Continuously differentiable spaces

By M. VENKATARAMAN and S. JEYAMMA (Madurai)

Dirac, in the early years of this century, invented the d-function and it became
immediately popular with the physcists who applied them widely. It was the problem
of the mathematicians to find a good mathematical justification for the use of Dirac
function. The whole difficulty was that no sound mathematician could accept the
o-function as a function. One could not reject it also, because it was so useful in
getting valid results in physics and other applied sciences. It was L. SCHWARTZ
who observed first that a good meaning could be given only if we expand our vision
by defining a generalized concept of functions. After Schwartz’s discovery of the
theory of distribution [6], [7], many mathematicians gave their own meaning for
the situation. To mention some of the important works (i) Mikusinski’s theory
of operators [4] (ii) Mikusinski—Sikorski theory of distributions [5] (iii) M. J.
Lighthill’s theory of generalized functions [2] (iv) Liverman’s theory of distributions
[3] (v) Gelfand and Shilov theory of distributions [1].

All these spaces develop spaces possessing essentially the following features
(i) the structure of the vector space with translations (ii) the convergence structure
(iii) differentiation — and these are compatible with each other. This leads to the
concept of continuously differentiable spaces (CD spaces) and in § 1 we deal with
some basic ideas and properties of CD spaces.

Once can see that the various spaces of generalized functions are instances of
CD spaces. One natural question will be what the structure of a general CD-space
is. In § 2 we exhibit a natural association between CD spaces on the one hand
and topological vector spaces together with a prescribed endomorphism on the
other. Since a canonical form for a general endomorphism of a topological vector
space is not known even in such a simple case as the "Hilbert space, we leave the
investigation in this direction.

§ L

Definition 1. 1: A topological vector space X over a field*) Kis (i) a topological
vector space**) X over K and (ii) a family of linear transformations, 7,( — e </ =e=)
such that 7, = (the identity transformation), 7, +,,=7,,T4, and 7,(x) is a continuous
function of both /# and x € X.

*) Unless explicity stated otherwise, K refers to the real number field.
**) Topology is given by a notion of sequential convergence.
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Definitioa 1.2: An element a€ X where X is a topological translation vector
space, is said to be differentiable if Lt Mh:a-)
h=0
is called the derivative of @ and denoted by «’. If the derivative exists for every a € X,
then X is called a differentiable space.

Remark 1. 1: The element 0 is always differentiable (1,(0)=0) and has the
derivative 0.

exists. This limit, when it exists,

~ Definition 1.3: A topological vector space X is called an allowable space
if whenever a, converges to zero and if a, exists, then a, converges to zero.

Definition 1.4: A topological translation vector space X is called a CD
space if every element of the space has derivatives and if whenever a, converges to
zero, then a, also converges to zero. (i.e.) If it is both differentiable and an allowable
space.

Remark 1. 2: The class of all topological vector spaces with linear continuous
maps forms a category 7. The class of all CD spaces with translation preserving
linear continuous maps forms a subcategory G.

Definition 1. 5: We shall say that there is a minimal embedding of a topological
translation vector space X into the category G if there exists a CD-space say
X and a linear, differentiable (that is derivative preserving) continuous map f,
from X to X such that whenever 7,: X —+ Y is a linear differentiable continuous map
from X to the space Y of G, we can find a linear differentiable, continuous map
t3:X - Y such that ty¢,=t,. We call X, a minimal embedding of X.

Definition 1.6: An element in a topological translation vector space X is
called a polynomial P, of degree less than or equal to a positive integer k if its k-th
derivative exists and is zero and its (k—1)-th derivative is not zero, The k-th
derivative of @€ X is written as a®. Thus ¢ =0 if and only if a=some P,.

Definition 1.7: An element a of a topological translation vector space X
is said to have a primitative b in X if there exists a b€ X such that b’=a. This b
will also be referred to as fa (this symbol can, of course, have more than one mean-

ing). We shall speak of ffa as fa and so on.

Definition 1. 8: A topological translation vector space X is called a primitive
space if every element of X has a primitive.

Theorem 1. 1. Any primitive space X can be embedded minimally into a CD
space X.
ProoF. First we shall actually construct the CD space as follows: Consider
ordered pairs (a, k) where ac€ X and k a non-negative integer. Define
(a, k)+(b, k) = (a+b, k)
(@, k)+(b,m) = ( [a+ [ b, k+m)
Iy

m

x(a, k) = (za, k),
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where 2 is an element in the field. Define (a, k) ~ (b, m)if and only if [a— [b=P,,,.
n k

Now this relation ~ is easily proved to be an equivalence relation compatible with
the operations of addition and multiplication by reals and this divides the class of
all pairs (a, k) into mutually disjoint classes like {(a, k)}-forming in a natural way
a vector space. Every equivalence class is called a generalized function or a distribu-
tion. For sake of convenience we denote a distribution by (a, k) itself. We now
define t,(a, k) to be (1,4, k) and we say (a,, k,) converges to (a, k) if (a,. k,)~
~(b,, m); (a, k)~(b, m) and b, converges to b in X. It is easy to verify that these
definitions depend only on the classes and not on the representative elements so
chosen. The space of all distributions defined thus is the required CD space X.
for we note that (i) [(t,a, k)—(a, k)]/h converges to (a, k+1) as h tends to zero,
because [(t,a, k)—(a, k))/h is (t,b—b/h, k+1) where b is a primitive of a. Also
whenever (a,, k,) converges to zero, (a,, k,+ 1) also converges to zero. For, given
(a,, k,)~(b,, m) and b, converges to zero in X, we have (a,, k,+1) ~ (b,, m+1)
and b, converges to zero. Now, correspond a€ X to 1, (a)=(a, 0) in X. If b corresponds
to (b, 0) and if (a, 0)~(b, 0) then a=b in X. Therefore, the map ¢, is one-one. It
is also seen to be a differentiable and continuous map. Let now Y be any CD
space and 7,: X — Y be a linear differentiable and continuous map. To each element
(a, k) of X, we can associate the k-th derivative of r,a in Y. It is straightforward
to verify this mapping is well-defined from X to Y and preserves translation. We
need only to show that the map is continuous. For this, let (a,, k,) converges to
zero in X. This means (a,, k,)~(b,, m) and b, converges to zero in X. Since ¢, is
continuous, we find t, b, converges to zero in Y. Since Y is a C—D space the m-th
derivative of 1,b, converges to zero. Thus, by corresponding the m-th derivative
of 1,b, to (a,, k,) we see that the map is continuous.

Theorem 1. 2. The direct product of topological translation vector spaces E, is
a CD space if and only if each E, is a CD space.

Proor. Let {x,} be a sequence of elements in /] E,. {x,} converges to 0 in [] E
t t

if and only if its projection in E, converges to zero in E,. Since E, is a CD space
{x/®'} exist and {x/®} converges to zero in E,. Consider {x/®}in [] E,. {x!¥'} con-
 §

verges to zero in ] E,. Hence [] E, is a CD space. Conversely consider (0, 0, .... 0,

t t
Xl 5 s ) in the direct sum > E,. This converges to zero whenever {x,} converges
to zero in E,. Therefore, whenever {x*'} converges to zero in E,, (0,0, ...
.. 0,x™.0, ...) also converges to zero in [] E,.
r
Theorem 1. 3. Every translation topological closed subspace S of a CD space
G is also a CD space.

PROOF. Let /€ S; to show /"€ S.
For, in G, Lt (v,f—f)/h = f'€G since G is a CD space. Since S is closed
h—=0

f7isin S. By induction £ is in S. If f, converges to fin S. to show that ;™ con-
verges in S. For, as elements of G, f!"™ converges to /'™ in G since G is a CD
space and whenever f,, f€ S, f;'™ and f™ ¢ S. Therefore /™ converges to /™ in S.
Hence S is a CD space.
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Theorem 1.4. If X is any CD space, and Y is a differentiable closed subspace
of X, then the quotient space X|Y is a CD space.

Proor, First we shall show that X/Y is a differentiable space. For, consider
an element [x+ Y] which is a coset, of X/Y. Define [x+ Y]*® = [x* 4 ¥] and this
exists since X is a CD space. The above definition of derivative in X/Y is definite.
In other words, if [x+Y] = [z+ Y] then [x*+ Y] = [z®¥+Y]. For if [x+Y] =
= [z+Y] (i.e) if x—z is in Y, then (x—z)* = x®—z® {5 also in Y since Y is a
differentiable space, (i.e.) [x®*+ Y] = [z® + Y]. Secondly, we shall show that X/Y.
is an allowable space. Consider a sequence [x,+ Y] of cosets in X/ Y. Define {[x,+ Y]}
converges to zero in X/Y if and only if {z,} converges to z, where z, is a suitable
sequence of representative elements from each of the cosets [x,+ Y].

To show that X/Y is an allowable space, we have to show that whenever, [x,+ Y]
converges to zero in X/Y then [x,+ Y]® if it exists, converges to zero in X/Y.
[x, —Y]“" exists, since X/Y is a differentiable space. Given [{x,+ Y]} converges
to zero in X/Y, (i.e.) {x,+ Y} converges to zero in X/Y, (i.e.) z, converges to zero
in X.

Since X is a CD space, z\* exists and (z*) converges to zero in X. Therefore,
{x;’+ Y} converges to zero in X/Y, (i.e.) {[x;"+ Y]} converges to zero in X/Y.
Hence X/Y is a CD space.

Theorem 1. 5. Dual space of a CD space is, in a natural way a translation
topological vector space, which by itself is a CD space.

Proor. Let X be a CD space and let X* be its dual. If 7¢ X* define 7,7 as
follows: for every a< X, (1,T,a)=(T, t,a), 7,T is continuous from X to X. Thus
X* is a translation vector space. Now

(') = 1t @l-Ta)_ ,, @wlha)—(T.a) _
h h=0 h
_ L Tud—(Ta) _ o (Tna=a) _ oo
h=0 h k=0 i ‘

Therefore T~ exists. Similarly (7™, a)=(T, a®) for all a¢K, and k=1,2.3,....
Thus X™* is a differentiable space. If 7, converges to 0 in the dual topology of X™*,
then (T®, ay=(T,,a®) converges to zero. Therefore T,;* converges to zero in
the dual topology of X*. Thus X* is an allowable space. So X™* is a CD space.

Theorem 1. 6. The inductive limit of CD spacesis a CD space in a natural way.

ProOOF. We know that the inductive limit X of topological linear spaces X,
is a topological linear space. The inductive limit as made into a translation topological
linear space in the following way. If ac X, then a€ X, for some «. Therefore 7, a
is in X, since X, is a translation space, and so t,a is in X, which we define to be the
translation of ac X by Ah. If all X, are differentiable spaces, the inductive limit is
also a differentiable space. For, if @€ X, then a< X, for some «. So a is in X, since
X, is a differentiable space and so @™ is in X. If all the X7, s are allowable spaces,
the inductive limit is also an allowable space. For, if g, converge to zero in X, all
a, are in X, for some «, and a, converges to zero in X,. Since X, is an allowable
space a® converges to zero in X, and hence in X. Hence the theorem. Similarly we
have,
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Theorem 1.7. The projective limit of CD spaces is also a CD space.
Theorem 1. 8. Any CD space X can be densely embedded in a complete CD space.

Proor. We know that any linear topological space X can be embedded in a
complete linear topological space X. It is enough if we recognize that, this comple-
tion is a CD space if the initial space is a CD space. If a€ X, define 1,a=Lt 1,a,

n

where a=Lt a, and a, is a Cauchy sequence in X converging to a. Define

rll a_il Tpd,—d,

= e LT = Lt Lt = Lt a

k-0 h h==0 p-=oo k h=+0 fi—=+co k n-=oo

Now a, is a Cauchy sequence. Therefore, a, is also a Cauchy sequence in X. Lt a,

oo

exists in X, (i.e.) @ exists in X. Hence X is a differentiable space. To show that X
is a CD space we have to show that whenever x, converges to zero in X then x¥
also converges to zero in X, Now x,, —Lt x,m, where X,.m» 18 @ Cauchy seqeunce in X,

Now Lt x,=0. Therefore Lt Lt x,,,,,—O so LtLt x¥ =0 since X is a CD space.

nm
But Lt r"" =x¥ and Lt x,‘,“—O hence the theorem.

m n

Theorem 1. 9. The set of all endomorphisms on a CD space G which commutes
with translations is a CD space — where we declare that the endomorphisme 0, —~©
if and only if for each x in G, @,x -Ox in G.

ProOF. Let E be the set of all endomorphism on G.

Let F, K, H be elements of E. F:g—~Fg where g¢G; K:g—Kg.

(i) F+K:g ~(F+K)g where we define (F+K)g = Fg+Kg. Now we have to
show that this commutes with translation

(F+K)ug = F(18) +K(1,8) = w Fg+1,Kg = 7,(Fg+Kg) = 7,(F+K)g

(il) 2F:g ~aFg=u(Fg).
(ili) F:g - Fg then F™:g ~ F™ ¢ where we define F™g= Fg'™, Here again
we have to show that this commutes with translation. For

F™ 1, g=F(1,8)™ = F(1,g™)=1,(Fg"™).

(iv) F, converges to zero, means F,g converges to zero for every g in G where
F,:g—~F,g. If F, converges to zero, then F{™:g— F,™=F, g™ converges to zero
as n tends to o=, for every g € G. Therefore Fi™ converges to zero in E forn=1,2, ....
Therefore E is a CD space.

Remark: In the definition 1. 1. instead of 1. 1 (i), if we take a vector space
with an L-convergence compatible with the vector space structure, we can define
a CD space in a similar way and the above theorems are valid. In this case we
see that the space of Mikusinski operators becomes a CD space.
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§ 2.

Now we show that the mapping which associate with a CD space the system
consisting of a given topological vector space with the derivating mapping is one-
one. Thus the knowledge of the topological vector space together with this con-
tinuous mapping itself is tantamount to knowing the CD spaces with all its trans-
lations.

The essence of this idea is that the infinitesmal operator corresponding to the
‘velocity” completely unfolds the translations.

We shall denote the CD space consisting of the topological vector space V,
the translations E,, and the ‘derivating mapping D by (V, E,, D). Here we restrict
ourselves to locally convex spaces in which the translation operators take each
convex neighbourhood into a multiple of itself. In short, the translation operators
are continuous in the seminorm topology specified by each of the closed convex
circled neighbourhoods. We also assume that the polynomials (i.e.) the elements
whose derivatives of sufficiently large orders vanish — form a dense subset.

Lemma 2. 1. If the CD space (V, E,, D) allows sufficiently many continuous
linear functions to distinguish points, in particular if the space is locally convex and if
D=0 then E,=1I.

Proor. Consider the real-valued function r(h)=(E,f, g): f. g being arbitrary
elements of ¥ and V*. Then

(r(h+e)—r(h)fe = (Eyse /. 8)—(Epf. 8)le = (E(f1 —1), 8)e.

Where f, =E, f and this tends to (Df}, g)=0 as & tends to zero. Thus (£, f, g)=
=constant=(E, /. g)=( /. g) for all f, g, and so E, f=/.

Theorem 2.1. If (V,E,, E) is a CD space and also (V, E,, F) and if each
E, commutes with each F,, then (V, E, F,. E+F) is also a CD space.

Proor. We need only verify that (G, f — f)/h—Ef— Ff tends to zero as / tends
to zero, (G,=E, F,). We note that

E,F, f]

*f = AR [ Ef—Ff =

= B [ﬂf_ S Ff]+(£,,—an+[E-'l—-[—Ef]

Ry
tends to zero as & tends to zero. For this, for an arbitrary nelghbourhood U of the
origin, we choose h, so small that for h<h,, (F,f—f)/h— Ff belong to U. Next
we consider the norm specified by U. Since each F, is bounded in this, all the F,
are uniformly bounded and we can get an r such that F, Uc rU for every h. If now

we choose /i, <h,/r and h,, we get E, [W—Ef} belongs to U for h<h;.

Since the last two terms clearly tend to zero, we need only verify that E,
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Lemma 2.2. If (V. E,, E) is a CD space, so is (V, F,(=E,)—E).
PROOF VL ARG C e A e’ S 7,
h—0 h 0 —h w0 —h

Theorem 2. 2. If (V, E,, D) and (V, F,. D) are CD spaces and if each E-trans-
late commutes with each F-translates and if in both systems, there are sufficiently
many continuous linear functionals to distinguish points, then E,=F,.

PrOOF. By Theorem 2. 1 and lemma 2.2, (V,E, F_,,0) is a CD space and
by Lemma 2.1, E,F_,=1I and E,=F,.

Lemma 2. 3. /f in a CD space (V, E,, D) an element f is a polynomial of degree
less than n, (i.e.) if D" f=0 then E, [ is also a polynomial of degree less than n.
E,—E,

PROOF. Since each E, commutes with each E, and since D is Lt =R WO
h=0

have each E, commutes with D. Thus D"E, f=E, D" f=0, showing that E, fis a
polynomial of degree <n if (and only if) /'is one such.

Lemma 2. 4. If fis a polynomial of degree less than n, then E,(f) has an ex-

pansion in the form
E.(f) =f+hDg+WD*f]2!+--- .

PRrOOF. Set r(h)=(t, f, g) where f, g are fixed elements of ¥ and V*. Then
(djdh)r(h) = Lt gr(h+e)*r(h))/a = Lt((t4+./. 8)— (W f. ))& =

= Lt [ .T;,‘(‘EE{—‘[) 2 g] = [[t,, Lt r—‘-f:—f] ¢ g] = (1,Df. )

Similarly (d"/dh") r(h)=(z,D"f. g)=0.
Thus r(h) is a polynomial and we have

f(h) = r(0)+hr’(0)+h*r"(0)/2! +---
(i.e)
%(f. 8) = (f;@)+h(Df. 9)+h*(D*f, g)/2! .. (finite serics).
Since this is true for every g, we get
1,/ =f+hDf = R D*f]21+--- .
Lemma 2.5. Let (V, E,, D) be a CD space and let T be a continuous line ar

map of V into V which commutes with D. Then TE,=E,T for each h.

PrOOF, Since the polynomials are dense, it is enough if we prove that TE,¢g=
= E,Tq for each polynomial ¢. This follows from the polynomial expansion (lemma
2. 4) and the hypothesis that 77 commutes with D.

Theorem 2.3. If (V, E,, D) and (V, F,, D) are CD spaces, then E,=F,.
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ProoF. Since each E, and F, commutes with D, each E, and F, commute.
Thus by theorem 2.2, E,=F,.

Remark: We note that this result can be interpreted to mean that if (V, E,, E)
and (W, E,, F) are CD spaces and if there is an isomorphism between (V, E)
and (W, F) it is also an isomorphism between (V, E,, E) and (W, F,, F). We have
only to identify (V, E) with (W, F) and apply the preceeding result.

This zlso means that the association of system (¥, D) consisting of a topological
vector space and a given continuous linear map of V into ¥ with the CD space
(V. E,, F) is a one-one map. Thus the study of CD spaces — which are locally
convex, which have a dense set of polynomials and in which the derivative operator
is continuous in each seminorm has been reduced to the study of a locally convex
space together with a single continuous linear operator D.

It is well known that the structure of the general continucus lincar operator
even in Hilbert spaces is not fully known. One could ask whether an inherent cha-
racterisation could be given of the derivative operators in such cases as Schwartz
distributions. We reserve these for subsequent investigations. One can now ask
whether every locally convex vector space together with an endomorphicm can
be associated as above with a CD space. We do not have an answer either. But a
first guess that E, can be reconstructed in terms of D by an exponenrtial expansion
1 +hD+h*D?/2!+ ... is not true as seen by the following counter-example on the
space of Schwartz distributions. This is of course does not negate the possibility
of reconstructing (V, E,, D) from (V, D)-as is shown by the case of the distributions
themselves and the earlier propositions.

Counter-example: The space of infinitely differentiable functions with
compact support is a CD space convergence being uniform convergence over
each compact set and also the uniform convergence of the derivatives of the r-th
order. (r=1, 2, ....) The derivative D is the usual derivative. If our expectation
that 7,=Exp. 2D should be correct, we would have that for every smooth compact
function f, the series 1+ Df+ D?f]2! ... corresponding to Exp. D converges com-
pactly — alongwith the r-th order derivatives. When we set /= (1/(1+x?)), we

Zn
get Iz_,;-)-g}% has the value (—1)" at the origin — and is not a cauchy sequen-
ce and the question of compact convergence of the series Exp. D is ruled out.
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