New proof of a basic theorem about the modular group

By DAREL HARDY (Fort Collins, Colo.) and ROBERT J. WISNER (Las Cruces, N.M.)

1. Introduction. Denote by Γ , as usual, the classical modular group of all linear fractional transformations

$$z \to \frac{az+b}{cz+d}$$

of the complex plane, where a, b, c, d are integers, and ad-bc=1. Then Γ can also be described as the multiplicative group of all 2×2 unimodular matrices over the ring Z of integers in which

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and -A are identified. It is well-known that Γ is the free product of a group of order 2 with a group of order 3, with perhaps the shortest and most beatiful published proof of this fact being given by Kurosh [1] (Appendix B). The proof given there does not fully use the powerful but elementary idea of dominance in matrices, however, which in the unimodular 2×2 case is natural.

It is the purpose of this note to give a very short proof of the aforementioned structure theorem about Γ , a proof based on an idea from a paper about a matrix semigroup [2].

In § 2, the main theorem of [2] is proved again as a Lemma, and in a much shorter way than was presented in [2]. Then in § 3, the new proof of the basic structure theorem of Γ is given.

2. A lemma. Using the notation of [2], let U_2^0 be the semigroup of Γ consisting of all elements of Γ having non-negative entries. It was proved in [2] that U_2^0 is a free semigroup on the two generators

$$L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 and $R = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

For completeness (and, indeed, for a new proof of this fact), we prove this fact again.

Recall that the matrix A of (1) is said to have a dominating first row if $a \ge c$ and $b \ge d$. A has a dominating second row if $c \ge a$ and $d \ge b$.

Lemma. U_2^0 is a free semigroup on the two generators L and R.

PROOF. To show that L and R generate U_2^0 , let

$$I \neq A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U_2^0$$

where I is the identity matrix. Then either $a \le c$ or a > c. If $a \le c$, then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c - a & d - b \end{pmatrix} = LX$$

for some $X \in U_2^0$. If a > c, then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a-c & b-d \\ c & d \end{pmatrix} = RX$$

for some $X \in U_2^0$. If X = I in either case, we are through. Otherwise, write X = LY or X = RY for some $Y \in U_2^0$. Since the sum of the entries in A, X, Y, ... decreases, this process must end, so L and R generate U_2^0 . At the same time, this shows that factorization of A is unique, because at each state the factorization is determined by which row dominates.

3. The theorem.

Theorem. Γ is the free product of a group of order 2 and a group of order 3.

PROOF. Let

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$

so that $S^2 = T^3 = I$. Let G be the subgroup of Γ generated by S and T. Then $U_2^0 \subset G$ since ST = R and $ST^2 = L$. As in (1), take $A \in \Gamma$. If $a, d \ge 0$ and $b, c \le 0$, then $A \in G$ since $A^{-1} \in U_2^0$. If $a, b \le 0$ and $c, d \ge 0$, then $A \in G$ since A = SB where

$$B = \begin{pmatrix} c & d \\ -a & -b \end{pmatrix} \in U_2^0$$

If $a, c \ge 0$ and $b, d \le 0$, then $A \in G$ since A = CS where

$$C = \begin{pmatrix} -b & a \\ -d & c \end{pmatrix} \in U_2^0$$

Thus, $G = \Gamma$.

And now Γ must be free, because the above paragraph shows that any non-unique factorization in Γ would lead to a non-unique factorization in U_2^0 .

References

[1] A. G. Kurosh, The Theory of Groups, vol. 1, New York, 1955.

[2] B. Jacobson and Robert J. Wisner, Matrix number theory, I: Factorization of 2×2 unimodular matrices, *Publ. Math. Debrecen*, 13 (1966), 67—72.

(Received July 22, 1969.)