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Theory of Finsler spaces with m-th root metric I1

By MAKOTO MATSUMOTO (Kyoto)

Abstract. This is the second paper of a series concerned with Finsler spaces with
m-th root metric. We consider mainly two- and three-dimensional Berwald spaces with
cubic and quartic metrics.

Introduction

Recently we have several papers on Finsler spaces with m-th root
metric [2], [5], [6], [7]. The theory of those spaces has been consider-
ably developed by introducing the tensor field a;;(x,y) [5] and generalized
Christoffel symbols [6].

In the early stage of the Finsler geometry, however, we have JOHANNES
M. WEGENER's interesting paper [10] on Finsler spaces with cubic metric
(m = 3) of dimension two and three. According to his paper [8], he sub-
mitted a thesis on Finsler spaces in March 1935 to the German University
in Prague, the referee being Ludwig Berwald. His thesis consisted of three
parts: (I) Two- and three-dimensional Finsler spaces, (II) Hypersurfaces
as transversal surfaces of a family of extremals, and (IIT) Two- and three-
dimensional Finsler spaces with cubic metric. His papers [9] and [10] are
(IT) and (III) of his thesis respectively. In 1986 the present author pub-
lished the paper [4] which proposed an improvement of [9] based on the
recent development of the notion of Finsler connections.

On the other hand, WEGENER’s paper [10] is only an abstract of his
(ITT) without almost all calculations. The present paper may be said as
an improved version of [10] based on the results of a previous paper [6].
It must be reported that Wegener faild to find an interesting family of
Berwald spaces of dimension three which is given in (I3) of Proposition 4.

It is very sorry that J. M. WEGENER went out of the world of the
Finsler geometry after submitted his thesis and published the three papers
above. The author hopes to get intelligence about him.
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§1. The Berwald connection

An n-dimensional Finsler space F™ with m-th root metric is by defi-
nition a Finsler structure (M™, L(x,y)) on a differentiable n-manifold M™
equipped with the fundamental function L(z,y) such that

i1, L0

Lz, y)" = ai, .., ()y" - y",

where ailmim(:c) are components of a symmetric covariant tensor field of
order m. We suppose m = 3 throughout the paper, because m = 2 gives
merely a Riemannian metric.

From L(z,y) we define Finslerian symmetric tensors of order r (1 <
r < m — 1) with the components

1 ‘ .
ail--»ir (.T, y) = Wailn-irjl-"jmfr(x)yjl e y]m—r‘

Among these tensors we have three specially important tensors a;, a;;
and a;j. In fact, the normalized supporting element ¢; = 9; L, the angular
metric tensor h;; = L(0;0;L), the fundamental tensor g;; and the C-tensor
Cijr = (Okgij)/2 are written as

Ei = a;, hz‘j = (m - 1)(6Lij — aiaj),
(11) gij = (m — l)aij — (m — 2)aiaj,
O (m—1)(m—2)
ke 2L

Since det(g;;) = (m — 1)" " det(a;;) as easily shown ([3], Proposi-
tion 30.1), the regularity of the m-th root metric is equivalent to det(a;;)#0
([3], [7]). Suppose, of course, the regularity throughout the paper. Then
we have (") = (a;;)~! and

(aijk — QO — Q) 0; — Ak Oy —|—2aiajak).

'=a'(=a"a,), g"¥ = — l{a” + (m —2)a'a’ }.
Next we define the m~th Christoffel symbols [6]
1

{iv. . im,j} = m(@ﬂ@...iﬂ + 0iy Qi iin j

+ 4 00 Gy iy 1 — 0y )

(1.2)

where the cyclic permutation is applied to (ij ...4,,) in the first m terms
of the right-hand side. If we write the equations of geodesics in the usual

form 5
T o <xd—x) _0,

ds? ds
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then the quantities G*(z,y) are given ([6], (3.3)) by
1
mLm—2

where we denote by the index 0 the transvection by y® as usual, that is,
{0...0,h} = {i1...0im, h}y*r .. ytm.
On account of the definition of ay, we may write (1.3) in the form

(1.3) anG"(x,y) =

{0...0,h},

1
0 0G" = —1{0...0,R).
ahr0...0 m{ }
Differentiating this by ¢’ and then by y/, we have
anro..0G; + (m — 2)apiro..0G" ={i0...0,h},

ahrO...OGz’rj + (m - 2) (ahiron.oG; + aher...OG;)
+ (m —2)(m — 3)anijro..0G" = (m — 1){ij0...0, h},

where G = 9;G" and G;"; = 0;G7 constitute the coefficients of the
Berwald connection BI' = (G;";,G}). These equations above may be
written in the plainer form

(1.4) L™ 3{Lap,Gt + (m — 2)an,G"} = {i0...0,h},

(1.5) Lm_4{L2ahrGiTj + (m — Q)L(CLMTG; + aherZ)
+ (m —2)(m — 3)an;jyG"} = (m —1){ij0...0,h}.

Further differentiation by y* gives the hv-curvature tensor Gihjk =
8kGihj of BI' as follows:

Lm_5 LgahrGirjk + (m - 2)L2{ahirGjrk + (@j? k)} + (m - 2)(m - 3)

(16) XL{ahierz + (’i,j7 k‘)} + (m — 2)(m — 3)(m — 4)ahijkrGT
— (m —1)(m — 2){ijk0...0,R},

where {--- + (i,7,k)} shows the cyclic permutation of the indices i, j, k
and summation. Transvecting (1.6) by y" we obtain

Lrm—4 L2yrG¢Tjk + (m - 2)L2{airGjrk + (iaja k)} + (m - 2)(m - 3)

(17) xL{aier}; + (i,j, k)} + (m — 2)(777, — 3)(m — 4)a¢jk7~Gr

= (m — 1)(m — 2){ijk0...0,0}.
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Remark. In the equations (1.5), (1.6) and (1.7) we have some terms
with coefficients (m — 3) and (m —4). We shall be concerned mainly with
cubic (m = 3) and quartic (m = 4) metrics

L = agr(2)y'y’y", L' = ange(@)y"y'y'y",
in the following. For these metrics it is supposed that the terms with

(m — 3) and (m — 4) vanish respectively. For instance, (1.6) of a cubic
metric is reduced to

Lan,G;i"ji + {anirG;"% + (1,5, k) } = {ijk, h}.

§2. Landsberg spaces and Berwald spaces

We have two important families of special Finsler spaces. If sz‘k are
functions of position x alone, then the space is called a Berwald space ([1],
[3]). As a consequence the space is a Berwald space, if and only if G*(z, y)
are of quadratic forms 2G* = G;%(z)y’ y*. Since G* of a Finsler space F"
with m-th root metric are given by (1.3), we have

Theorem 1. F"™ with m-th root metric is a Berwald space, if and only
if the homogeneous polynomial

{ahriy..in, (@)Y ..y 2}G " (2)y'y? = E{zl el hYY Lyt
in y* is satisfied.

The condition for a Berwald space is obviously Gihjk = 0. Next, if

Gihjk satisfies thihjk = 0, then the space is called a Lansdsberg space
(1], [3]). Therefore (1.6) and (1.7) lead to

Theorem 2. F"™ with m-th root metric is a Berwald space, if and only
if we have

(Bm)  (m— 1){ijk0...0,h} = L™5 [Lz{ahirGfk + (i, 5,k)}

+(m = 3)L{anijr Gy + (i, 5, k) } + (m = 3)(m — 4)ahijkrGT} :

F™ is a Landsberg space, if and only if we have
(Lm) (m — 1){ijk0...0,0} = L™ * [LQ{airGfk + (i,4,k)}

+(m — 3)L{a¢jr z + (i,j, k)} + (m — 3)(m — 4)aijkrGr1 .
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On the other hand, it is well-known ([1], [3]) that in the Cartan con-
nection CI" = ( ;‘ik, G;, C;%) F™ is a Landsberg space and a Berwald
space, if and only if Cj;50 = 0 and Ch;j, = 0 respectively. Since CT
satisfies a;); = 0 and a;;, = 0 [7], the third equation of (1.1) leads to
Theorem of [7] as follows:

Proposition 1. F™ with m-th root metric is a Landsberg space and a
Berwald space, if and only if ap;;jj0 = 0 and ap;;, = 0 respectively in the
Cartan connection.

The family of Berwald spaces is, of course, contained in the family
of Landsberg spaces. We have, however, the interesting theorem on C-
reducible Finsler spaces ([3], Theorem 30.4) as follows: If a C-reducible
Finsler space is a Landsberg space, then it is a Berwald space. A Finsler
space is called C-reducible, if the C-tensor is of the special form Cj;; =
{hniCj + (h,i,5)}/(n+1). We shall prove the following theorem which is
similarly based on the special property of the C-tensor:

Theorem 3. If a Finsler space with cubic metric is a Landsberg space,
then it is a Berwald space.

PrROOF. Suppose that F™ with cubic metric be a Lansberg space.
Then we have a;j0 = 0 from Proposition 1. By differentiating ay;;j0 =

anijry" =0 by y*, we have
Ahijik + anijirey” =0,

where (-) denotes the v-covariant differentiation in the Berwald connection
BI' = (G, G%), that is, 0. It is, however, well-known that I7*% of C'I’
coincides with G;% of BI' for a Landsberg spece. Hence the equation

above may be written as
(2.1) Ahijik + Qnijirky’ =0,

in terms of the h-covariant differentiation (;) in BI'. We pay attention to
one of the Ricci identities of BI™

) -
Ahigirk — Qhijksr = ~0his Gk — (R4, 7).

Here it is remarked that ap;; of a cubic metric are nothing but the func-
tions of x alone. Thus we have ap;;., = 0 and ap;j;rxy" = 0 from the
identity G;%,y" = 0. Consequently we get ap;;.x = 0 from (2.1), which is
equivalent to apij i = 0, so that the space is reduced to a Berwald space.

Remark. J. M. WEGENER [10] has proved Theorem 3 only in the two-
and three-dimensional cases. It seems that his proof is complicated.
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§3. Cubic and quartic metrics of dimension two

In the paper [6] we dealt with the main scalars of two-dimensional
Finsler spaces with cubic metrics and quartic metrics. The purpose of the
present section is to give characteristic equations of such metrics in terms
of the main scalar.

Let us recall the Berwald frame (¢, m) of a two-dimensional Finsler
space F2. ¢ = (£') is given by £ = y*/L and (¢;) is given by ¢; = O; L.
m = (m;) is found from the angular metric tensor h;; by h;; = em;m;
with the signature e = £1. Thus we get g;; = £;{; + em;m;.

Putting F = L?/2 and 9, ...9; F = F;,__; , we have

(3.1) { Frp = Lly,  Fri = gni = {nli + empms,
. F}w’j = 20}”']' = %Imhmimj,

where [ is the main scalar. We have the well-known differentiation formu-
lae
La]ﬁl = 6mimj, Lﬁjml = (—@L + 5Imi)mj,

and the notation Ld;S = S.ym; for a (0)p-homogeneous scalar field S [3)].
Then long but straightforward calculations lead to

L2Fhijk =2(lo+ 35]2)mhmimjmk — 2I{lpm;m;my + (4)},
Lthijkg = 2(L.3.0 + 10l 1.5 + 121° — del)mpmm;mmy

— 4(Lo + 3eI*){lymimimpmy + (5)}

+ 4I{lplimjmime + (10)},

(3.2)

where by the abbreviation {---+ (:-)} we denote the cyclic permutation of
indices and summation such that {--- +(--)} becomes completely symmet-
ric in all the indices. For instance, provided that a;; and b;;, be symmetric
quantities,

{anibjre + (10)} = anibjre + anjbire + - - - + arebpij,

consisting of ten terms.
Now a Finsler metric L(x,y) is a cubic metric, if and only if
8h8i5’j8k(F3/2) = 0, which is written as

8F3Fpiji + AF*{FyFyji + (4)} + AF?{F); Fji + (3)}

3.3
( ) —2F{FhiFij+(6)}+3FhF¢FjF]€ = 0.
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Next L(z,y) is a quartic metric, if and only if 8;18@8]&8@(172) =0,
which is written as

(34) FFhijké + {Fth’jké + (5)} + {Fhiijg + (10)} = 0.

These equations (3.3) and (3.4) can be written in terms of I and its
derivatives by y® in virtue of (3.1) and (3.2). Therefore we have

Theorem 4. (1) A two-dimensional Finsler space F? is with cubic
metric, if and only if the main scalar I satisfies

215+ 6cI° +3 =0.
(2) F? is with quartic metric, if and only if I satisfies

Lo + 10el 1y + 41(31° + 4¢) = 0.

Remark. In the paper [5] the former equation of Theorem 4 was writ-
ten in the form without €, because we were concerned with positive-definite
Finsler metrics alone. The similar remark is also necessary to the following
Berwald’s theorem and so on. Cf. [1], 3.5.

Next the h-scalar curvature or the Gauss curvature R(z,y) of a two-
dimensional Finsler space is defined by the h-curvature tensor Rp,%y of CI'
as follows:

thjk = ER(ﬁhmi — Eimh)(ﬁjmk — Ekmj),

or the (v)h-torsion tensor R’j, = y" Ry'jx as follows:
(35) Rijk(: 8kG; - (%Gz - Gjier + szrGg) = 5LRmZ(€Jmk — kaj)

A Berwald space having R = 0 is a locally Minkowski space ([1], [3]).
We have the well-known Berwald’s theorem ([1], 3.5; [3], §28): All Berwald
spaces of dimension two are divided into three classes as follows:

(1) I =const. and R # 0,

(2) I =const. and R =0,
... locally Minkowski,
(3) I # const. and R = 0.

The fundamental function L(x,y) of spaces belonging to (1) and (2)
are written in the following four kinds:

(i) e=+1, P<4:L% = (B +,y2)exp{¥tan1 (%)}
J=VI— T,
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(i) e=41, I2=4:L%=B%exp (I%)
(i) e=41, I?>4: L[> =p 1/ T ] = /T2 — 4,

(iv) e=—1:L> =" I/I T ] = \/T? 14,
where 3 and 7 are 1-forms in (y).
From (1) of Theorem 4 it follows that I = const. implies ¢ = —1 and
I? = 1/2, so that (iv) leads to L3 = $v2. Next (2) of Theorem 4 shows
that I = const. implies I = 0, or ¢ = —1, I? = 4/3 and L* = 393 from
(iv). Therefore we have

Theorem 5. (1) All Berwald spaces of dimension two with cubic met-

ric are divided into two classes as follows:

(i) locally Minkowski spaces,

1
(i) e=-—1, I*= 3 L3 = v

(2) All Berwald spaces of dimension two with quartic metric are di-
vided into three classes as follows:

(i) locally Minkowski spaces,
(ii) Riemannian spaces,
4
(i) e=-1, I? = 3 LY = B3,

In each case 3 and ~ are 1-forms in (y*).

A locally Minkowski space is by definition a Finsler space such that
there exists a covering by local coordinate neighborhoods in each of which

L does not depend on the point variables (z*), so that all Gjik vanish.
Such (z') is called adapted. For a locally Minkowski space with m-th

root metric, in an adapted coordinate system (%), the equation (L™).; =
@iy ipiyY"t - y'™ =0 in BI' implies 0;a;, .. 4,, = 0. Therefore we have

Proposition 2. A Finsler space with m-th root metric is a locally
Minkowski space, if and only if there exists a covering by local coordinate
neighborhoods in each of which all coefficients a;, .; of L™ are reduced

m

to constants.
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§4. Examples of dimension two

Let us recall some results of the paper [6]. For a two-dimensional
cubic metric we used the notation: (z%) = (z,%), (v*) = (p,q) and
(alll,allz,algg,aggg) = (60,61,62,63>. Thus the metric is written in the
form

L? = cop® + 3c1p?q + 3capq” + caq’.
We get a; and a;; as follows:

(4.1) { L?(a1,a2) = (cop® + 2¢1pq + c2q®, c1p® + 2capq + c3¢7),
L(a11, a12,az2) = (cop + c1q, c1p + caq, cap + €3q).
We introduced the quantities
H = Hijy'y’,
(4.2) (Hy1,2H15, Hyo) = (Hy, 2H4, H>)
= (cgca — (€1)?, coc3 — c1ea,c103 — (€2)?).

Then, since h;; = 2(a;; — a;a;) from (1.1), (4.1) yields
L*(hi1, hag, heo) = 2H(¢%, —pg, p*). From hi; = emym; and mip +maq =
0 we get

2¢H
(4.3) (m;) = m(—q,p), m? = A
Then, from m*¢; = 0, m*m; = € and ¢; = a; we obtain
, _ _ 3
(4.3") (m') =m(—asz,a1), m= ot

Further, to find the main scalar we introduced the quantities
G= Gijkyiyjyka
(4.4) (G111, 3G112,3G122, Gaga) = (Hoc1 — Hico,
2H002 — chl — HQCO, H()Cg + H102 — 2H261, chg — HQCQ).

Then the main scalar I was given by
(4.5) P=e——

Now, to find G?, G; and G,;% we shall consider the second Christoffel
symbols {hij, k}. In the two-dimensional case the symbols are divided into
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four types as follows:
(1) 4{ddd, 1} = 20,4,
(2)  4{iii, j} = 30;a:i; — Oj i,
46 L i=1,2, 4.
(4.6) (3) 4{iiij,i} = Osaii; + Ojasi, b 7
(4) 4{2’&],]} = 28Z~aijj,
Ezample 1 ([10], (7)). We are first concerned with a typical cubic
metric with ¢; = ¢; = 0:
L? = co(w,y)p” + cs(z, y)q’.

Then we have H = coczpg and G = —coes(cop® — c3¢) /2. Consequently
we get the main scalar:

2
(Cop3 - qu?’)

I? =
8cocs(pg)?

As a consequence I can not be constant, as indicated by Wegener.
Next, putting d;¢; = ¢;5, 1 = 0,3; j = 1,2, we have from (4.6)

1 1
{1111} = Seor,  {112,1} = —{111,2} = o,
1 1
{221,2) = —{222,1} = Jem,  {222,2} = e,
and {112,2} = {221,1} = 0. Hence we have

{000,1} = ~(2co1p” + 3co2p’q — c314°),

{000, 2} = ~(2¢c32q” + 3c31pg* — co2p®),

N e

and (1.3) yields

3
2G1 = (2001172 + 3co2pq — C31%> ;

1
60()
1 3
2G% = — (2632(]2 + 3ca1pg — Cozp—) :
6c3 q
Consequently it is obvious that the space is a Berwald space, if and
only if the last terms of the above vanish, that is, ¢y = ¢o(x) and ¢z = c3(y).
Therefore we have such a coordinate transformation (z,y) — (Z,y) that
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we have L? = p + @ and the space is reduced to a locally Minkowski
space.

Next we shall find the condition for the space to be a Landsberg space;
apijlo = 0 from Proposition 1. The equation G; = 3j G" yields immediately
GY = (coap — c314°/p)4cy. From yhahmo = yh(LC'hmO) = 0 it follows that
it is sufficient for us to observe

1
ar12)0 = —a111G5 = —(c31¢° — co2p®) =0,

4p
which implies c31 = cg2 = 0 is necessary and sufficient for the space to be
a Landsberg space. This coincides with the condition for a Berwald space.
Cf. Theorem 3 and [10].

Remark. WEGENER [10] was concerned with the stretch curvature ten-
sor of the above space. But it seems to the author that to find this tensor,
introduced by Berwald in 1927, needs long and complicated calculations.

Ezample 2 ([10], (9)). We consider the quite special cubic metric with
Co — Cp = C3 = 0:
L? = 3c(z,y)p*q.

This is expressed as L? = 872, (8,7) = (3cq,p). Thus Theorem 5 shows
that ¢ = —1, I? = 1/2 and the space is a Berwald space.

We consider the condition for the space to be a locally Minkowski
space, that is, to have the vanishing Gauss curvature R.

First, putting 0;c = ¢;, i = 1, 2, we get

C1 Co C1 C2
(Gl7G2) = (4_Cp27 2_qu> ’ (GivG%) = <2_va ?q) ’
G111 = ;—1, G222 = 0—2, other G;, sz'k =0.
C C

Consequently we get

2 2
p 2
12 2 axay Og|c|’ 12 qaxay Og|c|
On the other hand, we have H = —(cp)? and
9 2c

(£:) = (2cpq, cp?) /L2, (m;) = m(—q,p), m* = —

. —1
") =m(—cp?, 2 L, m=—.
(m) = m(=cp”, 2epq) /L7, M= —
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Thus (3.5) leads to
3pqg 02
R=—— ——1 .
2L2 Ox0y 08 |
Therefore the space is a locally Minkowski space, if and only if
0%(log|c|)/0xdy = 0, which shows that c(x,y) is of the separate form
¢ = h(z)k(y). Then L can be transformed into the form L3 = 3p%q.

Remark. The coefficient 2/3 of R given in [10] must be corrected to
3/2 as above.

Ezxample 3 ([6]). The strongly spherically symmetric metric was con-
sidered as Example 2 and 5 in [6]; it is a quartic metric of the form

L* = cop? + 6cap®@® + caq™.

Let us deal with this metric again. From (a1111, ai1122, a2222) = (Co, Co, C4)
we have a;; as follows:

L*(a11,a12,a22) = (cop® + caq?, 2capq, cap® + caq®).

The second Christoffel symbols {hijk, £} have been given in [6].
Suppose that the space be a Berwald space. Putting 0jc; = c¢;j,
1=0,2,4; 7 = 1,2, Theorem 1 yields

4(cop® + 2q®)G"' + 8copgG?

1 2 1
= 5001294 + 50021?361 + c219?q* + 2¢20pq° — 6641(14,
8copgGt + 4(czp2 + (:4q2)G2
1 2 1
= —60022?4 + 2e01p°q + c20p?q* + 5041]9613 + 5042(14-

Substituting 2G* = G11p? + 2G1'apq + G2'2¢?, i = 1,2, with G;%(z,y)
and comparing the coefficients of p* p3q, p?¢?, pg® and ¢3, we obtain ten
equations as follows:

1 1
{40001 1 =co1, 12caGa'2 = —can,

4eyGo’y = cpa,  12¢2G1? = —coa,
(2) 6(coGr's + c2G1?) = coa,  6(caGa's + caG1%) = cu1,
(3) 2co(G1Y + G1%) = 2¢0Ga's + 2¢2(G1 Y + 4G1%) = can,

(4) 2c2(G1Ys + Go%) = 2¢4G1% 4 2¢0(Ga% + 4G %) = cao.
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(i) Suppose cocacy # 0: Then (1) and (2) give

C C C

1 01 1 02 1 41

Gllz_; G12:_7 22— — )

400 400 1262
C C C
2 02 2 41 2 42

Gl 1= — 9 12— 9 GQ 2 = .

12¢5 4ecy dey

Then (3) and (4) can be written as

(3 (e  em) o 2em  cocar _ a1

2 Co Cyq 200 Cyq 6(62)2 C2 ’

, I fco2 = ca2 ca2  2c02  caCoa €2

(47) () == =
2 Co Cy 264 Co 6(02) Co

The first equations of (3’) and (4’) yield respectively
Cq1 {9(C2)2 — 6064} = O, Co2 {9(C2)2 — 6064} = O

(i-1) If 9(c3)? — cocq = 0, then the right-hand side of L* becomes a
perfect square and the metric is reduced to a Riemannian metric obviously.
Cf. Theorem 5; [6], Example 5, I = 0.

(i-2) If ¢41 = co2 = 0, then (3’) and (4’) are reduced to co1/co =
2¢91/co and cq2/cqy = 2c99/co respectively. Consequently we have ¢y =
co(x), ¢4 = ca(y) and (c2)? = kcoeyq with a constant k # 0. Then L* can
be written in a coordinate system (z,y) as L* = p* + ¢p?q® + ¢* with
a non-zero constant ¢ and the space is a locally Minkowski space. Cf.
Theorem 5.

(i) Suppose co = 0 and cocqg # 0: Then (1) leads to ¢y = co(x) and
cs = c4(y). Thus L* = co(x)p* + ca(y)q*, which is obviously a locally
Minkowski metric.

(74i) Suppose ¢4 = 0 and cocz # 0: Then (1) and (2) give

C C C

1 01 1 02 1 2 02

G11:_7 G12:_7 G22:07 G11:— ’
460 40() 1262

and (3) and (4) are written respectively as

2 — L e cor) 1 [fca co
19=s———)=<s({— 51,
2 C2 200 8 Co 20()

e 2 C22 Co2 C22 Co2
272

262 400 B 202 Co '
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Consequently we have cgo = 0 and 2cgca; — cacgr = 0, which lead to
co = co(x) and (c2)? = cpg(y). Therefore we have

L' = cola)p" + 6{co(2)g(y)} 27",
which is obviously transformed into a locally Minkowski metric: L* =
]54 + 6]52q_2.
(iv) Finally we suppose ¢g = ¢4 = 0 and ¢ # 0: Then we have a
(quasi-) Riemannian metric: L* = 6cop?q?. Cf. [6], Example 5, I = 0.
Summarizing all the above we have

Proposition 3. If the strongly spherically symmetric Finsler space of
dimension two is a Berwald space, then it is a Riemannian space, or a
locally Minkowski space:

Riemannian space:
(1) 9(c2)? = cocy, or
(2) co =c4 =0,
Locally Minkowski space:
(1) co = co(x), ca = ca(y), (c2)? = keges, k = 0, or non-zero
constant,
(2) co =0, ca = ca(y), (c2)® = caf(a),
(3) ca =0, co = co(2), (c2)? = cog(y)-

§5. Three-dimensional Berwald spaces with cubic metric
of the normal form

The first half of the third section of WEGENER’s paper [10] is devoted
to making a list of Berwald spaces and locally Minkowski spaces with cubic
metric of the normal form. We again consider this subject throughly and
show that Berwald spaces with important and typical metric are omitted
from his list.

All cubic metrics of dimension three are divided into the following
six classes of the normal forms: In the abbreviations (z") = (z,y, 2z) and
') =(p,ar)

(1) L? =c1ip® + caq® + car® + 6bpgr,  cicacsh # 0,

(II) L? = c1p® + cog® + car®,  creacs #0,

(T L3 = c1p® + c2q® + 6bpqr,  c1eab # 0,

(IV) L3 = ¢1p3 + 6bpgr, c1b#0,
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(V) L3 =6bpgr, b#0,
(VI) L2 =3apr?+bq>®, ab#0,
where ¢y, co, 3, a and b are functions of (z,y, z).
The metrics belonging to (I)—-(V) can be written together in the form

(5.1) L? = e1p® + c2¢® + c3r® + 6bpgr,

where some of the coefficients may vanish, but they must satisfy the reg-
ularity condition det(a;;) # 0; we have La;; = ¢;y° and La;; = by*,
1,j,k =1,2,3,#, so that

r
(5.2) det(aij) = (616263 + 853)% — b2 7é 0.

The second Christoffel symbols of three dimensions are of the following
six types:

4{idi, i} = 205045, 4{3i4, j} = 30;a4i5 — Ojasi,
4{ijj,i} = 205045, 4Hijj, i} = 0iajj; + 0jaijj,
4{ijj, k} = 0;a;;r + 20;ai, — Oraij;,

d{ijk, k} = O;ajkr + Ojaikk, 1,7,k =1,2,3,%#.

(5.3)

We shall research the condition for the Finsler spaces with cubic metric
above to be a Berwald space. We have already the condition in the form

(5.4) 2{ijk,h} = aniyG;"% + (i, 5, k), 4,5,k h=1,2,3.

We shall write down (5.4) for the metric (5.1): If we put d;¢; = ¢;; and
0;b = b;, then (5.3) gives

1 1
{iii, i} = Sew, il j} = —ge, {ijsit =0,

o 1 . 1 .
{Z]ja]} - chh {Z]]7k} - §bj7 {ij7k} = 07
h,J k=1,2,3,%#.
Consequently (5.4) for (5.1) is written as

(1) 3CiGiZi = Cyj, (4) 2bijj + 4CjGijj = Cjia

(2) 60G*; = —cij, (5) b(G;7; +2GiY) = bj,

(3) CiGjij + QbGikj =0, (6) b(Gzzk + ijk) + CkGikj =0,
ik =1,2,3,#.

(5.5)
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(I) We are concerned with the metric (I). Then (1)—(4) of (5.5) give
immediately
; _ Cii Cij i G CiCjk
Gi's =, Gfi=-24 Glj=2, iY==
3c; 6b 7 3¢ T 12p2

From Gikj = iji it follows from the last one that c;cji = c;jc;i. Hence
we must have quantities dj such that c;; = ¢;dy Thus we have

Gi— S ok Gl
71 3 i? 1 T 6b 9
(5.6-) dc i k=1,2,3,%.
. d; ko GGy
G’y = 3 Gi" = 12b2dk’

The remaining equations (5) and (6) of (5.5) are written as

5 114 9d. = 22
(6") (cicjer, + 8b)dy, = 0.

(Ii) We treat of the simple condition dj = 0 from (6’). Then ¢; (=
Okc;) = 0, so that ¢; = ¢;(2%), i = 1,2,3, and (5’) shows b3/cicoc3 =
k3 (const.). Consequently L3 is written as

L? = ¢1(2)i® 4 co(y) 5 + ¢3(2)2° + 6k(creges) 2272,

which can be transformed into the form L3 = p3 4¢3+ 73 +6kpgr in a coor-
dinate system (z'). Therefore the space is reduced to a locally Minkowski
space.

(Iz) We treat of the remarkable condition c;c;cx, + 8b® = 0, 4,5,k =
1,2,3,#, from (6°). If we differentiate this by y?, then c¢;, = ¢;dp and
cicier, = —8b% yield (5’) immediately.

Now c¢;r = c;di shows that di is a gradient vector which may be
written as dp = Okxd, and, as a consequence, 0k (log|c;| — d) =0, i, 7, k #.
Thus we have log|c;| — d = g;(z%). Therefore, putting e’ = fi(z?), we
obtain

¢ =elfi(xh), i=1,2,3; d=d(z' 22 23),
(5.7 { (") ( )

83 = —egdf1f1f3-

We have now L of the form

L = e { @) + LW)i* + f1(2)2 = 3(fuffo) i)
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Hence there exists a coordinate system, which is written as (z°) again,
such that L is of the form

(5.7") L3 =e7 (&3 + 9% + 2% — 3iy2), o=o(2,y,2).
Thus this L is conformal to the typical Minkowski metric
(5.8) (Lo)® = 3 +9° + 2° — 3dyz.

It is noted that G;% of (5.7°) are written as

. ) ) o;
(5.6—12) G = ijj = Gijj = szk = 37
iajvk:1727377é; Uizaia-

(IT) It follows from (2) of (5.5) that we have ¢;; =0, i,5 = 1,2, 3, #.
Hence the metric is written in the form L3 = ¢ ()3 + c2(y) 9> + c3(2)23,
which is clearly a locally Minkowski metric.

(IIT) In this case (5.5) yields

Gili = 3, 1= 1, 2,3; other szk = 0,
3b; ¢y ..
Cijzoa 720_17 27.]:17277&'

Consequently we have ¢; = c1(1), ca = ca(y) and b3 = cicow(z) with
a function w(z). Therefore the space is reduced obviously to a locally
Minkowski space.

(IV) Similarly we get

Gii=-, i=1,2,3; other G;% =0,

ci1 3b
C1 b

Consequently we have ¢; = ¢ () and b® = ¢;g(y, 2) with a function g(y, 2).
Therefore we obtain Berwald spaces with L such that

(5.9) L3 = ¢y (2)d3 + 6biys, b =ci(x)g(y, 2).

(V) In this case (5.5) yields only

b .
Gizi == E; other szk =0.
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Therefore the spaces with the metric (V) are Berwald spaces without any
condition.

(VI) For this exceptional case we put a133 = a and az99 = b. Denoting
0;a = a; and 0;b = b;, the surviving second Christoffel symbols are as
follows:

2{113,3} = a1,  4{122,2} = —4{222,1} = by,
4{233,1} = 4{123,3} = —4{133,2} = ay,  2{222,2} = by,

4
4{133,3} = 5{333, 1} = as, 4{223,2} = —4{222,3} = b3.

Then the condition (5.4) gives only

ay 2 b2 3 as

:b :b:' G]':— = — = —
as 1 3 =05 11=5 22 = g 88 =

and other G;% = 0. Therefore the spaces are Berwald spaces, if and only
if a = a(x, z) and b = b(y).

Thus we have found all Berwald spaces with the metric belonging to
(I)—(VI). Summarizing up we have

Proposition 4. The three-dimensional Finsler spaces with cubic met-
ric of the normal forms (I)—(VI) are Berwald spaces, if and only if

(I1) c1=c1(x), c2 = ca(y), 3 = c3(2), b = keyeacs,
k = const. # 0. The spaces are locally Minkowski.

() a = elfi(x), 2 = elfa(y), ez = e’fs(2), d = d(2,y,2),
8b3 = —e3¢f, fo f3. The metrics are conformal to a Minkowski
metric (2% 4 9> 4 23 — 3@y2)1/5.

(I1) ¢1 = c1(x), ca = c2(y), c3 = c3(z). The spaces are locally
Minkowski.

(IIT)  ¢; = c1(x), ca = ca(y), b = c1cow(2). The spaces are locally
Minkowski.

(IV) ¢ =c1(x), b3 = c19(y, 2).

(V) The spaces are Berwald spaces with the metric conformal to
a Minkowski metric (iy2)/3.

(VI) a=a(z,2), b=>b(y).
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Remark. (I3) and (V) give interesting Berwald spaces, because they
are conformal to typical Minkowski metrics

(&% + 9 + 2% = 3ag2)'/3,  (a92)/?,
respectively. In particular, the former is interesting, though WEGENER

[10] failed to find it. In the first half of 1940’s J. Devisme and P. Humbert
considered the geometry based on this metric [5].

We shall find the condition for the spaces above to be a locally Min-
kowski space. It is well-known ([3], Theorem 24.5; [1], Corollary 3.1.3.1.)
that a Berwald space is a locally Minkowski space, if and only if the (v)h-
torsion tensor Rijk vanishes.

(I2) It is sufficient to be concerned with the metric (5.7") with G,
given by (5.6-I2). Then we get

Gﬁ = (ajyi + akyj + aiyk) ,

(oiy" + oy + owy™) G; =

hJ k=1,2,3,#.

W
W =

Hence GiirGg — GjirG;" = 0 and GikrGg — ijTG;T = 0 are easily shown.
Then we get

i i i1 ;

Ry = 0,G; = 0:Gj = 2 {(05 — o)y’ — (00 = aii)y" }
. . 1 .

Ry = 0G; = 0;Gl = 5 {(owr — 03g)y’ — (055 = oi)y"} .

Consequently the space is locally Minkowski, if and only if o(x,y, z) sat-
isfies

(510) 81810' = 8j8k0, i,j, k= 1, 2, 3, 7& .
We consider this condition (5.10) in detail. It is first remarked that
PP+ ¢ +1° =3pgr = (p+q+7)(p+wg + ) (p+ wq +wr),
where w = (—1 + \/§z) /2. Thus we have

(p+wq+w’r)(p+w’q+wr) ={p—(¢+7r)/2}* + (3/4)(q — r)*.

This suggests that we should consider the coordinate transformation
(z,y,2) — (u,v,w) such that

u=x+y+z, v:x—%(y—i—z), w = (\/3/2) (y — 2).
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In (u,v,w) we have the metric L under consideration of the form
(5.77) L? =e* {u(v* +u?)}, s=s(u,v,w),

and it is easy to show that (5.10) is written in the form sy, = Syw = 0
and Sy + Sww = 0. Thus we have

(5.107) s=f(u) +g(v,w), Gov + guww = 0.

Hence g(v,w) is a harmonic function. Consequently the metric is of the
form

(5.11) L= {eﬂ“)u} {eg(”’“’)(i)Z + u‘ﬂ)} .

Since g(v,w) is harmonic, the curvature of the two-dimensional Riemann-
ian space with ds®> = e9(dv? + dw?) vanishes. Therefore we have a coordi-
nate system (v, w) in which e9(9? + w?) = 0* + w2, and it is obvious that
the metric (5.11) is certainly locally Minkowski.

We shall turn to the discussion of the Berwald spaces belonging to
(IV), (V) and (VI). They have such a similar property as follows: The
surviving components of G;% are G;%, i = 1,2, 3, only. Thus the surviving
components of R are R%; = (0;G;%)y’. Consequently the conditions
under consideration are easily given as follows: (IV) b = ¢;(z)v(y)w(2),
(V) b = u()u(y)u(z), (VI) a = u(z)w(z).

Summarizing up we have

Proposition 5. The conditions for the Berwald spaces with cubic met-
ric belonging to (1), (IV), (V) and (VI) to be locally Minkowski are as
follows:

(I) L? = e (i® 4+ §° + 2° — 3iy2), 820 = 0,0.0, 020 = 0.0,0,
020 = 0,0,0. Then the metric can be written in a coordi-
nate system (u,v,w) as L* = {efWaq} {esw) (92 +i?)},
g(v,w) being a harmonic function.

(IV) b = cr(x)v(y)w(z),
(V) b

u(@)o(y)w(z),
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