A generalization of the Laguerre polynomials

By H. B. MITTAL (Lucknov)

1. Introduction. Some years back F. J. PAaLas [1] studied the set of polynomials
{Tn(x)}), defined by the Rodrigues formula

g o
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Later L. CARrLITZ [2] gave the following operational formula for the Laguerre poly-
nomial:
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Following PaLAs and CARLITZ, S. K. CHATTERIJEA [3, 4] studied the set of polynomials
{T{¥ (x, p)} defined by the Rodrigues’ formula

(A) TE(x,p) = - x~rer Dr(xetrer)

and obtained some interesting operational formulae.

Observing the form of the Rodrigues formula in (A), one might enquire into
the possibility of replacing px* by an arbitrary polynomial of degree k. The present
work is an answer to this question and it is shown that we can always replace px*
in (A) by an arbitrary polynomial in x of degree k to generate more general poly-
nomial sets. In sequel, the generalizations of some of the results of Palas, Carlitz
and Chatterjea have been obtained.

We shall make use of some of the results of STEPHENS [5] in deriving the opera-
tional formulae. The treatment being formal, we shall obtain our results quite
heuristically.

2. Definition of the set 7.2 (x). Let p,(x) be a polynomial in x of degree k,
defined by
k
Q) Pi(x) = ;Ps-ts-

Let us consider the k-set {7, (x)} of polynomials, defined by the generating function

oo

2) g(x. 1) = (1 _r)-—:Alep,‘(x)e-—pk[xtl—:l—'] = 2‘ T,Eﬁ’(x)t".
n=0
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Let us define

v

k kv
3) [P(X)] = ;Zl p.x'| = _Z pinx’.

In order to obtain the explicit expression for the polynomials 72 (x), defined in
(2), we make use of the following rule [6], [7], for the nth derivative of a composite
function:

P = S0 3 S e e

where ( fg)(x)=f[g(x)]. We easily have
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which is the explicit expression for the polynomials 7;* (x). From (4), we see that,
Ti? (x) is a polynomial in x of degree nk.

3. Rodrigues formula. By Maclaurins theorem, we have from (2)
(a)(x) ] [;n {(1 _r)—:—lep,‘(x)e—ﬁk[x(l—l)*ﬂ}]m0=
(5)

kv

1 S (=1) i
o ePu(x) ZZ‘—"! px (a+5+1),,
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where (a), = a(a+1)...(a+n—1), (a), = 1. Also,

(6) D'[x"*+*e~PM] = x* 2'2' ( x5+ 1),

v=0s=v

From (5) and (6). we have
1
(7 T(X) = 7 x~*en® Dr[x*+2e~nl),

The relation (7) is the Rodrigues formula satisfied by the polynomials 7% (x),
defined in (2).

4. Recurrence relations. From (2), we have

oo

Z’ "’(x)t" =(1- ’)—(x—ﬂl(t _r)—ﬂ—l‘,pk(x)e-l'k[x(l-i‘]“] P

=(1—1)"eP 3 TDx)m.

Therefore, we have

(8) (a}(x) j’ (Ol ﬁ) Ttm u(x)
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Differentiating (2) with respect to x, we get

©) L g5,0) = (L) —piL¥(1 D)~ Dg (s, 1)
from which, we get
k n S4+v—
(10) T (x) = pe(x) T@ (x) — 2‘ Z Ty (% )[ ] g

Multiplying (9) by (1 —1)%, and equating the coefficients of 7", we get

(11) Z ](—1)‘3“.5 () =

k ) k k-s k o
Z [ ](—Iysp,xs LTR -2 2 ] (= 1)sp,x* " T _ ().

s=1i=0 s=1i=0
Again, from Rodrigues formula, we have
v+ DIxte AN TE  (x) = D [x.x"+e~P(?)

from which we get

(12) "+ DTG+ 1(x) = xT () + (v + 1+ 2= xpix)) T (%)
Differentiating (12), m times with respect to x, we get
(13) (v + DD TR 1)(x) =

= xD"H I T(X) +(m+ v+ 1 + o —xpi(x)) D" T (x) — Z[ ] D[xpp(x)] - D" ~*T{¥(x)
The relations (8), (10), (11), (12) and (13) are precisely the recurrence relations
satisfied by the polynomials 73 (x).

5. The moment problem. We now consider the moment problem pertaining to
the polynomials 7,3 (x). Let the relevant weight function be x*w(x), where w(x)=
:e'l’k(x). Let

(14) M(s.n) = [ Xx*w(x) T (x) dx.
0
Assuming o = —1 and p,=0, we have from (14), by making use of the Rodrigues
formula, that
(15) M(s, n) = i,(~l)"[s] v! fx""D“"[x"”w(x)]dx,
n! )4
since,

Z(—l)'[ ]f'x"D"" " rfw))lg =0

for all r and s.
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Now, if s=0, 1, 2, ..., n—1, we have for r=sin (13), M (s, n)=0. Next for s=n and
r=n, (15) becomes

= T NN s r +a25=p(x)
M(s,n) =(—1) [nléfx‘ e~ P dx,
and we have the theorem:
Theorem. The moments of {T;2 (x)} with respect to the weight function x*e™Px'¥),

have values
0 s=0,1, ...,n—1.

M(s,n) = o | n[s] - S+ 2 5 plx) £ 1
( )" 6[1' e~ P dx, s=mn+l,...,

where

o0

M(s,n) = [ x**+2e~P® T(@(x) dx.

0
6. Certain operational formulae, Let y be a differentiable function of x. Let

(16) Q,y = x~*el™ D[x* e~ P y],
Since,

Q¥ = x"enD prHi[xrtntle=nNy] = [xD+a— xpp(x)+(n+1)]Q,y,

we have

n

(17 Q,y = jl=7' (xD +a— xpp(x) +j) -

Again, it can be easily seen that

n v
X

D*[x*+"e= PP y] = nl x*e~ "X Zo; 5 T () Dy,
y= -

and therefore, we have
n v
X
(18) Quy = nt 20 T, (X) D'y
Hence, we have

n n

(19) IT (D= xpi¥) +a+i)y = nt 2% T2 () D'y,

i=1
which is the operational representation for the polynomials 73 (x). Again, from (16),
Q” y = x—:ep,_{x)Dn[xn-k - x:-r lre-pk(x)y} = x—%- ”e’k‘x’x"D"[x"‘ x:H- \'e-pk(x) l’] s

n—

1
(5 —j)x""(x’”e"’k"’,}') =

= x~2-ngplx)
ji=0

n—1
= ,T_:_'(’P“(x, n (6_ ‘l._+_ l +j)(x‘+\‘e—l’kfx))') —

j=0

= x""e"a"‘)x‘”[x(é‘v+ l)]"(x*"“’e"k("_v).
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Hence, using (18), we get the operational formula

n 5
(20) [x(6=v+ D]"(x** e~ 2D y) = p! x2+v+ne—Px _Zo' :' Tia+s) (x)D*y
Giving different integral values to r, we get different operational representation for

the relevant polynomial.
From (19), we have by taking y=1,

21 n TE(x) = JT (xD—xpi(x)+x+j)- 1

and hence &

(22) nTR(x) = (xD — xpi(x)+ o+ n) TG 1,(X).
Putting y=1 in (20), we get

(23) n! T{®(x) = x~*""m="eh [x(6 — m + 1)]"(x** e~ 2(™),

From (23), by giving different integral values to v, we get different operational
formulae for the polynomial 72 (x).

Generating Functions: From (21), we have

d ‘ n
T80 = = en® [T (6 +a+j)en»,
: j=1
Hence,

oo

g
S TR = en® 3@+ at 1ye A0 (1= 1)=1 enO (1 — 1) de
n=0 n=0 7t.

and since @ f(x)=/f(ax), we have

3 TO) " = (1 —1)"* 1 eP®e-Rlx(1-n-1]

n=0

which is the same as (2). Again,

Z' T,“:_’}(X)f" = ePil¥) Z [6:1] t"e“’""" — (l +r)’e"k“"(l +rj"e"’k'“'.
n=0 n=0

Hence, we have

oo

(24) D TE-(x) 1" = (1 + 1) ePn® e-plx1+0],

n=0

Again from (21), we have

M+ M) T @) = [T (xD—xpi(x)+a+n+j) [T (xD—xpi(x)+2+k)-1 =
j=1 kK'=1

= n! J] (xD—xpi(x)+a+n+j)TE(x).
Jj=1
Hence we have

m

(25) (4 ! TR () = il 2 0 T 9) D TR ().
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Using (25), we consider the sum

A n] T{fnem ()™ = 2 2’ F TE () D TR ()™ =

m=0v=0

Z”’(XI)" v iz) —a—a=v=1 (x) p=p Ix(1=0)-1]
= 2 ——D'TRx)(1-1) eP(¥) g~ Pi =
v=0 V:
xt
—D
: 1 =ePk(I}e‘Pk[I(l—n"](l_’)—a—n-—lel—l T2 (x),
and we nave

(26) Z [m+n] Tt rn(¥)1™ = (1 —1)~**~1 @) =AWl =0"0TD (x(1 — 1)),

m=0

Again
[m+n] Titmtm(X)t" = ‘;o n! gP‘-'('ﬂ[ i 1] O+a+j)en® =

n=0
= (1 +1)en® (1 +1)°e=PD T (x).
Hence, we have

LR n] THRTn (1" = (14 1€ e+ TR (1 + 1))

Further, if we replace 1 by —t/x and a by @a—m in (27), we find the interesting for-
mula:

< (—1)"(m+n)!

l i K(mim (X) =
(28)

|
- x-“(x—:)“—"'- _ ePu(® o= Pt Ta=m)(x _ ),

—t)"
It is interesting to note, that if we take p,(x)=x, the above results reduce to those
for Laguerre polynomial. Further, if we take p,(x)=px*, we get results for the poly-
nomial considered by Chatterjea, and if we also take a=0, we get results for the
polynomial considered by Palas.

My gratitude is due to Prof. R. P. AGARwAL for his kind guidance during the

preparation of this note.
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