New proof of a basic theorem about the modular group
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1. Introduction. Denote by I', as usual, the classical modular group of all linear
fractional transformations
az+b
e
of the complex plane, where a, b, ¢, d are integers, and ad—bc = 1. Then I' can
also be described as the multiplicative group of all 22 unimodular matrices over
the ring Z of integers in which

0 1=(¢ 4

and — A are identified. It is well-known that I" is the free product of a group of
order 2 with a group of order 3, with perhaps the shortest and most beatiful pub-
lished proof of this fact being given by Kurosh [I] (Appendix B). The proof given
there does not fully use the powerful but elementary idea of dominance in matrices,
however, which in the unimodular 2<2 case is natural,

It is the purpose of this note to give a very short proof of the aforementioned
structure theorem about I', a proof based on an idea from a paper about a matrix
semigroup [2].

In § 2, the main theorem of [2] is proved again as a Lemma, and in a much
shorter way than was presented in [2]. Then in § 3, the new proof of the basic structure
theorem of I is given.

2. A lemma. Using the notation of [2], let U9 be the semigroup of I' consisting
of all elements of I' having non-negative entries. It was proved in [2] that U9 is a
free semigroup on the two generators

PR

For completeness (and, indeed, for a new proof of this fact), we prove this fact
again.

Recall that the matrix 4 of (1) is said to have a dominating first row if a=c¢
and b=d. A has a dominating second row if c¢=a and d=b.

Lemma. U9 is a free semigroup on the two generators L and R.
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PrOOF. To show that L and R generate U9, let

- a b 0
!r—AzchUZ

where 7 is the identity matrix. Then either a=c or a=c. If a=c, then

EA=G % dl=n

for some X <€ UY. If a=c, then

a b 1 I\fa—c b-d

¢ 2= s )=
for some X€e UY. If X=1 in either case, we are through. Otherwise, write X=LY
or X=RY for some Y<UY. Since the sum of the entries in A4, X, Y, ... decreases,
this process must end, so L and R generate U9. At the same time, this shows that

factorization of A is unique, because at each state the factorization is determined by
which row dominates.

3. The theorem.

Theorem. I' is the free product of a group of order 2 and a group of order 3.

§ = [? *5] and T = [? '"”
so that S2=T2=1, Let G be the subgroup of I" generated by S and 7. Then UC G

since ST=R and ST?=L. As in (1), take A€TI". If a,d=0 and b, c=0, then 4G
since A='€UY. If a,b=0 and ¢, d=0, then A€G since 4=SB where

¢
B=[_a _g]eU?

If a,¢c=0 and b, d=0, then A€G since A=CS where

ProoOF. Let

—b a
C = [—d C] E U?
Thus, G=T.
And now I' must be free. because the above paragraph shows that any non-
unique factorization in I' would lead to a non-unique factorization in U3.
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