Q-Groups with Composition

By GUNTER PILZ (Linz)

Introduction

In 1956 P. J. HIGGINS investigated groups with multiple operators, so-called
Q-groups, in his famous paper [5]. The present paper is devoted to the study of
sets of functions, mapping an Q-group into itself, which form again Q-groups.
A purely axiomatic discission is made possible by the definition of an *‘Q-group
with composition™, more briefly called *“Q-composition group™. In such a system the
notions of “even” and “odd” functions can be generalized. Subsequently such
Q-composition groups are studied, in which each element is the sum of an even
and an odd element. Finally, we deduce order-theoretic properties with the help
of these notions. We restrict ourselves to functions of one variable.

1. Definitions and basic results

Let (G, +, —,0, w;, w,,...) be an Q-group with (in general non abelian)
addition +, subtraction — and zero element 0; w,,®,, ... denote the further
operations (cf. [5], [6] and [7]).

An Q-composition group is an Q-group (G, +, —,0, o, ®,, ...) with an ope-
ration o of weight 2, called composition, fulfilling for all g,;€ G

(1 (81+82)083 = 81°83+82°83

(2) (81082)083 = £,°(g2083)

and

(3) @;(8y5 -5 8n) 08 = ®;(8,08; -+ &n; 0 8)s

if the weight of ; is equal to n,>0, or
4) W;08 = W,
if @; is a O-ary operation.
An Q-composition ring is an Q-composition group (G, +, —, 0, o, +, @3, ...),
where w, = . is a binary operation, such that (G, +, —,0, ) is a ring.
The element c€G is called constant. if

(5) col =c.
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The set C(G) of all constant elements of G is an Q-subcomposition group. This
can be easily verified. Each operation of weight 0 determines a constant element.

If there exists a right and at the same time left neutral element with respect
to the composition, it will be denoted by J.

Remark. For the foundations of the theory of Q-groups see [6]. Q-composition
groups of the form (G. +. —.0., o) are called near-rings. A discussion can be
found in [2]. Q-composition rings of the type (G, +. —.0, o, -) are called compo-
sition rings (cf. [1] and [11]) or TO-algebras (see e.g. [8]).

Examples of Q-composition groups: all sets of functions, mapping an Q-group
into itself, which are closed with respect to all operations (composition included).
form Q-composition groups, if the operations +. ,; are transferred to functions
in the usual manner and if composition means substitution of functions. Conversely,
W. NOBAUER proved in [10] that each Q-composition group is isomorphic to such
an Q-composition group of functions on a suitable Q-group.

An important example is formed by the composition ring R[x] of all poly-
nomials over a commutative ring R with multiplicative unit 1. The operations are
defined as in the general case above (cf. [9]). One can prove immediately:

C(R[x])=R; j=x.

An element g, € G is called even, if for all #<G the equation

(6) go(—h) = g,oh holds.
The element g,cG is called odd, if
(7) g,0(—h) = —g,oh, for all heG.
In R[x] all
.'}rz_xz"
i=0

are even, all

W

2i+1
Fais1 X

i=0
are odd.

To avoid trivial, but troublesome distinctions of several cases we postulate
in addition to (1)—(3) that there is no g£G, g=0, with g+g = 0.

A subset S of G is called a base for equality, if the implication (8) holds:
(8) gos=hos for all s€S implies g=h (cf. [12]).

Lemma 1. Let C(G) be a base for equality. Then the element g<G is already
even, resp. odd, if

(9a) go(—c) =goc resp. (9b) go(—¢c) = —goc
is valid for all cc C(G).

To prove this, regard (gc(—h))oc = go(—hoc), g, h€G. hoc=:¢y,<C(G).
In case (a) one can calculate gc(—hoe) = go(—c¢y) = goecy, = (goh)oc, there-
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fore is (go(—h))cc = (goh)oc, which implies go(—/h) = goh. In case (b) holds
(go(—h))oc = go(—cp) = —gocy = (—goh)oc, therefore go(—h) = goh.

Lemma 2. Let (G, +, —,0, o, w,, ...) be an Q-composition group with j¢G.
If g. he G, g even, h odd, so is

(10) g=h equivalent to g=h=0.
This implies that O is the only element which is even and odd at the same time.

(10) is valid because g=/h implies
g = goj = go(—j) = ho(—j) = —hoj = —h, and therefore g=h=0.

Theorem 1. a) The set E(G) of all even elements of G = (G, +, —, 0, o, ;. ...)
forms an Q-sub-composition group of G containing C(G).
b) Let G contain j. Then E(G)#G or G={0}.

Proor. a) Consider ,, having the weight n,=0. Then w,(g,, ....g,)c(-2) =
= w,(g1°(—8); -+ 8, 0(—8)) = ©.(£,°8, ..., £,°8) = w,(gy, .-, 8,)0g if all
g; (1=i=n,) are even. This implies w,(g,. ..., g, )€ E(G). If , has weight 0, then
w,o(—g) = w, = w,0g, therefore all elements determined by O0-ary operations
are in E(G). If g lies in E(G), so does —g, because of (—g)o(—h) = —(go(—h) =
= —(goh) = (—g)oh. This implies 0€ E(G). Each c€C(G) fulfills co(—g) =
=c= cog, for all g€ G, which shows that C(G)< E(G).

b) If j€G, then j is odd: jo(—g) = —g = —jog. j=0 implies G= {0}. If j
is unequal to 0, then, by Lemma 2, j4 E(G).

Theorem 2. Let j< G # {0}, {w,} containing a binary operation w,. which is left
and right distributive with respect to + and with existing left and right neutral ele-
ment e,. Then

a) e, < E(G). If o, is associative and if there exists a left and right inverse element
i,(gy) for g,€ E(G), then i,(g,) is uniquely determined and is contained in E(G).

b) C(G) = E(G).

PROOF. a) Let @, be an operation of the described kind. By definition we have
w,(g.¢e)=w0,e.g)=g forallgeG. Wedefine heGbyh:= e,—e,0(—j). ho(—g)=
ho(—g) = e,o(—g)—e,o(—j)o(—g) = —(e,0g—e,o(—g)) = —hog. This shows
that /1 1s odd.

(1) o(h h)o(—g) = olhc(—g). ho(—g) = o(—h. —h)og.
From w,(h h) = w,(h+0,h) = @, (h, h)+ o0, h) one gets
(12) w,(0,h) = o, 0 =0

and therefore
0=w,00 = ot h-h = o/ h)+ao,h —h).

Summarizing these results one gets

(13) w,(—h, —h) = —(—,(h, h)) = o,(h,h).
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Combining (11) with (13) proves that w,(h, h)€ E(G).
(D,(h, h) = w,.(e,.—e,o(—j), 6’,.-'*8,.0(——_}')) =
- OJ,.(e,., er) = (O,.(e,., €0 (_J))_ (D,(e,o(—j}, er)+ mr(_ € ""er)c (_J) =
= er_'_ero(‘—_j)_ero(_j)'*'(*(her))o(—j) = er_ero(_j) = A,
This shows that / is at the same time even and odd, by lemma 2 we get #=0. This
means e,0j = e, = e,0(—j) and this implies e,0g = e,o(—g) for all g€ G. There-
fore e, € E(G).

Given g, € E(G) with existing inverse element 7,(g,) with respect to w,. Let
, be associative. If i (g,) is also an inverse element of g,, then from

'-r(gﬂ) = wr(ir(g())’ er) S~ mr(jr(gO)’ wr(gCH iIr(gi.'.t))) -
= 0,(0,(i,(20): £o): i (80)) = w,(e,, i7 (20)) = i/ (g)

the uniqueness of the inverse element follows.
By definition, (14) holds:

(14) @,(8057,(80)) = e,
This implies
@,(80, i(80)) o (—8) = @,(g0°(—2), i(go)o(—8)) = ®,(g008, i g)o(—2)) =
= e,0(—g) = ¢,08 = 0,(%o,7,(20))°8 = ®,(80°8 i(8o) 08)-

Because of the proved uniqueness of the inverse element one gets i(g¢)og =
= i(g,)o(—g) and therefore i(g,)€ E(G).
b) Just like in (13) one gets

w,(j. j) o (—g) =w(—g —g) = —j,—j)og =0,j.j) o g and therefore w,(j.j) € E(G).
If w(j,j) is contained in C(G), then ®/j,j)o0 = ®,(0,0) = 0. It follows
0 =wl(jj)oe, = wle,e) =e, and finally g=w/ (g, ¢,)=w,(g 0)=0 for all
g € G, which implies the excluded case G ={0}. Therefore E(G)# C(G), and the
theorem is completely proved.

Corollary. If G denotes an Q-composition ring with multiplicative unit 1, then
1€ E(G).

Furthermore, the following conclusions hold. Each sum of even (odd) elements
is even (odd). If g is any element of G, then the composition of g with an even element
is again even. In the case of abelian addition E(G) is therefore a left ideal in the
near-ring (G, +, —,0, o).

Theorem 3. Let G be an Q-composition ring, j€G: j be no left nullifier with
respect to multiplication. Then E = E(G) has the same cardinal number like the set
U=U(G) of all odd elements of G:E ~ U.

ProoOF. Consider the mapping ¢:g —j-g for all g€ E. One verifies immediately:
j-g€U. Therefore ¢p(E) = j-E € U. ¢ is injective, because j-g, = j-g, implies
g2,=g,. One gets £ ~ j. EC U, and, by a similar argument, U ~ j.U & E. This
implies U ~ j.U S E ~ j-E S U, therefore card U = card j-U = card E =
=card j-E = card U, and from this one gets card E=card U.
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2. Cieavable Q-composition groups

An element g of an Q-composition group G let be called cleavable, if it can be
written in the form

(15) g=g+g with gcE(G), geU(G).

If all elements of G are cleavable, then we say that G is cleavable.
Let S(G) be the set of all cleavable elements of G. If the conditions of theorem
2 are fulfilled, then

(16) C(G)c E(G)= S(G)=G holds.

E(G)= S(G) is valid, because, for example, o/, j)+j is not even, but cleavable.
The composition ring (and therefore the near-ring, too) R[x] is cleavable:

n -1
" ['2'] e
nx!= 3 ryx¥+ 3 ryyx¥t!
i=0 i=0 i=0
We will give another example of a cleavable Q-composition group (resp. Q-
composition ring). Let T be the near-ring (composition ring) generated by the real
numbers R and the functions x —~x, x -~sin x and x —cos x in the near-ring (compo-
sition ring) C(R) of all continuous functions from R into R. C(R) is cleavable, for
each function f(x)€ C(R) can be divided by

f(x)+f(—x) +f(x) =~ J{—%)
2 o)

-

(7 J(x) =

into an even and an odd part.

We show the cleavability of T assuming that 7 is a composition ring. In the
case of near-rings the proof is similar if one desits from forming products.

Let M be the subset of 7 containing all elements of 7" which can be formed
from R, x,sin x, cos x by a finite number of multiplications and compositions.
The total number of these operations which lead to me M we call the step of m.

Lemma 3. T is the set of all elements of the form

(18) a=a,
acA

with a,€¢ M, A being a finite set of indices.

PrOOF.* Let W be the set of all elements of the kind (18). WS T is trivial.
All the elements generating T are contained in M and therefore in W. Thus we have
only to show that W is a composition ring.

If a, b€ W, so is a—b. By the distributive laws we get a- b < W. Take

a= Ja, b=2b (ay, by M).

acA bEB

*) The present kind of the proof is due to Prof. W, Nébauer, whom I wish to thank very much
for his suggestions.
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It follows _
10b = (S a)o( Sb) = 3ao( 3 by).
acA pcB €A pcB

It is sufficient to show that for all a,€ M

(19) a,o( 3 b)ew
pcB

We verify this by induction on the step of a. Is the step=0, then a,=rcR,
X, sin x or cos x. For a,=r, x (19) is trivial, for @, =sin x or cos x (19) holds because
of the trigonometric addition theorems. Assume now the lemma to be proved for
all a, € M with step less than n. If a,€ M, thena, = k-1 ora, = kol with k,1€ M.
Let a, have the step n. Then k, 1 have lower steps. If @, = k- 1, this implies

()b,,)—a ob=(k+1)ob = (kob)-(1ob)cW and, if a, = kol:
a, u( Ybﬂ) = aq,0b = (k,o1)ob = ko(lob)€ W, because of 1obe W. This

shows that T W and the lemma is proved.
By the help of this lemma we get now

Theorem 4. T is cleavable.

PrOOF. If @€ T, we have by the preceding lemma:

a= >a (a,c M).
a2 A

The theorem is proved if we show that each m ¢ M is even or odd. We do this again
by induction on the step of m. If m has step 0, then again m=r, x, sin x or cos x.
The assertion holds, because r and cos x are even, x and sin x are odd. Now let
m have step n. Again we can write masm = k-1 orm = kol, with k, 1 € M having
a lower step than n. By induction hypothesis and theorem 1 m is either even or
odd. This proves the theorem.

Finally, we remark two useful statements in cleavable Q-composition groups:

(20) go(—=h) =(g—g)oh for all g hcG
(21) gcU(G) implies go0= 0.

3. Applications to the theory of ordered Q-composition groups
An Q-composition group (G, +, —., 0, o, w,, ...) is called fully (resp. partially)
ordered, if it is a fully (partially) ordered universal algebra (see [3]) and if
(22) (G, +, —,0) is a fully (partially) ordered group
(23) g, h=0 implies goh = 0.

The Q-composition group is called fully (partially) ordered in the wider sense,
if (23) needs only to be valid if & ¢ C(G). (cf. [4], [11], [12]).

For Q-composition rings one postulates furthermore that (G, +, —,0, o, +)
is a fully (partially) ordered ring.
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The symbols |g/ and sign g are defined as usual. As an example of a composition
ring which is ordered in the wider sense but not ordered take again R[x] with the
“lexicographic™ order (cf. [11]): call 3 rix'=0 if and only if r,=0 in a given order

i=0
in R. It can easily be shown by a counterexample that R[x] cannot be ordered.

The composition ring {Z rX', r.€ R} is, in opposite to R[x], ordered in the lexi-

cographlc order. A detalled discussion of partially and fully ordered composition
rings can be found in [I11] and [12].

Theorem 5. Let G be a fully ordered, cleavable Q-composition group with abelian
addition. Let be g G, heG. (If G is only fully ordered in the wider sense one has to
postulate h$ C(G).) Then

24) lgoh| = |glolhl, if h=0 or gc EUU.
(25) lgoh| = lglolhl, if h=0 and signg = signg.
(26) gohl = |glofhl, if h—=0 and signg + signg.

Remark. In (25) and (26) the relations = and = can hold actually.

Proor. To (24):

(i) g=0, h=0. Then goh = 0 and (24) is verified.

(i) g<0, h=0. Then |g|oc h| = (—g)oh = —(goh) = 0, which implies (24).

(iii) g€ E=E(G), h<0 (for h=0 see (i) and (ii)). go(h) = goh. If g=0, then
go(—h) = goh = 0; if g=<0, then goh = 0 and therefore |goh| = —(goh) =
= (—g)o(—h) = |g|o Al

(iv) ge U = U(G). If g=0, then go(—h) = —goh = 0 (h<0) and therefore
goh = 0. |g|=g, |h| = —h. This implies |g|o|h| = go(—h) = goh = |goh|. If
g=0 then |goh| = goh and |g|o|h| = (—g)o(—h) = goh = |goh|.

To (25):
(i) Let g be =0. signg = sign g implies £=0, g=0. &’ := —h=0. [g|o|h]| =
= go(—h) = goh’. Therefore |goh = |((§+g)oh| = |goh|+]! goh] = |go(—H)|+
+|go(=h) = |goh’|+|—gol'| = goh'+goh’ = (§+g) ok’ = goh’ = |g|o|h|, and
(25) is proved in this case.
(ii) g=0 trivially implies (25).

(ii1) g<=0 mmplies g <0, g<0 g e = 0. (25) (i) tells us that |goh| =
= |(—g')oh| = |—(g’oh)| = |g’oh| = |g’|oh| = |g|o|hl.
To (26):

(i) If =0 or g=0, then (26) is valid because of (24).
(i) Let g be =0, consequemly g<0. g:=—g=0. Then rgoh| = |go(=h)|=
(g+g) o(=h) = .gok +g ‘oh| — |goh’—gol'| = goh’+g' ok’. On the other
hand glolhl = |g—g'lolhl = |glo|l|+|g|c|=N|=goh'+goh’ = |goh|. This
verifies (26).
(iii) Let & be <O, then g=>0and g':=—-£>0. g':=-g=—-g—g=8"+¢.
with §"=0, g’<0. Applying (26) (ii) one arrives at

[goh| = |—goh| = |g’ohj = |g’|o|h] = |g|o]hl.
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To show the remark, consider again the polynomial ring R[x] with the lexicographic
order. At first we take

g:=x24x—-1=(x%2—-1)+x,
h: =—x—1 < 0,h§ C(R[x])=R. We have |goh| = |[(x2+x—1)o(—x—1)|=
= |x2+x—1| = x2+x—1, but
lglolhl = (2 +x—1)o(x+1) = x2+3x+1,
therefore |goh| < |g/ol|hl. Then we take
g:=x2=x+1=(x*+1)—x=0, h: =—x+1<0; h§R.

|goh| = |(x2=x+1Do(=x=1)| = |x2=x—1| = x2=x+1,
but
lglo|hl = (x2=x+1)o(x—1) = x2—3x+3, therefore

|goh| = |g|o|h, and theorem 5 is completely proved.
Specializing G = R[x]. theorem 5 can be formulated in this way:

\goh| = |g|lo|hl, if h=0 or g contains only even or odd degrees.

1A

lgoh|l = |g|o|hl, if h=0 and the coefficients of the greatest even and odd

degrees have the same sign.
|goh| = |g|o|h], if h<0 and the coefficients of the greatest even and odd

degrees have opposite signs.
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