definite, D coincides with ∇.

Proof. Because of δθ = δΘ = 0 for the distinguished pair (g, θ), we
have

∫

M

{Ric∇(Θ,Θ) + |∇Θ|2}dv ≥ 0,(4.3)
∫

M

{Ric∇(Θ,Θ)− |∇Θ|2}dv ≤ 0.(4.4)

Since D is closed and (g, θ) is distinguished, θ is harmonic, that is,
the dual Θ is a harmonic vector field on (M, g). Hence, Proposition 4.2
implies ∫

M

{Ric∇(Θ,Θ) + |∇Θ|2}dv = 0.

If Ric∇ is non-negative, we have Ric∇(Θ,Θ) = 0 and ∇Θ = 0. Then, the
equality of (4.4) also holds, that is, Θ is a Killing vector field on (M, g).
Furthermore, if Ric∇ is positive-definite, as is well-known (cf. Bochner
[4]), the first Betti number b1(M) vanishes: H1(M,R) = {0}. Hence there
exists no harmonic 1-form other than zero, and so θ = 0, which means
that D coincides with ∇. ¤

From (2) of Theorem 4.1, we have

Proposition 4.3. Let (M,C) and D be the same as in Theorem 4.1.

Suppose that the 1-form θ is parallel: ∇θ = 0. If the Ricci curvature RicD

is positive definite, D coincides with ∇.

Proof. Since the pair (g, θ) is distinguished, RicD is given by

RicD(X, Y ) = Ric∇(X,Y )− (n− 1)(∇Xθ)(Y ) + (∇Y θ)(X)

+ (n− 2)θ(X)θ(Y )− (n− 2)|θ|2g(X, Y ),

from which and ∇θ = 0 we have

RicD(X,X) = Ric∇(X, X) + (n− 2){θ(X)2 − |θ|2g(X, X)}
= Ric∇(X, X) + (n− 2){g(X, Θ)2 − g(Θ,Θ)g(X,X)}
≤ Ric∇(X, X).
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The last inequality means that, if the Ricci curvature RicD of D is positive-
definite, Ric∇ is also positive-definite. Hence the proposition has been
proved. ¤

Secondly, we consider the case where the dual vector field Θ of the
corresponding 1-form θ in (3.1) is a Killing vector field on (M, g).

Theorem 4.2. Let (M, C) be a compact and orientable conformal
manifold of dim M ≥ 3, and D a Weyl structure on (M,C) with distin-
guished pair (g, θ). Suppose that the dual Θ of the 1-form θ is a Killing
vector field on (M, g).

(1) If the Ricci curvature Ric∇ of g is non-positive, then D is closed
and θ is harmonic.

(2) If Ric∇ is negative-definite, then D coincides with ∇.

Proof. Since Θ is a Killing vector field on (M, g), (4.4) implies
∫

M

{Ric∇Θ, Θ)− |∇Θ|2}dv = 0.

If Ric∇ is non-positive, we have Ric∇(Θ, Θ) = 0 and ∇Θ = 0, from which
θ is closed, that is, the Weyl structure D is closed. Consequently, θ is
harmonic:

4θ := (dδ + δd)θ = 0.

If Ric∇ is negative-definite, it is also well-known that there exists no
Killing vector field other than zero. Hence we have Θ = 0, and θ = 0.
This means that D = ∇. ¤

The Ricci curvature RicD of a Weyl structure D is expressed as in
(4.1) by the Ricci curvature Ric∇ and the corresponding 1-form θ. A Weyl
structure D is said to be an Einstein-Weyl structure if the symmetric part
of RicD is proportional to g, and a Riemannian manifold (M, g) is said to be
Einstein-Weyl if it admits a Einstein-Weyl structure on (M, C), where C is
the conformal class constructed from g (see e.g., Pedersen-Swann [11]).
If a Riemannian manifold (M, g) admits a closed Einstein-Weyl structure
D, the space is locally conformal to Einstein space, and if θ ≡ 0, the space
is Einstein.

Due to Tod [13], if D is an Einstein-Weyl structure and (g, θ) is the
distinguished pair, the vector field Θ dual to the 1-form θ is a Killing
vector field on (M, g). Hence, if (M, g) is Einstein-Weyl, we have

Ric∇(X, Y ) =
1
n

S∇g(X, Y ) +
n− 2

n
|θ|2g(X, Y )− (n− 2)θ(X)θ(Y ).
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This equation is called the Einstein-Weyl equation. Then, (4.2) leads to

(4.5) Ric∇(X, X) =
1
n

SDg(X,X) + (n− 2){|θ|2g(X,X)− θ(X)2}.

Proposition 4.4. Let (M,C) and D be the same as in Theorem 4.1.
Suppose that D is a closed Einstein-Weyl structure on (M,C) and its
scalar curvature SD is positive. Then (M, g) is an Einstein manifold.

Proof. Let (g, θ) be the distinguished pair of D. Since D is a closed
Einstein-Weyl structure, θ is a harmonic form on M . If SD is positive,
(4.5) shows that Ric∇ of (M, g) is positive-definite, and so b1(M) vanishes.
Hence D coincides with the Levi-Civita connection of g, and so (M, g) is
Einstein. ¤

5. Some remarks on Finsler spaces

A Finsler space (M, L) is l.c. Berwald if and only if there exists a open
covering {Uα} with the family of local smooth functions {σα} satisfying
(2.4) for a symmetric linear connection D. Because of dσα = dσβ on
Uα ∩ Uβ , it defines a closed 1-form θ satisfying

dω−I⊗θL = 0.

Conversely, if there exists a closed 1-form θ and a symmetric connec-
tion D satisfying this equation, we get (2.4) and so, (M, L) is l.c. Berwald.
Then we have our main theorem.

Theorem 5.1. Let (M, L) be a Finsler manifold. Then (M, L) is l.c.
Berwald if and only if there exists a closed Weyl structure D of a conformal
class C satisfying

(5.1) dωL = −θ ⊗ L,

where θ is the corresponding closed 1-form.

Proof. It is sufficient to show that the connection D satisfying (5.1)
is a closed Weyl structure. By Theorem 2.1, if (M,L) is l.c. Berwald, the
connection defined by the form ω − I ⊗ θ is metrical with respect to an
associated Riemannian metric g. Hence the connection D satisfies

Dg = −2θ ⊗ g.

This means that D is a closed Weyl structure of C, where C is the confor-
mal class determined by g. ¤
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Remark 5.1. By Proposition 4.1, the closeness of D in the theorem
above may be replaced by the symmetry of RicD.

Applying the results in the previous section, we shall show the effects
of Weyl structure of C to (M,L), and consider the case where a l.c. Berwald
space becomes a g.c. Berwald space.

By definitions, a l.c. Berwald space is g.c. Berwald if and only if there
exists a global metric g in the class C such that the connection D coincides
with the Levi-Civita connection ∇ of g. Hence, from Corollary 4.1 and
Theorem 5.1, we have

Proposition 5.1. Let (M, L) be a compact and orientable l.c. Berwald
space. If there exists a metric g in C whose scalar curvature S∇ satisfies
SD ≥ S∇, then (M, L) is a g.c. Berwald space.

Theorem 5.2. Let (M, L) be a compact and orientable Finsler man-
ifold of dim M ≥ 3 which is l.c. Berwald. For the distinguished pair (g, θ)
of the Weyl structure D, if one of the following conditions is satisfied, then
(M, L) is g.c. Berwald.

(1) ∇θ = 0 and the Ricci curvature RicD of D is positive-definite.

(2) The vector field Θ dual to θ is a Killing vector field, and the Ricci

curvature Ric∇ of g is negative-definite.

Proof. The first statement is derived from Proposition 4.3, and the
second from (2) in Theorem 4.2. ¤

From Proposition 4.4, we have

Proposition 5.2. Let (M, L) be the same as in Theorem 5.2. Suppose
that D is a Einstein-Weyl structure. If the scalar curvature SD of D is
positive, then (M, L) is g.c. Berwald and an Einstein metric is associated
with L.
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