One particular class of Eulerian numbers of higher order
and some allied sequences of numbers

By DIMITRIJE UGRIN-SPARAC (Zagreb)

Introduction

Some number-theoretic investigations commenced in [1] and shortly continued
on the begining of the present paper led to one particular class of Eulerian numbers
of higher order and some new sequences of numbers. It seems that such natural
development of the theory shows promise of their fertility. In all these considera-
tions the main role has a number-theoretic function introduced in [7] and designated
by s,(n). The present paper is only one part of the attempt to find a unified approach
to some at the first sight heterogeneous unsolved problems of number theory.

1. One particular class of Eulerian numbers of higher order

Definition 1. Let @ and b be arbitrary numbers. We define numbers

2k

(]) A2k(a' b) —-— 2A+l

where C,,(r) and c are defined in reference [1] by relations (3) and (10) respectively.')

Because of C,(r)=t, it results that for every a=0 and b A,(a, b)=1. Having
knowledge of the connection between polynomials C,,(7) and Bernoulli polynomials,
cfr. [1] relation (21) with 4 sign, we can express numbers A4,,(a, b) also by means
of Bernoulli polynomials

CJ:+1(¢')

ZGZ.H—I
(2} AZk(a' b) = (2A+l)(ﬂ+2b) B.".k+l(l +bfa)'
k=0,1, 2, .... Generating function for numbers A4,,(a, b) we shall obtain easily

1) Le.

m
Cu(®) = 2 amb)t* (m=1,2,3,..),
k=

2 12m 2k SN D g o
a(m, k) = (2m ]] [ ol ]] B, k=12,....m
s=0 k

where

moreover
¢ = b(a+b)2a.
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starting from the similar formula for Bernoulli polynomials [2], p. 36, formula
1. 13 (2). From the latter it is possible to derive

z ch(x—1/2)z
2 sh(zf2) °

whence integrating with respect to x from 0 to y we find

5 By ()2"/(2n)! =
n=0

F B 0) 2= _dh(y=1/d)s

a=0 2n+1 (2n)! 2sh(z/2) °
Substituting here az instead of z, y = |+ 5/a, and making some adaptations dictated
by the formula (2), we arrive at the proposed generating function

< z?*  ash(a+2b)z/2
3 2345 5 Gt = b sh@)

Some number-theoretic properties of numbers A4,,(a, b), described below, were the
primary reason for Definition 1.

Theorem 1. Let a and b be integers, a=0, m and r natural numbers, and suppose
there exists a natural number q|r and for every primedivisor p of q, p = 2m—1. Then

@) S (an+b)™' = 2m—1)vA,,_,(,b) (modg?),
n=1

where v is defined by (9), [1].

ProoF. Develope the polynomial C,,(v/a+c), that stands on the right-hand side
of formula (8), [1], in Taylor series at the point c:

U:m - C.‘.:‘"(C)]-

R
1a? CulSiFoest m!a™

r;r; (an4 b1 < g3=-1 [%C,’,,(c)+ 5

The expression on the right-hand side is a polynomial in a. Further it is obvious
that g|v, and with regard to Lemma I, reference [1], from the last equation the follow-
ing congruence results:

> (an+b)*™+! = a>™-2vC,(c) (modgq?).
n=1

Herefrom by Definition 1 we obtain congruence (4).

In this paper we shall repeatedly use the so called symbolic method, rigorously
founded for finite cases by BLisSARD and Lucas (short account on this may be
found in [3], p. 250), however transition to infinite cases does not introduce essential
novelties, Instead of A4,,(a, b) we shall write shortly 4,, whenever it should not
cause ambiguity. With this convention in mind the relation (3) is rewritten in
symbolic form

(5) (a+2b)sh£2z—chAz=ash(a+2b)—;-.
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If we add A,,,,=0 for k=0, 1,2, ... to the Definition 1, then sh Az=0 and by
equation (5)

(a+2b)sh (4 +a/2)z = ash (a+2b) %

Comparing the coefficients of the equal powers of z, we obtain recurrence formula
for numbers A,;:

(6) (A +aj2)**! = a(a+2b)2/22k+1, k=012 ..,

Theorem 2. Let a and b be integers, a=0, (a, b)=1, p an odd prime. A,_,(a, b)
is integral (mod p) if and only if pfa(a+2b).

Proor. From relation (6) we conclude that A4, is integral (mod p) for every
s < (p—1)/2. From the same relation we obtain

pA,_, = (@+2by~'—ar~' (modp).

If 4,_, is integral (mod p), then from supposition pla follows pla+2b, hence p|b,
that contradicts the hypothesis (@, b))=1. An analogous reasoning shows that
pfa+2b. Contrary, assuming that pfa(a+2b), from the above congruence it follows
by Fermat’s theorem that p4,_, =0 (mod p), hence A4,_, is integral (mod p). This
proves the theorem.

An interesting application of the just proved theorem starts from congruence
(4), where we shall put 2m—1 = p, p a prime, r=kp, k natural number, g=p. Then

kp
D' (an+b)» =0 (modp?) if pfa(a+2b).
n=]

On the base of Theorem 2 we can also state a necessary condition that all numbers
Aj(a, b), k=0,1, 2, ..., be integral: for every odd prime p there holds p{a(a+2b).
It will be fulfilled if a=2" and a+2b = 2™ whence b = 2"~ 1 —-2"-!, Now we must
distinguish three cases:

1. r=m. Then b=0, and from relation (2) 4;,(a,0)=0, k=1,2, ....

2. r=>m. Owing to the condition (a, b)=1 it is necessary to take m=1, hence
= R = =12 % e

3. r<m. In this case to satisfy condition (@, b)=1 we must assume r=I1,
a=2, b=2""1—1, In view of the relation (2) and the connection between Bernoulli
polynomials and the sum of powers of natural numbers we find that

2m=2

1
™ An@ 27 =) = mmy 2 @s— D™

s=]

By the induction on m it is easily proved that the expression on the right-hand side
of (7) is integer for every k=0.

In this paper we shall investigate only the second of the three mentioned cases.
To simplify notation, we shall r replace by r+1 and introduce designation

®) 4R=2, r=0,1,2,....

For numbers 4,,(8R, 1 —4R) we use notation MY}, where superscript (r) will be
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omitted whenever it would be possible, especially in symbolic relations, in which
(M)** and M?* will posses the same meaning as MY). Now relation (2) gives

2lr+|}t2k+ll
©) MR = == Bu.i (12 1/8R),
k=0,1,2,.... Herefrom we see that MY} =0, k=0, 1, 2, ..., so there remained

cases r=1,2, 3, .... If r=1, from [4], formula (43*), p. 29, we conclude that M$}) =
= E,,, Eulerian numbers. As concerns the remaining sequences MY}, there holds

Theorem 3. Numbers MY}, r=2, 3,4, ..., represent a class of Eulerian numbers
of higher order. More precisely, according to the definition of the last ones, cfr. [2],
1.15 (21), p. 43,

(10) S E™(a,, ay, ..., ay)z"n! = [ch (a,2) ch (a,2) ... ch @,2)]~",
n=0

numbers MY} correspond to that class of Eulerian numbers of higher order, for which

a,=1, a=2,...,a,=2""1, ..., a,=2R.

ProOF. Substituting «¢=8R., b= 1 —4R in relation (3) we obtain the generating
function for numbers M$}

= 4Rsh z
(r) -2k Yo e
1 25 Moz /(2R =

where the expression on the right-hand side may take the form [ch z ch 2z ch 4z...
... ¢ch 2Rz]~'. Function on the right-hand side of definition (10) is even, hence
ESP. ((a,, a,, ...,a,)=0 for k=0, 1, 2, .... Comparing relations (10) and (11) there
follows statement of the theorem.

By use of the relation (6) we obtain recurrence formula for numbers MY} :

(12) (4R + M)*™+! = 4R,
m=0,1,2, ..., r=1,2,3, ..., which is possible to write in the form
(12a) (4R+ M)*m+! L (4R—M)2™+! = §R.

These formulas are suitable for calculation of numbers MY/. However, numbers
MY satisfy another recurrence formula, which will be of greater interest in further
investigations. Modifying the right-hand side of the relation (11) according to the
known formula

sh4Rz/shz = 21‘2 ch(2k—1)z,
(see for instance [5], formula (420), p. ?8)? we get the symbolic relation
:ZRI [ch(M+2k—1)z+4+ch(M—2k+1)z] = 4R.
Comparing the cc;ﬂicienls of the equal powers of z, recurrence formula follows
(13) E’[(M+2k—l)’""+(M—2k+l)2"']=4R60|,,,,

k=1
where d, , is Kronecker’s symbol, m=0,1,2,..., r=1,2,3,....
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Theorem 4. A/l numbers MY, r=1,2,3, ..., k=0,1,2, ..., are odd integers.

ProOF. By induction we shall prove that numbers M are integers. First, from
relation (13) it is obvious that M{" =1 for 1, 2, 3, ... and secondly, suppose the
hypothesis is true for kK = 0, 1,2, ...,m—1, and from the same relation (13) cal-
culate MY

: m=1 {m . 2R b
2RMY = — 3 |5 | MR 3 Qk—1)"-2,
s=0 k=1

If we remember what has been said in connection with the expression (7), it is now
concluded that the inner sum is divisible by 2R for s = 0,1, 2, ..., m—1, hence
MY) is also integer. Thus induction proof is finished. Take residues of the left and
right-hand sides of the equation (12) modulo (4R)?, after cancelation by 4R follows

(14) Cm+ 1M = 1 (mod (4R)*).

m=0,1,2,...,r=1,2,3,.... Now what we need to prove to complete proof of the
theorem is only a special case of congruence (14).

Theorem 5. MR >0, k=0,1,2,...,r=123,...

Proor. This theorem is consequence of the relation (9) and of the flow of the
function B, ,(x) in interval 1/4=x<1/2, cfr. [4], pp. 22—23.

2. Some sequences of numbers generated by sequences M}

In this paragraph it will be shown how to every sequence M3} one can associate
R sequence of numbers with even subscripts and as much again sequences of numbers
with odd subscripts. Definitions that will be laid down in this connection, may
appear quite arbitrary. On the contrary. they are consequences of fairly ample
investigations of numerous particular cases. The principal idea for these investiga-
tions rests upon already observed facts. Namely, already de Moivre has observed
(cfr. [6], pp. 7—8&) that in the expression for (finite) sum of powers of natural numbers as
well as in the expression for (infinite) sum of reciprocal even powers of natural numbers
appear Bernoulli numbers. In a similar manner in the expression for alternating
(finite) sum of powers of odd numbers as well as in the expression for alternating
(infinite) sum of reciprocal odd powers of odd numbers appear Eulerian numbers.
Whether the similar circumstances will repeat with other related cases is by no
means trivial question to which we want to give an answer in the subsequent pa-
ragraphs.

Recurrence formula (13) can be written thus:

4R
(15) > (M+2k—1—4Ry" = 4R, ..
k=1

Now let f(x) be any polynomial in x, and develope the function f(x+ M+
+2k—1—4R) in Taylor series at the point x: f(x+M+2k—1—4R) = f(x)+
+(M+2k—1—4R)f"(x)/1!1+(M+2k—1—4R)*f"(x)/2! +.... Performing summation
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of the left and right-hand sides with respect to k& from | to 4R, in view of the relation
(15) we obtain

R
(16) E’f(x+M+2k-l—4R)=4Rf(x),

k=1

r=1,2,3, ..., which is the fundamental symbolic formula for numbers M. In the
next place substitute 2r—1 instead of x in the relation (16), multiply this relation
by s,(r+w), where w is arbitrary integer and s,(n) is the number-theoretic function
defined in [7] thus

+1 for n=1,23,...,2R (mod4R)

) = {—1 for n=2R+1,2R+2,...,4R (mod4R),
r=1,2,3,..., and carry out summation on ¢ from 1 to g:
q 4R ¢
(17) 4R D' s, (t+w)f2t—1) = 3 2 s (t+w)f(2t+2k +M—2—4R).
=1 k=1t=1

The inner sum on the right-hand side can be written in the form

<
+

k

b

s,(t—k +w)f(2t+ M—4R—-2),
1

tod
+

=

—

and then decomposed into three sums U, (k), U, (k), U; (k) determined by the ranges
of summation k+1 =1 =4R+1; 4R+2 =1t = q; q+1 = t = g+k, respectively,
provided that

(18) g = 4R+1.

Substituting these in the right-hand side of the equation (17) we obtain three double
sums in which we shall change the order of summation

*g U, (k) = 4!12"-1f(2[+ M-4R)k2r'l s,(t—k+w+1),
-1 =1 o

4R 4R
SUK= 3 fQr+M—4R-2) 3 s,(t—k+w) =0,
k=1 t=4R+4+2 k=1

4R-1 t

4R
JUsk)=-— 3 fQQt+2g +M—4R) 3 s,(t+qg—k+w+1).
s k=1

=1

In this manner the relation (17) now reads

(19) 4R zq:s,(t+w)f(2rﬁl) — ‘RZ_I j‘ {s,(t—k+w+1)f(2t + M —4R)—
t=] =1 k=]

—5,(t+q—k+w+1)f(2t+29+M—4R),

recalling that condition (18) must be fulfilled. This result leads us to the following
two definitions corresponding to the particular cases of polynomial f(x), namely
JS(x)=x?*" and f(x)=x?"*"! respectively.
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Definition 2.

4R-1

(20) n(w)N¥(w) = Z‘ (2t+ M— 4R)2"‘ 5‘5,(! ~k4+w+1),

where m=0, 1,2, ..., r=2,3,4, ..., for w see later,

Definition 3.
4R—1
20D IW)LE) . (w) = Z (2t + M —4R)*"+! Zs(r—k +w4 1),
where m=0,1,2,..., r=2,3,4, ..., for w see later,

The factors n(n) and /(w) were s introduced to attain standardization: NG (w)=1
and L{” (w)=1 for every r and w. Now it is obvious that functions n(w) and /(w)
must be periodic with the same period that the function s, (n) has, namely 4R. However
these functions have also the property that for every integer k relations n(k+2R) =
= —n(k) and /(k+2R) = —I(k) hold. Hence it is sufficient to determine these func-
tions within a half-period. From relations (20) and (21) for m=0, after some calcula-
tion one can obtain

(23) n(w) = 4R(R—w), w=0,1,2,...,2R—1,
(24) /(w) = 4Rw(w—2R), w=1,23...52R

3. Generating function and recurrence formula for numbers N{))(w)

Instead of notation N3 (w) we shall use designation N,,(w) or mmply Nom
whenever it could not cause misunderstanding. Relation (20) we can write in the
symbolic form

4R—1 t

(25) n(w)chNz= 3 ch(M—4R+21)z D s,(t—k+w+1).

t=1 k=1
It is done to make possible elimination of numbers MY), by use of the formula
(11) which we shall brought also in the symbolic form
(26) ch Mz=4R sh z/sh 4Rz,

Since ch (M —4R+2t)z = ch Mz ch (4R—2t)z, from relations (25), (26) and (23),
after some intricate calculation (which will be omitted for the sake of conciseness)
one can finally arrive at the proposed generating function

l R—“'
27 ch Nz = e Z ch(2s—1)z
where w=0,1, 2, ..., R—1. Herefrom we read out the recurrence formula for
numbers NY) (w)

(28) (N+2R)*" =

R—w

Z 2s—1)*",
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whets =0, 1, 2.; =014 iy R=L =238 ;s N2 WI=0 for k=
=012

If superscnpt r is fixed, then to the sequence MY, there are associated R se-
quences of numbers N¥)(w), which have even subscnpts Not all numbers N are
integers.

Theorem 6. Numbers NY)(w) are integers for w = R—2", n=0,1,2, ...,r—2;
F=2.3.4. =,

ProOOF. On the base of what has been said in connection with expression (7),
the right-hand side of (28) represents integer if w = R—2". In these cases the theorem
can be proved by induction without much trouble, using formula (28).

Of course, numbers (R —w)N¥) (w) are always integers.

In this paragraph we shall mention also the Mittag—Lefler’s developement of
the generating function ch Nz and a relation which results herefrom.

The first reads:

ch Nz = R(R_ )Z( 1y- 2 cos (25— 1)(2r—1)n/4R-
(29)
(2t—1)n/4R

"224+((2r—1)n/4R)* "

Develope expression on the right-hand side in Taylor’s series with respect to z at
the point z=0, apply Cauchy’s theorem about double series, then comparison of
coefficients by the equal powers of z yields

|

oo R—w
z(—l)'—';: cos (25— )21~ D/AR 5 jiams =

(30)
_ (=) T R(R— w) N, (w)

@m)! @Rt

wherem=0, 1,2, ... ,w=0,1,2, ..., R=1,r=2, 3, 4, ... ; Coefficient of 1/(2t—1)3m+1
in the series on the left-hand side of the equation (30) designate by S(z, w). It can
be shown that

cos (21— I)wn/2R

i S = 5 5in @i~ y/aR

4. Generating function and recurrence formula for numbers LY, ,(w)

Similarly as in the preceding paragraph, we shall use simplified notations
LY) ., and L, instead of LY) ., (w), particularly in symbolic formulas. Rewrite
the relation (21) in symbolic form:

4R—-1 1
(32) Iw)shLz > sh(2t+M—4R)z 3 s,(t—k+w+1).
k=1

=1
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Owing to symbolic identity sh (M +2t—4R) = ch Mz sh (2t —4R)z, by means of (24)
and (26) relation (32) becomes

shz & '
shitRz',:Z,Sh“R_z’)"g,‘r("““’ﬂ“1)-

w(2R—w)sh Lz =
Now we shall omit not so short discussion on the transformation of the right member.
The final result is the generating function:
] R
— h —1 Z,
(33) $hlz = S BR—w)ch 2Rz s;;fw.ﬁ‘ )

where w=1,2,3,..., R. Herefrom we obtain recurrence formula for numbers.
5:-)”!(“)

R
(34) (L+2R)M 1 = ]

; - = 2m+ 1
e TR Ll i
where m=0, 1,2, ... , w=1,2,3, i...; R, r=2, 3,4, ..., L3} (w)=0 for k=0, 1,2,
Thus to every sequence M), with ﬁxed r there correspond R sequences of numberS-
LY) . 1(w). There is a remarkable difference between numbers N and L. With this
fact deals

Theorem 7. All numbers LY) ., (w) are odd integers.

Proor. If we prove that right member of (34) is always integer, then the same
fact for numbers L is easily proved by induction. The sum on the right-hand side
of equation (34) we shall designate by S. The proof is divided into three parts:

a) Assume that p is odd prime and p"[2R—w. The end terms of the sum S
are QR—2w+1)2"*+! and 2R —1)?"+'_ If w is odd, middle term of S is (2R —w)?"*!
and then it is evidently

If wis even (2R—w)?™*1 is not term of the sum at all, and then
3
S= 3 @Qi—1)1 =0 (modp".

b) Assume that p is odd prime and p"|w. In the sum S there are w terms. Let
=qp", p" = 2k+1. Any sequence of 2k + 1 succesive odd numbers form a complete
system of residues modulo 2k +1. Hence that system of residues we can always
bring into the form: -2k, —-2(k-1),..., —=2,0,2,...,2(k—1), 2k. On this base
we have
S = q .‘“ 2)?"+' =0 (modp").

.—n’
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¢) Now suppose that n=1 is the largest number such that 2"/w, Then 2"2R—w
because w= R, Hence, let w=2"¢g, 2{q. We start this part of proof with slightly
modified expression for S:

2
S= 3 (R-—w+2-1)m*1,

i= l—-2

whence, assuming m=0, it follows (after some calculations)

(35) S =202m+1)(2R—q2") 3 Qi—1)* (mod 2%).
i=1

On this point it would be possible to prove that numbers L are integers, but we
need more, therefore continue with application of a well-known formula

3 :
2(2" 1) = 2m+l [Bzm“(w)—22'“32m” [;]] .

i=1
Here, without much labor, one can establish congruences
By, (W)=(2m+ 1)wB,,, (mod 2")
22mpB . 1(w/2)=0 (mod2"), m=1, n=1,

so we find

2i—-1)>*"=wB,, (mod2"),

I

"
-

i

and with respect to congruence (35)
S=22"(2m + 1)q2B,,, (mod 22"+1),

In the first place we conclude that S is divisible by 2?" (which completes the proof
that L are integers), and afterwards

S/22" = 2m+1)¢2B,,, = 1 (mod 2).
In view of the above result, the relation (34) implies

L i(w)=1 (mod?2).
The proof is completed.
At last we shall mention the Mittag—Leffler’s developement of the generating
function:

1 A
shlz = Wﬁ? “WRZ [( = Rw“ - sin (2s—1)(2r—1)n/4R]|-

(36)

L (2t — 1)11:/43‘2)2
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If one develope the function on the right-hand side in Taylor’s series at point z
apply Cauchy’s theorem on double series, then comparison of coefficients gives

oo R
2=yt 2 sin@s—1)(2t—1)n/4R : 5 =
i=1 s=Rmw+1 @-1)™
_ (=D 1m?mRw(R—w) L) _ 1 (W)
- (2m—1)!(4R)*™ "

where m=1,2,3,..., w=1,2, ..., R, r=2,3,4,.... Designate by S,(t, w) the co-
efficient of 1/(2r—1)?>™ in the above sum. It can be modified thus

(37

cos (21— 1)un/2R
2sin(2t—1)m/4R "’

where substitution w = R—u is made.

(38) S (1, w) =

5. Some finite and infinite series whose summation is connected with numbers
N and L

In the previous paragraphs the numbers NY)(R) and LY, ,(0) were not defined.
Their definition may be realised through a Ilmrt process, but it is not of interest for
this research. However, for our purposes it is necessary to have detailed knowledge
of numbers n(n)N"’(u) and /(w)LY) . (w) for arbitrary integer w. In this con-
nection it is easily verified that n(R)NY)(R)=0 and /(0)LY).,(0)=0, and also

n(w+2R)NY (w+2R) = —n(w)NY) (w)
and
Hw+2R)LY)  (w+2R) = —I(W)LY) . 1 (w)

for m=0,1,2,..., r=2,3,4,.... and arbitrary integer w. Now we are able to
consider again the formula (19). which after substitution f(x)=x2" and application
of definitions (20) and (21) becomes

4R ZS (t+w)2t=1*" = n(w) N3 (W) —n(w+q) NSp(w+q) —

m-—1

(39) —n(w+q) Zo [i’;’] NS (w+q)(29)*m= > —

m—1 2
—f(W+q)Z[2TTI L), (w+q)(2g)*™ 21,

provided that (18) is fulfilled.
Herefrom we infer that

(40) 4R D5, (t4+w)2t—=1)"" = n(W)N. (W) —n(w+q) N (w+4q) (mod 29g),

(] [\/'-n

3D
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where ¢ = 4R+1, m=0, 1,2, ... ,r=2,3,4, ..., w arbitrary integer. Similarly if we
put f(x)=x2*1, relation (19) amounts to

4R 3 s, (t+ W)@ — 177 = 106 LG () — [0+ )LD 1 (00 +) —
t=1

—I(w+q) 2, e (w+q)(29)*" 2,

S (2m+1 Lo
=0 23""’ 1

again with restriction (18). An immediate consequence of this relation is the con-
gruence

(42) 4R i'sr(f+w)(2f— 12t = I(w) L (W)~ 1w+ ) L3+ 1 (w +g) (mod 2q),
t=1
where q=4R+1, m=0,1,2,..-, r=2,3,4,..., w arbitrary interger.
Also for present and some later investigations will be useful
Definition 4.

A U) L,2m) = 2(—(213'__11;2(7') Kot B3 donais

t=1 (2’;‘1)_2"“'1, =1

43) K.2m+1)=

Remark. It is to be distinguished between designations L3, . {(w) and L,(2m).
The latter will not be subject to symbolic method.

Definition 5,
Tr S 7 e AN S VOIS O ), | i T
,,1(2!—1)'” 5 r=1(2’_l)s’ =

where s is the complex variable. Obviously
lim K,(2m+1) = K(2m+1) and rlim L(2m)=L(2m) for m=1,23,....

It is now interesting that the expression for sums of series (43) involve the numbers
N and L respectively. It was already shown how coefficients S(z7, w), given by (31),
appear in the left member of (30). These coefficients appear also in the relation (11),
reference [7], and if we take into consideration all mentioned, after summation with
respect to w the following equation results

(=Dt G (8, — 2) sin 7/4R cos wr/2R
2m)!1(4R)*™+ 1 =0 sin(2w— 1)n/4R sin 2w + 1) n/4R

K,2m+1) = (R—w) N5y (w),

(45)
/i3 | 10 [l ATy % (B SR
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Similarly by means of relations (37) and (38) of this paper and (11) of reference [7],
after summation with respect to # we obtain

o i {=1p-igts R_t. (09,4—2) sin w/4R cos un/2R
T 2m=1)14R)*™ S, sin (2u—1)n/4R sin Qu+ 1)n/4R

'(Rz_uz)Lél;l)l—l(R_uL m = l;2s35'“! r:293!4!“"

The relations (45) and (46) are already known for the case r=2, (cfr. [5], formulas
(317) resp. (318), p. 58).

It is easily proved that the sums in the right members of equations (45) and
(46) represent algebraic numbers. Therefore quantities K, (2m+1), r=2,3,4, ...,
m=0,1,2,..., and L,(2m), r=2,3,4,..., m=1,2,3,..., are not algebraically
independent in the sense that there exists function F(x, X3, ..., X;s V{5 Vas s V)
i, j=1, constructed by algebraic numbers and algebraic operations only, such that
if substitutions x,=K, 2m,+1),s=1,2, ..., i, =L, (2n), =1, 2, ..., j are effected,
the equation

(46)

F(xl s X2y s Xiy Via Voo oens yj)=0
is satisfied.

Now, completely fruitless attempts to obtain something different from trivial
identity by passing to limit when r <= in formulas (45) and (46) (and some other
reasons) are conductive to the following

Hypothesis. The numbers K(2m+1) and L(2n), where for m and n may be
taken any set of positive integers (which contains at least two elements), are al-
gebraically independent in the above sense.
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