Ω-Groups with Composition

By GÜNTER PILZ (Linz)

Introduction

In 1956 P. J. HIGGINS investigated groups with multiple operators, so-called Ω -groups, in his famous paper [5]. The present paper is devoted to the study of sets of functions, mapping an Ω -group into itself, which form again Ω -groups. A purely axiomatic discission is made possible by the definition of an " Ω -group with composition", more briefly called " Ω -composition group". In such a system the notions of "even" and "odd" functions can be generalized. Subsequently such Ω -composition groups are studied, in which each element is the sum of an even and an odd element. Finally, we deduce order-theoretic properties with the help of these notions. We restrict ourselves to functions of one variable.

1. Definitions and basic results

Let $\langle G, +, -, 0, \omega_1, \omega_2, ... \rangle$ be an Ω -group with (in general non abelian) addition +, subtraction - and zero element 0; $\omega_1, \omega_2, ...$ denote the further operations (cf. [5], [6] and [7]).

An Ω -composition group is an Ω -group $\langle G, +, -, 0, \circ, \omega_2, ... \rangle$ with an operation " \circ " of weight 2, called *composition*, fulfilling for all $g_i \in G$

$$(g_1 + g_2) \circ g_3 = g_1 \circ g_3 + g_2 \circ g_3$$

$$(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$$

and

(3)
$$\omega_i(g_1, ..., g_{n_i}) \circ g = \omega_i(g_1 \circ g, ..., g_{n_i} \circ g),$$

if the weight of ω_i is equal to $n_i > 0$, or

$$\omega_j \circ g = \omega_j,$$

if ω_i is a 0-ary operation.

An Ω -composition ring is an Ω -composition group $\langle G, +, -, 0, \circ, \cdot, \omega_3, ... \rangle$, where $\omega_2 = \cdot$ is a binary operation, such that $\langle G, +, -, 0, \cdot \rangle$ is a ring.

The element $c \in G$ is called *constant*. if

$$(5) c \circ 0 = c.$$

314 G. Pilz

The set C(G) of all constant elements of G is an Ω -subcomposition group. This can be easily verified. Each operation of weight 0 determines a constant element.

If there exists a right and at the same time left neutral element with respect to the composition, it will be denoted by j.

Remark. For the foundations of the theory of Ω -groups see [6]. Ω -composition groups of the form $\langle G, +, -, 0, \circ \rangle$ are called *near-rings*. A discussion can be found in [2]. Ω -composition rings of the type $\langle G, +, -, 0, \circ, \cdot \rangle$ are called *composition rings* (cf. [1] and [11]) or *TO-algebras* (see e.g. [8]).

Examples of Ω -composition groups: all sets of functions, mapping an Ω -group into itself, which are closed with respect to all operations (composition included), form Ω -composition groups, if the operations +, ω_i are transferred to functions in the usual manner and if composition means substitution of functions. Conversely, W. Nöbauer proved in [10] that each Ω -composition group is isomorphic to such an Ω -composition group of functions on a suitable Ω -group.

An important example is formed by the composition ring R[x] of all polynomials over a commutative ring R with multiplicative unit 1. The operations are defined as in the general case above (cf. [9]). One can prove immediately:

$$C(R[x]) = R; j = x.$$

An element $g_1 \in G$ is called *even*, if for all $h \in G$ the equation

$$(6) g_1 \circ (-h) = g_1 \circ h holds.$$

The element $g_2 \in G$ is called *odd*, if

(7)
$$g_2 \circ (-h) = -g_2 \circ h, \text{ for all } h \in G.$$
 In $R[x]$ all

$$\sum_{i=0}^{n} r_{2i} x^{2i}$$

are even, all

$$\sum_{i=0}^{n} r_{2i+1} x^{2i+1}$$

are odd.

To avoid trivial, but troublesome distinctions of several cases we postulate in addition to (1)—(3) that there is no $g \in G$, $g \neq 0$, with g + g = 0.

A subset S of G is called a base for equality, if the implication (8) holds:

(8)
$$g \circ s = h \circ s$$
 for all $s \in S$ implies $g = h$ (cf. [12]).

Lemma 1. Let C(G) be a base for equality. Then the element $g \in G$ is already even, resp. odd, if

(9a)
$$g \circ (-c) = g \circ c$$
 resp. (9b) $g \circ (-c) = -g \circ c$

is valid for all $c \in C(G)$.

To prove this, regard $(g \circ (-h)) \circ c = g \circ (-h \circ c)$, $g, h \in G$. $h \circ c = : c_0 \in C(G)$. In case (a) one can calculate $g \circ (-h \circ c) = g \circ (-c_0) = g \circ c_0 = (g \circ h) \circ c$, there-

fore is $(g \circ (-h)) \circ c = (g \circ h) \circ c$, which implies $g \circ (-h) = g \circ h$. In case (b) holds $(g \circ (-h)) \circ c = g \circ (-c_0) = -g \circ c_0 = (-g \circ h) \circ c$, therefore $g \circ (-h) = g \circ h$.

Lemma 2. Let $\langle G, +, -, 0, \circ, \omega_2, ... \rangle$ be an Ω -composition group with $j \in G$. If $g, h \in G$, g even, h odd, so is

(10)
$$g = h$$
 equivalent to $g = h = 0$.

This implies that 0 is the only element which is even and odd at the same time.

(10) is valid because
$$g = h$$
 implies $g = g \circ j = g \circ (-j) = h \circ (-j) = -h \circ j = -h$, and therefore $g = h = 0$.

Theorem 1. a) The set E(G) of all even elements of $G = \langle G, +, -, 0, \circ, \omega_2, ... \rangle$ forms an Ω -sub-composition group of G containing C(G).

b) Let G contain j. Then $E(G) \neq G$ or $G = \{0\}$.

PROOF. a) Consider ω_r , having the weight $n_r > 0$. Then $\omega_r(g_1, \dots, g_{n_r}) \circ (-g) =$ $= \omega_r(g_1 \circ (-g), ..., g_{n_r} \circ (-g)) = \omega_r(g_1 \circ g, ..., g_{n_r} \circ g) = \omega_r(g_1, ..., g_{n_r}) \circ g, \text{ if all }$ g_i $(1 \le i \le n_r)$ are even. This implies $\omega_r(g_1, \ldots, g_{n_r}) \in E(G)$. If ω_r has weight 0, then $\omega_r \circ (-g) = \omega_r = \omega_r \circ g$, therefore all elements determined by 0-ary operations are in E(G). If g lies in E(G), so does -g, because of $(-g) \circ (-h) = -(g \circ (-h)) =$ $= -(g \circ h) = (-g) \circ h$. This implies $0 \in E(G)$. Each $c \in C(G)$ fulfills $c \circ (-g) =$ $=c=c\circ g$, for all $g\in G$, which shows that $C(G)\subseteq E(G)$.

b) If $j \in G$, then j is odd: $j \circ (-g) = -g = -j \circ g$. j = 0 implies $G = \{0\}$. If j is unequal to 0, then, by Lemma 2, $j \in E(G)$.

Theorem 2. Let $j \in G \neq \{0\}$, $\{\omega_i\}$ containing a binary operation ω_r , which is left and right distributive with respect to + and with existing left and right neutral element e,. Then

a) $e_r \in E(G)$. If ω_r is associative and if there exists a left and right inverse element $i_r(g_0)$ for $g_0 \in E(G)$, then $i_r(g_0)$ is uniquely determined and is contained in E(G). b) $C(G) \neq E(G)$.

PROOF. a) Let ω_r be an operation of the described kind. By definition we have $\omega_r(g, e_r) = \omega_r(e_r, g) = g$, for all $g \in G$. We define $h \in G$ by $h := e_r - e_r \circ (-j)$. $h \circ (-g) =$ $h \circ (-g) = e_r \circ (-g) - e_r \circ (-j) \circ (-g) = -(e_r \circ g - e_r \circ (-g)) = -h \circ g$. This shows that h is odd.

(11)
$$\omega_r(h,h) \circ (-g) = \omega_r(h \circ (-g), h \circ (-g)) = \omega_r(-h,-h) \circ g.$$

From $\omega_r(h, h) = \omega_r(h+0, h) = \omega_r(h, h) + \omega_r(0, h)$ one gets

(12)
$$\omega_r(0,h) = \omega_r(h,0) = 0$$

and therefore

$$0=\omega_r(h,0)=\omega_r(h,h-h)=\omega_r(h,h)+\omega_r(h,-h).$$

Summarizing these results one gets

(13)
$$\omega_r(-h, -h) = -(-\omega_r(h, h)) = \omega_r(h, h).$$

316 G. Pilz

Combining (11) with (13) proves that $\omega_r(h, h) \in E(G)$.

$$\omega_{r}(h,h) = \omega_{r}(e_{r} - e_{r} \circ (-j), e_{r} - e_{r} \circ (-j)) =$$

$$= \omega_{r}(e_{r}, e_{r}) - \omega_{r}(e_{r}, e_{r} \circ (-j)) - \omega_{r}(e_{r} \circ (-j), e_{r}) + \omega_{r}(-e_{r}, -e_{r}) \circ (-j) =$$

$$= e_{r} - e_{r} \circ (-j) - e_{r} \circ (-j) + (-(-e_{r})) \circ (-j) = e_{r} - e_{r} \circ (-j) = h.$$

This shows that h is at the same time even and odd, by lemma 2 we get h=0. This means $e_r \circ j = e_r = e_r \circ (-j)$ and this implies $e_r \circ g = e_r \circ (-g)$ for all $g \in G$. Therefore $e_r \in E(G)$.

Given $g_0 \in E(G)$ with existing inverse element $i_r(g_0)$ with respect to ω_r . Let ω_r be associative. If $i'_r(g_0)$ is also an inverse element of g_0 , then from

$$i_r(g_0) = \omega_r(i_r(g_0), e_r) = \omega_r(i_r(g_0), \omega_r(g_0, i_r(g_0))) =$$

$$= \omega_r(\omega_r(i_r(g_0), g_0), i_r'(g_0)) = \omega_r(e_r, i_r'(g_0)) = i_r'(g)$$

the uniqueness of the inverse element follows.

By definition, (14) holds:

$$(14) \qquad \qquad \omega_r(g_0, i_r(g_0)) = e_r$$

This implies

$$\omega_{r}(g_{0}, i_{r}(g_{0})) \circ (-g) = \omega_{r}(g_{0} \circ (-g), i_{r}(g_{0}) \circ (-g)) = \omega_{r}(g_{0} \circ g, i_{r}(g_{0}) \circ (-g)) =$$

$$= e_{r} \circ (-g) = e_{r} \circ g = \omega_{r}(g_{0}, i_{r}(g_{0})) \circ g = \omega_{r}(g_{0} \circ g, i_{r}(g_{0}) \circ g).$$

Because of the proved uniqueness of the inverse element one gets $i_r(g_0) \circ g = i_r(g_0) \circ (-g)$ and therefore $i_r(g_0) \in E(G)$.

b) Just like in (13) one gets $\omega_r(j,j) \circ (-g) = \omega_r(-g,-g) = \omega_r(-j,-j) \circ g = \omega_r(j,j) \circ g$ and therefore $\omega_r(j,j) \in E(G)$. If $\omega_r(j,j)$ is contained in C(G), then $\omega_r(j,j) \circ 0 = \omega_r(0,0) = 0$. It follows $0 = \omega_r(j,j) \circ e_r = \omega_r(e_r,e_r) = e_r$, and finally $g = \omega_r(g,e_r) = \omega_r(g,0) = 0$ for all $g \in G$, which implies the excluded case $G = \{0\}$. Therefore $E(G) \neq C(G)$, and the theorem is completely proved.

Corollary. If G denotes an Ω -composition ring with multiplicative unit 1, then $1 \in E(G)$.

Furthermore, the following conclusions hold. Each sum of even (odd) elements is even (odd). If g is any element of G, then the composition of g with an even element is again even. In the case of abelian addition E(G) is therefore a left ideal in the near-ring $(G, +, -, 0, \circ)$.

Theorem 3. Let G be an Ω -composition ring, $j \in G$: j be no left nullifier with respect to multiplication. Then E = E(G) has the same cardinal number like the set U = U(G) of all odd elements of $G: E \sim U$.

PROOF. Consider the mapping $\varphi: g \to j \cdot g$ for all $g \in E$. One verifies immediately: $j \cdot g \in U$. Therefore $\varphi(E) = j \cdot E \subseteq U$. φ is injective, because $j \cdot g_1 = j \cdot g_2$ implies $g_1 = g_2$. One gets $E \sim j \cdot E \subseteq U$, and, by a similar argument, $U \sim j \cdot U \subseteq E$. This implies $U \sim j \cdot U \subseteq E \sim j \cdot E \subseteq U$, therefore card $U = \operatorname{card} j \cdot U \subseteq \operatorname{card} E = \operatorname{card} j \cdot E \subseteq \operatorname{card} U$, and from this one gets $\operatorname{card} E = \operatorname{card} U$.

2. Cleavable Ω -composition groups

An element g of an Ω -composition group G let be called *cleavable*, if it can be written in the form

$$(15) g = \bar{g} + g with \bar{g} \in E(G), g \in U(G).$$

If all elements of G are cleavable, then we say that G is *cleavable*.

Let S(G) be the set of all cleavable elements of G. If the conditions of theorem 2 are fulfilled, then

(16)
$$C(G) \subset E(G) \subset S(G) \subset G$$
 holds.

 $E(G) \neq S(G)$ is valid, because, for example, $\omega_r(j,j) + j$ is not even, but cleavable. The composition ring (and therefore the near-ring, too) R[x] is cleavable:

$$\sum_{i=0}^{n} r_{i} x^{i} = \sum_{i=0}^{\left[\frac{n}{2}\right]} r_{2i} x^{2i} + \sum_{i=0}^{\left[\frac{n-1}{2}\right]} r_{2i+1} x^{2i+1}$$

We will give another example of a cleavable Ω -composition group (resp. Ω -composition ring). Let T be the near-ring (composition ring) generated by the real numbers R and the functions $x \to x$, $x \to \sin x$ and $x \to \cos x$ in the near-ring (composition ring) C(R) of all continuous functions from R into R. C(R) is cleavable, for each function $f(x) \in C(R)$ can be divided by

(17)
$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

into an even and an odd part.

We show the cleavability of T assuming that T is a composition ring. In the case of near-rings the proof is similar if one desits from forming products.

Let M be the subset of T containing all elements of T which can be formed from R, x, $\sin x$, $\cos x$ by a finite number of multiplications and compositions. The total number of these operations which lead to $m \in M$ we call the *step* of m.

Lemma 3. T is the set of all elements of the form

$$(18) a = \sum_{\alpha \in A} a_{\alpha}$$

with $a_{\alpha} \in M$, A being a finite set of indices.

PROOF.* Let W be the set of all elements of the kind (18). $W \subseteq T$ is trivial. All the elements generating T are contained in M and therefore in W. Thus we have only to show that W is a composition ring.

If $a, b \in W$, so is a - b. By the distributive laws we get $a \cdot b \in W$. Take

$$a = \sum_{\alpha \in A} a_{\alpha}, \quad b = \sum_{\beta \in B} b_{\beta} \qquad (a_{\alpha}, b_{\beta} \in M).$$

^{*)} The present kind of the proof is due to Prof. W. Nöbauer, whom I wish to thank very much for his suggestions.

318 G. Pilz

It follows

$$a \circ b = \left(\sum_{\alpha \in A} a_{\alpha}\right) \circ \left(\sum_{\beta \in B} b_{\beta}\right) = \sum_{\alpha \in A} a_{\alpha} \circ \left(\sum_{\beta \in B} b_{\beta}\right).$$

It is sufficient to show that for all $a_n \in M$

$$(19) a_{x} \circ \left(\sum_{\beta \in B} b_{\beta}\right) \in W$$

We verify this by induction on the step of a. Is the step=0, then $a_{\alpha}=r \in R$, x, $\sin x$ or $\cos x$. For $a_{\alpha}=r$, x (19) is trivial, for $a_{\alpha}=\sin x$ or $\cos x$ (19) holds because of the trigonometric addition theorems. Assume now the lemma to be proved for all $a_{\alpha} \in M$ with step less than n. If $a_{\alpha} \in M$, then $a_{\alpha}=k \cdot 1$ or $a_{\alpha}=k \cdot 1$ with $k, l \in M$. Let a_{α} have the step n. Then k, l have lower steps. If $a_{\alpha}=k \cdot l$, this implies

$$a_{\alpha} \circ \left(\sum_{\beta \in B} b_{\beta}\right) = a_{\alpha} \circ b = (k \cdot 1) \circ b = (k \circ b) \cdot (1 \circ b) \in W$$
 and, if $a_{\alpha} = k \circ 1$: $a_{\alpha} \circ \left(\sum_{\beta \in B} b_{\beta}\right) = a_{\alpha} \circ b = (k_{\alpha} \circ 1) \circ b = k \circ (1 \circ b) \in W$, because of $1 \circ b \in W$. This shows that $T = W$ and the lemma is proved.

By the help of this lemma we get now

Theorem 4. T is cleavable.

PROOF. If $a \in T$, we have by the preceding lemma:

$$a = \sum_{\alpha \in A} a_{\alpha}$$
 $(a_{\alpha} \in M).$

The theorem is proved if we show that each $m \in M$ is even or odd. We do this again by induction on the step of m. If m has step 0, then again m = r, x, $\sin x$ or $\cos x$. The assertion holds, because r and $\cos x$ are even, x and $\sin x$ are odd. Now let m have step n. Again we can write m as $m = k \cdot 1$ or $m = k \cdot 1$, with k, $1 \in M$ having a lower step than n. By induction hypothesis and theorem 1 m is either even or odd. This proves the theorem.

Finally, we remark two useful statements in cleavable Ω -composition groups:

(20)
$$g \circ (-h) = (\bar{g} - g) \circ h$$
 for all $g, h \in G$

(21) $g \in U(G)$ implies $g \circ 0 = 0$.

3. Applications to the theory of ordered Ω -composition groups

An Ω -composition group $\langle G, +, -, 0, \circ, \omega_2, ... \rangle$ is called *fully* (resp. *partially*) ordered, if it is a fully (partially) ordered universal algebra (see [3]) and if

- (22) $\langle G, +, -, 0 \rangle$ is a fully (partially) ordered group
- (23) $g, h \ge 0$ implies $g \circ h \ge 0$.

The Ω -composition group is called *fully (partially) ordered in the wider sense*, if (23) needs only to be valid if $h \notin C(G)$. (cf. [4], [11], [12]).

For Ω -composition rings one postulates furthermore that $\langle G, +, -, 0, \circ, \cdot \rangle$ is a fully (partially) ordered ring.

The symbols |g| and sign g are defined as usual. As an example of a composition ring which is ordered in the wider sense but not ordered take again R[x] with the "lexicographic" order (cf. [11]): call $\sum_{i=0}^{n} r_i x^i > 0$ if and only if $r_n > 0$ in a given order in R. It can easily be shown by a counterexample that R[x] cannot be ordered. The composition ring $\{\sum_{i=1}^{n} r_i x^i, r_i \in R\}$ is, in opposite to R[x], ordered in the lexicographic order. A detailed discussion of partially and fully ordered composition rings can be found in [11] and [12].

Theorem 5. Let G be a fully ordered, cleavable Ω -composition group with abelian addition. Let be $g \in G$, $h \in G$. (If G is only fully ordered in the wider sense one has to postulate $h \notin C(G)$.) Then

$$(24) |g \circ h| = |g| \circ |h|, if h \ge 0 or g \in E \cup U.$$

$$(25) |g \circ h| \le |g| \circ |h|, if h < 0 and sign \tilde{g} = sign g.$$

(26)
$$|g \circ h| \ge |g| \circ |h|$$
, if $h < 0$ and $\operatorname{sign} \bar{g} \ne \operatorname{sign} g$.

Remark. In (25) and (26) the relations < and > can hold actually.

PROOF. To (24):

(i) $g \ge 0$, $h \ge 0$. Then $g \circ h \ge 0$ and (24) is verified.

(ii) g < 0, $h \ge 0$. Then $|g| \circ |h| = (-g) \circ h = -(g \circ h) \ge 0$, which implies (24).

(iii) $g \in E = E(G)$, h < 0 (for $h \ge 0$ see (i) and (ii)). $g \circ (h) = g \circ h$. If $g \ge 0$, then $g \circ (-h) = g \circ h \ge 0$; if g < 0, then $g \circ h \ge 0$ and therefore $|g \circ h| = -(g \circ h) = (-g) \circ (-h) = |g| \circ |h|$.

(iv) $g \in U = U(G)$. If $g \ge 0$, then $g \circ (-h) = -g \circ h \ge 0$ (h < 0) and therefore $g \circ h \le 0$. |g| = g, |h| = -h. This implies $|g| \circ |h| = g \circ (-h) = g \circ h = |g \circ h|$. If g < 0 then $|g \circ h| = g \circ h$ and $|g| \circ |h| = (-g) \circ (-h) = g \circ h = |g \circ h|$.

To (25):

(i) Let g be >0. sign $\bar{g}=$ sign g implies $\bar{g}>0$, g>0. h':=-h>0. $|g|\circ|h|==g\circ(-h)=g\circ h'$. Therefore $|g\circ h|=|(\bar{g}+g)\circ h|\leq |\bar{g}\circ h|+|\underline{g}\circ h|=|\bar{g}\circ(-h')|+|\underline{g}\circ(-h')|=|\bar{g}\circ h'|+|\underline{g}\circ h'|=|\bar{g}\circ h'|+|\underline{g}\circ h'|=|g|\circ|h|$, and (25) is proved in this case.

(ii) g = 0 trivially implies (25).

(iii) g < 0 implies $\bar{g} < 0$, g < 0. g' := -g > 0. (25) (i) tells us that $|g \circ h| = |(-g') \circ h| = |-(g' \circ h)| = |g' \circ h| \le |g'| \circ |h| = |g| \circ |h|$.

To (26):

(i) If $\bar{g} = 0$ or g = 0, then (26) is valid because of (24).

- (ii) Let \bar{g} be >0, consequently $\underline{g}<0$. $\underline{g}:=-\underline{g}>0$. Then $|g\circ h|=|g\circ (-h')|==|(\bar{g}+\underline{g})\circ (-h')|=|g\circ h'+g'\circ h|-|\bar{g}\circ h'-\underline{g}\circ h'|=\bar{g}\circ h'+\underline{g'}\circ h'$. On the other hand, $|g|\circ |h|=|\bar{g}-\underline{g'}|\circ |h| \leq |\bar{g}|\circ |h'|+|\underline{g'}|\circ |-h'|=\bar{g}\circ h'+\underline{g}\circ h'=|g\circ h|$. This verifies (26).
- (iii) Let \bar{g} be <0, then $\underline{g}>0$ and $\bar{g}':=-\bar{g}>0$. $g':=-g=-\bar{g}-\underline{g}=\bar{g}'+\underline{g}'$, with $\bar{g}'>0$, g'<0. Applying (26) (ii) one arrives at

$$|g \circ h| = |-g \circ h| = |g' \circ h| \ge |g'| \circ |h| = |g| \circ |h|.$$

To show the remark, consider again the polynomial ring R[x] with the lexicographic order. At first we take

$$g:=x^2+x-1=(x^2-1)+x,$$

$$h: = -x - 1 < 0, h \in C(R[x]) = R$$
. We have $|g \circ h| = |(x^2 + x - 1) \circ (-x - 1)| = |x^2 + x - 1| = |x^2 + x - 1|$, but

$$|g| \circ |h| = (x^2 + x - 1) \circ (x + 1) = x^2 + 3x + 1,$$

therefore $|g \circ h| < |g| \circ |h|$. Then we take

$$g:=x^2-x+1=(x^2+1)-x>0, h:=-x+1<0; h\in R.$$

$$|g \circ h| = |(x^2 - x + 1) \circ (-x - 1)| = |x^2 - x - 1| = x^2 - x + 1,$$

but

$$|g| \circ |h| = (x^2 - x + 1) \circ (x - 1) = x^2 - 3x + 3$$
, therefore

$$|g \circ h| > |g| \circ |h|$$
, and theorem 5 is completely proved.

Specializing G = R[x], theorem 5 can be formulated in this way:

 $|g \circ h| = |g| \circ |h|$, if $h \ge 0$ or g contains only even or odd degrees.

 $|g \circ h| \leq |g| \circ |h|$, if h < 0 and the coefficients of the greatest even and odd degrees have the same sign.

 $|g \circ h| \ge |g| \circ |h|$, if h < 0 and the coefficients of the greatest even and odd degrees have opposite signs.

References

- [1] I. ADLER, Composition Rings, Duke Math. J. 29 (1962), 607-623.
- [2] G. BERMAN and R. SILVERMAN, Near-Rings, Amer. Math. Monthly 66 (1959), 23—34.
 [3] L. FUCHS, On Partially Ordered Algebras I, Colloqu. Math. 14 (1966), 115—130.
- [4] Е. Габович, Частично упорядоченные Ω-группы Учен. Зап. Тартуск. Ун. 102 (1961), 294—300.
- [5] P. J. Higgins, Groups with Multiple Operators, Proc. London Math. Soc. 6 (1956), 366-416.
- [6] A. G. Kurosch, Vorlesungen über allgemeine Algebra, Leipzig, 1964.
- [7] H. LAUSCH, Functions on Groups with Multiple Operators, J. London Math. Soc. 42 (1967), 698-700.
- [8] K. Menger, Algebra of Analysis, Notre Dame Math. Lectures, No. 3, 1944.
- [9] W. Nöbauer, Funktionen auf kommutativen Ringen Math. Ann. 147 (1962), 166—175.
 [10] W. Nöbauer, Über die Darstellung von universellen Algebren durch Funktionenalgebren, Publ. Math. Debrecen 10 (1963), 151—154.
- [11] G. Pilz, Ordnungstheorie in Kompositionsringen, Thesis, Univ. of Vienna, 1967.
- [12] G. Pilz, Über geordnete Kompositionsringe, Monatsh. Math. 73 (1969), 159—169.

(Received February 10, 1969.)