Composite sets of polynomials of several complex variables

By M. NASSIF (Assiut)

1. Introduction. Let {¢{" (2)}, {¢/*(2)}. ..., {¢/ (2)}, or in short {¢|"(z)} be a
given') finite number of basic sets?) of polynomials of single variable and consider
the product element ¢}" (z,)-¢?(z;)...q}¥ (z). If, for any mode of arrangement,
we put

(1.1) ‘1_:'1“(21)'9'};2](22)' i@ = pi(21, 225 -5 Z0)s
the sequence {p;(z,,z,,....2)} is a set of polynomials of the complex variables
Zyy 23, ..., 2. This set is here defined as the composite set of polyvnomials whose

constituents are the sets {¢!"(z)}.

We propose to establish, in the present paper, certain convergence properties
of the composite sets in terms of those of their constituent sets. To achieve this aim
a study of basic sets of polynomials of several complex variables has first to
be carried out. Such study has been initiated by Mursi and Makar [I, 2]. whereby
the representation in polycylindrical regions has been considered. This study will
be here modified on the assumption that the regions of representations shall be
spherical. However, an abbreviated study®) of functions of several complex vari-
ables has to be introduced in view to reveal those properties relevant to our present
WOrk.

2. Functions of several complex variables. To avoid lengthy scripts, the follow
ing notations are adopted throughout the work.

Wy My osay T ="M 255 Ray iy B =85~ Dl sss =104
(2. 1) my+my+ e +my = m); 2,24 |22+ - + 22 = 2)3;
ZIV 2% A= TR VIR T SR,
In these notations m,, m,. ..., ny are non-negative integers whole 7,,7,, .... 1,

are non-negative numbers (presumably less than 1). Also, square brackets are used
here in functional notation to express the fact that the function is either a function
of several complex variables or one related to such function.

) Throughout this work the integer 7 assumes the values 1, 2, ..., k, while the integer j, whether
suffixed or not, assumes the non-negative values.

2) The reader is supposed to be acquainted with the theory of basic sets of polynomials of
single complex variable, as given by Whittaker [3, 4].

3) In this study, I am guided by the ideas of Academician M. M. DierBasHiAN of the Academy
of Science, Armenia, to whom I am much obliged.
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In the space of the complex variables z,, z,, ..., z; an open shperical region
of radius r; r=0, is here denoted by S, and its closure by S,. In terms of the intro-
duced notations, these regions satisfy the inequalities

(2.2) Sl =5 Solkl=r
Suppose now that the function f[z], given by
(2.3) JIE] = 2 au2™,

is regular in S,, where | f[z] =M. From (2. 2) we easily see that
S, oMzl = rty:|t] = 1),

where t is the vector (¢,,1,, ..., #,). Hence

. M , 2 o
19m| = r{riutm’ (5t| = l) = gl|llfj y(m) gm
That is to say
_ May,
|am| = ';-fml_ s
where
i o {(m)}(m
= =i o=
=1 my "'mz; ‘* ... mg

on the assumption that m; " =1, whenever m.=0.
On the other hand, suppose that, for the function f[z], given by (2. 3),

1
] | ™
(2.5) limsup { = } = 1/o; (o = 0).
(m)+oo | Om

then it can be easily proved that the function f[z] is a regular in the open sphere S,.
The number g, given by (2. 5), is thus conveniently called the radius of regularity
of the function f[z].

If the function f[z]= > a,z™ is an integral function, it can be proved, in

exactly the same way as in single variable case, that the order 1 of the function is
given by

log log M : |

oglog M[r] _ i i (m) log (m) ’

1.6 7 =lim su
(2.6) adet Ty = fon =
|

where
M(r] = oip | flz]].

3. Basic sets of polynomials of several complex variables. A sequence {p;[z]}
of polynomials of the complex variables z,, z,, ..., z, (=2), is said to form a basic
set if the different monomials z™ admit finite unique representation of the form

(3.1 ™ = > nhp,lz].
7
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Let f[z] = > anz™ be any function regular about the origin 0: substituting
m

for z™ from (3. 1) and rearranging the terms we obtain the basic series associated
with f[z] in the form
(3.2) 2l ~ Zepilzl; ¢ = 3 nhan.
J m

The basic set {p;[z]} is said to represent the function f[z] in a sphere S, if the
basic series (3. 2) converges uniformly to f[z] in S,, and the set will be called effec-
tive in S, if it represents in S, every function which is regular there. It should be
noted that effectiveness in a given sphere does not imply nor is implied by effec-
tiveness in a larger or smaller sphere.

The basic set {p;[z]} of polynomials will be a Cannon set if the number N, of

non-zero coefficients in (3. 1) is such that

(3.3) lim N =1,

(m)—~e=

To obtain a condition for effectiveness of the Cannon set {p;[z]} in S, we form
the Cannon sum

(3.4 Qulrl=va X 'lrr,{,!Aj[r].
7

where

@3.5) Alr) = sup [pyl2].

It is easily seen from (3. 1) that

Qulr] = ou{suplzn} = ro.

zES,

Thus, if the Cannon function for the set {p;[z]} is given by

e:0 Q] = lim sup {Qalr 1},
m)-=oo

then 3

(3.7 Qr]=r.

The following theorem is the first to start with.

Theorem 1. If {p;[z]} is a basic set of polynomials for which Q[r]=go=r, then
the basic set will represent in S, every function regular in S, .

In fact, if f[z] = 3 awz™ is any function regular in S, then its radius of reg-
ularity o, will be greal:r than p. Hence, (2. 5), (3. 4) and (3. 6) together yield

1
lim sup {|aw| 3 |nd| 4;[r]} ™ =

(m)—+e= J

1 1

(m) (m)
= lim sup{lz'“[ Qm[r]} = lim sup{l:'—"'-l'} or]=-< <1.

(m)->oo m (m)—=eo m 2
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It follows that the series 3 a, 3 n}p;[z] is absolutely and uniformly conver-
m ]
gent to f[z] in S,. Consequently, the basic series (3. 2) converges uniformly to f[z]

in S,; as required.
The analogue of the fundamental theorem of Cannon?) is as follows.

Theorem 2. Let {p;[z]} be a Cannon set of polynomials and suppose that, for
some value of r=0, Q[r]=r. Then there is a function of radius of regularity p, where
r< o= Q[r], which the basic set does not represent in S,.

It can be easily verified that the proof of the corresponding Cannon’s theorem,
already referred to, can apply to this theorem with minor and obvious modifications
if the coefficients (nZ) of (3. 1) are arranged in the form of a two dimensional
array I1.

To perform this arrangement a rule of ordering the vectors m=m,, m,, ..., m,
has to be followed?). In fact, the vectors are first ordered according to the increasing
value of the sum n = m, +m,+---+m, of their components. Then the vectors of
the same sum n are arranged according to the usual way of arranging the compo-
nents m,, m,, ..., m as partitions of n, and finally the vectors whose components
belong to a certain partition are arranged in a lexical order.

In this way each column of [T corresponds to a value of the index j of n/ and
each row corresponds to a value of the vector m arranged in the above manner.

From theorems 1 and 2 and the inequality (3. 7) it is easy to deduce the fol-
lowing result.

Theorem 3. A necessary and sufficient condition for the Cannon set {p;[z]} of
polynomials to be effective in S, is that Q[r]=r; r=0.

Now, the order I' of the basic set {p;[z]} of polynomials is given by

i R
) e ,"ffl l:l:)igp (m)log (m)

As in single variable case, the definition (3. 8) of order of basic sets provides a
sufficient condition for representation of classes of integral functions in the form®).

Theorem 4. If the basic set {p;[z]} of polynomials is of finite order I'. it will rep-
resent, in any finite sphere, every integral function of order less than 1/I.

For, let f[z] = 3 anz™ be an integral function of order 7<= 1/TI", then the numbers

n and y can be chosgn so that
3.9 t<n<1/y<1/I.

Applying the definitions (2. 6) of order of the integral function f[z] and (3. 8) of

4) cf. Whittaker [4; T, p. 9].
5) cf. Murst and MaAKkaAR [2; p. 61].
&) cf. WHITTAKER [3; L,qs, p. 13]
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order of the basic set {p;[z]} it easily follows from (3. 9) that, corresponding to any
finite number r, there exists an integer M such that
" )
Qulr] = {(m)}™7"; |ap| < ou{(m)} " ., for (m)= M.

Whence, from (3. 4) we obtain
1

oy 1
lim sup {|am| 3 |7h| A;[r]}™ = lim {m)} 7 =0 <1,
)

(m)-—=ec= J (m)—=e=
and the basic set {p;[z]} represents f[z] in §,; as required.

4. Effectiveness of composite sets of polynomials. We are now in a position to
study the composite sets {p;[z]} already defined in the introductory section of this
paper. We start this study by proving that the composite set is a basic set of poly-
nomials of the complex variables z,, z,, ..., z,.

First we show that the polynomials {p;[z]} are linearly independent. In fact,
assume that {p;[z]} is the composite set of the constituent basic sets {¢}” (z)} and
suppose, if possible, that there exists a finite linear relation of the form

!

(4.1) 2 &p;[2]=0,
r=]
which holds for all values of z=2z,, z,, ..., z;, where none of the coefficients (c,) is ze-

ro. Applying the definition (1. 1) of the polynomials {p;[z]}, the relation (4. 1) can
be written as a linear combination of the relevant polynomials {g}" (z)} in the form

(4 2) Z Cs[z’]Q;:)(zl)':Os
5=1
where
(4.3) C,[2'] = Cy(z3, 23, +or Z) = zz'a,,,P,,[z'],
ja=

say, so that the sequence {P,[z']} is a set of polynomials of the complex variables
2y, 23, ..., Z; and g, ,, being equal to some c,,#0. If there is at least one value of
2'=z,, 23, ..., z; for which not all the coefficients C,[z"] are zeros then (4. 2) implies
that the polynomials {¢}'’(z)} are not linearly independent. If, on the other hand,
C,[z']=0, for s=1,2,...,m and for all values of z" then (4.3) shows that there
is linear dependence among the polynomials {P,[z']}. Repeating this argument in
a successive manner we arrive at the conclusion that the polynomials of at least
one of the sets {g|" ()} are not linearly independent. This contradiction implies
that the polynomials {p;[z]} are linearly independent.
Furthermore, suppose that z™ admits the finite representation

(4.4) =y n,‘,fqu}“ (2),

then by the definition (1. 1) of composite sets we see that the monomial z™(=z7" -
- 292... z¢™) admits the finite representation

4.5) zm =3 nhp;lz),
J
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where

(4.6) mh=nl); nP;, ... nW, when p;lz) = qiP(z,)-q}P(z;) ... qP(z1)
Since the polynomials {p;[z]} are linearly independent then the representation
(4. 5) is unique and the set {p;[z]} will therefore be basic.
Concerning the effectiveness of the composite sets in a closed sphere the follow-
ing result is established.

Theorem 5. Let {4} (2)} be Cannon sets of polynomials and suppose that {p;[z]}
is their composite set. Then the set {p;[z]} will be effective in the closed sphere Sg;
R=0, if. and only if. each of the sets {q}"(z)} is effective in the circles |z =r, for
O<=r=R.

5. Proof of the “if” — statement of theorem 5. Mindful of the representation
(4. 4), the Cannon sum for the set {g}"”(z)} will be

(5.1) o' (=3 1::,',,‘"j|B}"’(r); (r=0),
where ;
5.2) B (r)y=sup lg’(2)]; (r=0), B{"(0)=|q{"(0)|.

zl=r

The Cannon function for the same set will then be given by

1
(5.3 @V (r)=limsup {0 (r)}™.
If N and N,, be the number of non-zero coefficients in (4. 4) and (4. 5) respec-
tively, then
{5‘4) Nm -— N't"ll'N't"zj- ...»N’(’:".

Hence, if each of the sets {¢g{" (z)} is a Cannon set so also will be the composite set
{p;[z]}, as it is seen from (3. 3).
In the notation (3. 5), (1. 1) and (5. 2) together give
(.5 A;[r] = sup | p;lz]| = sup B} (rt))- B} (rty) ... B (rty).
z2€S, [t]=1
Therefore, the Cannon sum for the set {p;[z]} can be obtained by combination of
(4. 6), (5. 1) and (5. 5), the following double inequality can be easily verified.

sup ﬁ w,‘,:'j(n,)” :

tj=1 li=1

(5.6) Om [sup ﬁm,‘,{f(rrﬂ” = Qulr] = NaOn

lej=1 li=1

To prove the “if’-statement of the theorem let x be any finite number greater
than 1 and fix the positive number t by

G.7 2 = (1—a~")k.

Suppose that each of the sets {g(!"z)} is effective in |z|=r for 0<r=R, so that
the Cannon function (5. 3) will be

oWV (r)=r; (0<=r=R).
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Hence corresponding to the number «, there exists a finite number K=>1 such that

{w;:*(m) < K(VaRt)"

(5.8) 0O(R)<K(V2R";  (m=0).

Since the function ¢{"(z)/z™ is regular in the annulus Rr=|z|=R then in the
notations (5. 1) and (5. 2), we should have from (5. 8)

Is0;| B (RO/(RY™ = sup {0 (RD)/(Re)", o (R)/R™} < Kz*",
for t=1=1, Therefore, it follows that
(5.9) PR <KND(VaR)" (t=t=1;m=0).
Now, considering the parameters (#;) in (5. 6), we see that some of these para-

meters may lie in the interval (0, t) and the others in (z, 1). Since the order of the

polynomials {g}"(z;)} forming the polynomial p;[z] is immaterial to our argument,

we may assume that
(5. 10) 1=4=1; (I1=s=]), 0=t.=1; (+1=u=k),

where / is any integer not exceeding k. Some of the notations (2. 1) have to be modi-
fied to suit the integer /, thus we may write

my,my, ..oy =m"; m;+my+--+m = (m’);
et .. M= t'm; t’:(;“ R 5 1

With these notations it is easily seen that

(5.11) sup '™ = —

Moreover, in view of the definition (2. 4) of 6, and taking in (5. 10) 1,=7, (/+1=
=u=k,) it can be verified that

r(l‘ll)-tl‘l‘l‘]{ sup "m’ - —,

|¢'[2=1—(k—Ip? Om
Evaluating the supremum inside the brackets in this relation we obtain
(5.12) O t®™ ™) < g (1 —kt?)~im),
Furthermore in view of (5. 10), we may take w{” (Rt,) =} (Rt), for the elements

of the product on the right hand side of (5. 6) for which /+ 1 =u=k. Hence applica-
tion of (5. 4), (5. 7), (5. 8), (5. 9), (5. 10), (5. 11) and (5. 12) easily leads to the follow-

4D
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ing relations.

ou[sin frogwl|=ca|  swp dironm I omml]=

=1 Ui=1 tj=1:05¢,<r=1,=1 s=1 u=I+1
1 Sy k -
(5.13) = On [sup {ﬂ KN,ﬁ,’j(lfaRr,)"'-}{ /i K(VocRr)'”u}] =
=1 ls=1 u=[+1

¢’ =1
= NpK*at@+im) Rm) < N Kk(qR)™,

It should be observed that the last inequality in (5. 13) still holds in the special cases
when (i) /=0, (ii) /=k. In fact, in case (i) we have, from (2. 4), (5. 8) and (5. 10)

Om [sup { ) w,',:;'(Rr,,)” = a',.,{ ]_*] w;;;f(m)} = omT™ KX(Ja R)™ < K*(aR)™.

tj=1 lu=

In case (ii) we appeal to the relations (2. 4), (5. 4), (5. 9) and (5. 10) to obtain

Om [sup { ] w,‘:,’(Rr,)” < oK (V2R)™[sup t™] < Ny K*(aR)™.
1 f]=1

=1 ls=

Introducing now (5. 13) in the right hand side of (5. 6) we deduce that
Qu[R]< NEK*(aR)™,

and noting that the set {p;[z} is a Cannon set it follows that
1

(5.14) Q[R)]=lim sup {Q,[R]} ™ =«R.

(m) =2
Finally since « is arbitrary chosen near to 1, (5. 14) implies in view of (3. 7), that
Q[R]=R, and the set {p;[z]} will be effective in Sg: as required.

6. Continuation of the Proof of Theorem 5. To complete the proof of the theorem
we suppose that the set {g;" (z)}, for example, is not effective in |z|= R. Then taking
my=m, t;=1, my=14,=0; 2=i=k in the left hand side of (5. 6), then (2. 4), (3. 6)

and (5. 3) yield
1

k m
(6.1)  Q[R] = limsup [6,0,0...00% " (R) [ o(0)] = o"(R) = R,
i=2

m--co

and the set {p;[z]} will not be effective in Sg. Moreover, let u be any positive integer
and suppose that the set {¢}" (z)} is not effective in |z| = R(l1+u)~*. Then there
are a number f<1 and a sequence (n;) of positive integers such that

(6.2) o, {R(I+p)~4) = {BRA+p)~H)ys; (=)

Here we take my=m, my=um, t, = (1+u)~%, 1, = {p/(1+ W}, m=1,=0;3=i=k
in (5. 6). This is always possible since k=2. In this case (2. 4) implies that

1 4 p)¥+uwm
(6' 3) Om = m,um,0,...,0 = (___::Z—;m—'
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A combination of (3. 6), (5. 6), (6.2) and (6. 3) gives
W
Q[R] = lim sup {Q,, um.o,... o[RI} 1 1 =

Ml -= oo
1
R k e
S (1) ) I/ K o] -
— hg]”s:p [am.pm,ﬂ,...,owm Vl +u ] wnm [R 1+H] ‘g Wy (O)l =
1

u  FrEe (1 +wn; 1
= : (141, i R .
= R i (1 +p)? ]_msup{w}il [—_—]} = fittrs R > R.
Vi+u

l!j-bm

Hence the set {p;[z]} will not be effective in S either. Therefore, in order that the
set {p;[z]} may be effective in the sphere Sg, the set {g{" (z)} should be effective
in the circles |z|=R and |z| = R(1+p)~%. By the familiar properties of the Cannon
function @'*'(r) we infer that the set {¢{"(z) should be eflective in |z|=r for
R(14+p)~i=r=R. Since u can be taken arbitrary large we conclude that the set
{¢i" (2)} should be effective in |z|=r for 0<r=R. In the same way it can be proved
that to ensure the effectiveness of the composite set {p;[z]} in the sphere Sz, each
of the constituent sets {¢}" (z)} should be effective in |z|=r for 0<r=R. Theorem 5
is therefore established.
It should be noted that theorem 5 implies also the following result.

Corollary. Let {q}" (z)} be Cannon sets of polynomials and suppose that {p;[z]}
is their composite set. Then the set {p;[z]} will be effective in the spheres S, for 0<r=R
if. and only if, each of the sets {qi" (2)} is effective in the circles |z|=r for 0<r=R.

7. Order of composite sets. We consider in what follows, the representation of
classes of integral functions. After theorem 4, this representation is governed by the
order of the basic set considered. The following theorem relates the order of the
composite set with those of its constituent sets.

Theorem 6. Let {q}" (z)} be Cannon sets of polynomials of respective orders (y;),
then the order of the composite set {p;[z]} is I’ =sup (7).

Proor. First of all, as in (6. 1), we observe from (5. 6) that

k
Qumo.,...olr]1 = Op,... 005 (r) [T 0§ (0).
i=2

Hence
: log Qu[r] _ .. log Q,0,...,0lr] _ . IOg“.’t("“(r)
h(:l).s.ip (m) log(m) — I',T*S,tlp mlogm hf’.fffp mlogm °
Therefore, as r tends to infinity, (3. 8) implies that
r=y,.

In the same way, it can be proved that

F=95 %25 0005 Y50
so that

(7.1) F:—_‘Sl:p (70)-

4%
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Moreover, since the definition (2. 4) of the number ¢, is equivalent to

1
sup t* = .
le] =I: Om

then by taking 1,=k~*, we deduce that
(7.2) Om=kim

Now, if one of the orders (y,) is infinite, then (7. 1) implies that I'=<-, and the

theorem is proved in this case.
Suppose therefore that all the orders (y,) are finite and choose the finite number

y such that
T=VY1s V25 ooos T
Then corresponding to any finite number r there exists a positive number L=L(r)
such that
(7.3) ol (r)<Lm™, (m=1).
Also, since each of the sets {¢{”(z)} is a Cannon set, so also will be the composite

set {p;[z]}). Hence, given any finite number a=> 1, there is a positive constant M
so that

(7.4) No < Ma™,

where N, is, as before, the number of non-zero coefficients in (4. 5).
The relations (7. 2), (7. 3) and (7. 4) can be introduced in the right hand side of
(5. 6) to yield

k
Qulr]=Nuow [[ oP(r) <= ML*a™ ki {(m)}r(m,
i=1

Proceeding to the limit as the sum (m) tends to infinity we obtain

: log Q..[r]
limsup—————— =7,
e (m)log(m) ~

so that I'=1y. Since y can be chosen arbitrary near to the greatest of the orders (y,),
it can be inferred that

(7.5) I' =sup (y).

Finally, the relations (7. 1) and (7. 5) imply that I'=sup (3;), and the proof of theo-
rem 6 is therefore complete. ;
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