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Theory of Finsler spaces with m-th root metric II

By MAKOTO MATSUMOTO (Kyoto)

Abstract. This is the second paper of a series concerned with Finsler spaces with
m-th root metric. We consider mainly two- and three-dimensional Berwald spaces with
cubic and quartic metrics.

Introduction

Recently we have several papers on Finsler spaces with m-th root
metric [2], [5], [6], [7]. The theory of those spaces has been consider-
ably developed by introducing the tensor field aij(x, y) [5] and generalized
Christoffel symbols [6].

In the early stage of the Finsler geometry, however, we have Johannes
M. Wegener’s interesting paper [10] on Finsler spaces with cubic metric
(m = 3) of dimension two and three. According to his paper [8], he sub-
mitted a thesis on Finsler spaces in March 1935 to the German University
in Prague, the referee being Ludwig Berwald. His thesis consisted of three
parts: (I) Two- and three-dimensional Finsler spaces, (II) Hypersurfaces
as transversal surfaces of a family of extremals, and (III) Two- and three-
dimensional Finsler spaces with cubic metric. His papers [9] and [10] are
(II) and (III) of his thesis respectively. In 1986 the present author pub-
lished the paper [4] which proposed an improvement of [9] based on the
recent development of the notion of Finsler connections.

On the other hand, Wegener’s paper [10] is only an abstract of his
(III) without almost all calculations. The present paper may be said as
an improved version of [10] based on the results of a previous paper [6].
It must be reported that Wegener faild to find an interesting family of
Berwald spaces of dimension three which is given in (I2) of Proposition 4.

It is very sorry that J. M. Wegener went out of the world of the
Finsler geometry after submitted his thesis and published the three papers
above. The author hopes to get intelligence about him.
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§1. The Berwald connection

An n-dimensional Finsler space Fn with m-th root metric is by defi-
nition a Finsler structure (Mn, L(x, y)) on a differentiable n-manifold Mn

equipped with the fundamental function L(x, y) such that

L(x, y)m = ai1...im
(x)yi1 · · · yim ,

where ai1...im
(x) are components of a symmetric covariant tensor field of

order m. We suppose m = 3 throughout the paper, because m = 2 gives
merely a Riemannian metric.

From L(x, y) we define Finslerian symmetric tensors of order r (1 5
r 5 m− 1) with the components

ai1...ir (x, y) =
1

Lm−r
ai1...irj1...jm−r (x)yj1 · · · yjm−r .

Among these tensors we have three specially important tensors ai, aij

and aijk. In fact, the normalized supporting element `i = ∂̇iL, the angular
metric tensor hij = L(∂̇i∂̇jL), the fundamental tensor gij and the C-tensor
Cijk = (∂̇kgij)/2 are written as

(1.1)





`i = ai, hij = (m− 1)(aij − aiaj),
gij = (m− 1)aij − (m− 2)aiaj ,

Cijk =
(m−1)(m−2)

2L
(aijk−aijak−ajkai−akiaj +2aiajak).

Since det(gij) = (m − 1)n−1 det(aij) as easily shown ([3], Proposi-
tion 30.1), the regularity of the m-th root metric is equivalent to det(aij)6=0
([5], [7]). Suppose, of course, the regularity throughout the paper. Then
we have (aij) = (aij)−1 and

`i = ai (= airar), gij =
1

m− 1
{aij + (m− 2)aiaj}.

Next we define the m-th Christoffel symbols [6]

(1.2)
{i1 . . . im, j} =

1
2(m− 1)

(∂i1ai2...imj + ∂i2ai3...imi1j

+ · · ·+ ∂imai1...im−1j − ∂jai1...im),

where the cyclic permutation is applied to (i1 . . . im) in the first m terms
of the right-hand side. If we write the equations of geodesics in the usual
form

d2xi

ds2
+ 2Gi

(
x,

dx

ds

)
= 0,
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then the quantities Gi(x, y) are given ([6], (3.3)) by

(1.3) ahrG
r(x, y) =

1
mLm−2

{0 . . . 0, h},

where we denote by the index 0 the transvection by yi as usual, that is,
{0 . . . 0, h} = {i1 . . . im, h}yi1 . . . yim .

On account of the definition of ahr we may write (1.3) in the form

ahr0...0G
r =

1
m
{0 . . . 0, h}.

Differentiating this by yi and then by yj , we have

ahr0...0G
r
i + (m− 2)ahir0...0G

r = {i0 . . . 0, h},
ahr0...0Gi

r
j + (m− 2)(ahir0...0G

r
j + ahjr0...0G

r
i )

+ (m− 2)(m− 3)ahijr0...0G
r = (m− 1){ij0 . . . 0, h},

where Gr
i = ∂̇iG

r and Gi
r
j = ∂̇jG

r
i constitute the coefficients of the

Berwald connection BΓ = (Gi
r
j , G

r
i ). These equations above may be

written in the plainer form

Lm−3{LahrG
r
i + (m− 2)ahirG

r} = {i0 . . . 0, h},(1.4)

Lm−4{L2ahrGi
r
j + (m− 2)L(ahirG

r
j + ahjrG

r
i )(1.5)

+ (m− 2)(m− 3)ahijrG
r} = (m− 1){ij0 . . . 0, h}.

Further differentiation by yk gives the hv-curvature tensor Gi
h
jk =

∂̇kGi
h
j of BΓ as follows:

Lm−5

[
L3ahrGi

r
jk + (m− 2)L2{ahirGj

r
k + (i, j, k)}+ (m− 2)(m− 3)

×L{ahijrG
r
k + (i, j, k)}+ (m− 2)(m− 3)(m− 4)ahijkrG

r

]
(1.6)

= (m− 1)(m− 2){ijk0 . . . 0, h},
where {· · · + (i, j, k)} shows the cyclic permutation of the indices i, j, k
and summation. Transvecting (1.6) by yh we obtain

Lm−4

[
L2yrGi

r
jk + (m− 2)L2{airGj

r
k + (i, j, k)}+ (m− 2)(m− 3)

×L{aijrG
r
k + (i, j, k)}+ (m− 2)(m− 3)(m− 4)aijkrG

r

]
(1.7)

= (m− 1)(m− 2){ijk0 . . . 0, 0}.
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Remark. In the equations (1.5), (1.6) and (1.7) we have some terms
with coefficients (m− 3) and (m− 4). We shall be concerned mainly with
cubic (m = 3) and quartic (m = 4) metrics

L3 = aijk(x)yiyjyk, L4 = ahijk(x)yhyiyjyk,

in the following. For these metrics it is supposed that the terms with
(m − 3) and (m − 4) vanish respectively. For instance, (1.6) of a cubic
metric is reduced to

LahrGi
r
jk + {ahirGj

r
k + (i, j, k)} = {ijk, h}.

§2. Landsberg spaces and Berwald spaces

We have two important families of special Finsler spaces. If Gj
i
k are

functions of position x alone, then the space is called a Berwald space ([1],
[3]). As a consequence the space is a Berwald space, if and only if Gi(x, y)
are of quadratic forms 2Gi = Gj

i
k(x)yjyk. Since Gi of a Finsler space Fn

with m-th root metric are given by (1.3), we have

Theorem 1. Fn with m-th root metric is a Berwald space, if and only
if the homogeneous polynomial

{ahri1...im−2(x)yi1 . . . yim−2}Gi
r
j(x)yiyj =

2
m
{i1 . . . im, h}yi1 . . . yim

in yi is satisfied.

The condition for a Berwald space is obviously Gi
h
jk = 0. Next, if

Gi
h
jk satisfies yhGi

h
jk = 0, then the space is called a Lansdsberg space

([1], [3]). Therefore (1.6) and (1.7) lead to

Theorem 2. Fn with m-th root metric is a Berwald space, if and only
if we have

(m− 1){ijk0 . . . 0, h} = Lm−5

[
L2{ahirGj

r
k + (i, j, k)}(Bm)

+(m− 3)L{ahijrG
r
k + (i, j, k)}+ (m− 3)(m− 4)ahijkrG

r

]
.

Fn is a Landsberg space, if and only if we have

(m− 1){ijk0 . . . 0, 0} = Lm−4

[
L2{airGj

r
k + (i, j, k)}(Lm)

+(m− 3)L{aijrG
r
k + (i, j, k)}+ (m− 3)(m− 4)aijkrG

r

]
.
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On the other hand, it is well-known ([1], [3]) that in the Cartan con-
nection CΓ = (Γ ∗j

i
k, Gi

j , Cj
i
k) Fn is a Landsberg space and a Berwald

space, if and only if Chij|0 = 0 and Chij|k = 0 respectively. Since CΓ
satisfies ai|j = 0 and aij|k = 0 [7], the third equation of (1.1) leads to
Theorem of [7] as follows:

Proposition 1. Fn with m-th root metric is a Landsberg space and a
Berwald space, if and only if ahij|0 = 0 and ahij|k = 0 respectively in the
Cartan connection.

The family of Berwald spaces is, of course, contained in the family
of Landsberg spaces. We have, however, the interesting theorem on C-
reducible Finsler spaces ([3], Theorem 30.4) as follows: If a C-reducible
Finsler space is a Landsberg space, then it is a Berwald space. A Finsler
space is called C-reducible, if the C-tensor is of the special form Chij =
{hhiCj + (h, i, j)}/(n + 1). We shall prove the following theorem which is
similarly based on the special property of the C-tensor:

Theorem 3. If a Finsler space with cubic metric is a Landsberg space,
then it is a Berwald space.

Proof. Suppose that Fn with cubic metric be a Lansberg space.
Then we have ahij|0 = 0 from Proposition 1. By differentiating ahij|0 =
ahij|ryr = 0 by yk, we have

ahij|k + ahij|r·kyr = 0,

where (·) denotes the v-covariant differentiation in the Berwald connection
BΓ = (Gj

i
k, Gi

j), that is, ∂̇k. It is, however, well-known that Γ ∗j
i
k of CΓ

coincides with Gj
i
k of BΓ for a Landsberg spece. Hence the equation

above may be written as

(2.1) ahij;k + ahij;r·kyr = 0,

in terms of the h-covariant differentiation (;) in BΓ . We pay attention to
one of the Ricci identities of BΓ :

ahij;r·k − ahij·k;r = −ahisGj
s
rk − (h, i, j).

Here it is remarked that ahij of a cubic metric are nothing but the func-
tions of x alone. Thus we have ahij·k = 0 and ahij;r·kyr = 0 from the
identity Gj

s
rkyr = 0. Consequently we get ahij;k = 0 from (2.1), which is

equivalent to ahij|k = 0, so that the space is reduced to a Berwald space.

Remark. J. M. wegener [10] has proved Theorem 3 only in the two-
and three-dimensional cases. It seems that his proof is complicated.



140 Makoto Matsumoto

§3. Cubic and quartic metrics of dimension two

In the paper [6] we dealt with the main scalars of two-dimensional
Finsler spaces with cubic metrics and quartic metrics. The purpose of the
present section is to give characteristic equations of such metrics in terms
of the main scalar.

Let us recall the Berwald frame (`,m) of a two-dimensional Finsler
space F 2. ` = (`i) is given by `i = yi/L and (`i) is given by `i = ∂̇iL.
m = (mi) is found from the angular metric tensor hij by hij = εmimj

with the signature ε = ±1. Thus we get gij = `i`j + εmimj .
Putting F = L2/2 and ∂̇i1 . . . ∂̇irF = Fi1...ir , we have

(3.1)
{

Fh = L`h, Fhi = ghi = `h`i + εmhmi,

Fhij = 2Chij = 2
LImhmimj ,

where I is the main scalar. We have the well-known differentiation formu-
lae

L∂̇j`i = εmimj , L∂̇jmi = (−`i + εImi)mj ,

and the notation L∂̇jS = S;2mj for a (0)p-homogeneous scalar field S [3].
Then long but straightforward calculations lead to

(3.2)





L2Fhijk = 2(I;2 + 3εI2)mhmimjmk − 2I{`hmimjmk + (4)},
L3Fhijk` = 2(I;2;2 + 10εII;2 + 12I3 − 4εI)mhmimjmkm`

− 4(I;2 + 3εI2){`hmimjmkm` + (5)}
+ 4I{`h`imjmkm` + (10)},

where by the abbreviation {· · ·+(··)} we denote the cyclic permutation of
indices and summation such that {· · · +(··)} becomes completely symmet-
ric in all the indices. For instance, provided that aij and bijk be symmetric
quantities,

{ahibjk` + (10)} = ahibjk` + ahjbik` + · · ·+ ak`bhij ,

consisting of ten terms.
Now a Finsler metric L(x, y) is a cubic metric, if and only if

∂̇h∂̇i∂̇j ∂̇k(F 3/2) = 0, which is written as

(3.3)
8F 3Fhijk + 4F 2{FhFijk + (4)}+ 4F 2{FhiFjk + (3)}

−2F{FhiFjFk + (6)}+ 3FhFiFjFk = 0.
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Next L(x, y) is a quartic metric, if and only if ∂̇h∂̇i∂̇j ∂̇k∂̇`(F 2) = 0,
which is written as

(3.4) FFhijk` + {FhFijk` + (5)}+ {FhiFjk` + (10)} = 0.

These equations (3.3) and (3.4) can be written in terms of I and its
derivatives by yi in virtue of (3.1) and (3.2). Therefore we have

Theorem 4. (1) A two-dimensional Finsler space F 2 is with cubic
metric, if and only if the main scalar I satisfies

2I;2 + 6εI2 + 3 = 0.

(2) F 2 is with quartic metric, if and only if I satisfies

I;2;2 + 10εII;2 + 4I(3I2 + 4ε) = 0.

Remark. In the paper [5] the former equation of Theorem 4 was writ-
ten in the form without ε, because we were concerned with positive-definite
Finsler metrics alone. The similar remark is also necessary to the following
Berwald’s theorem and so on. Cf. [1], 3.5.

Next the h-scalar curvature or the Gauss curvature R(x, y) of a two-
dimensional Finsler space is defined by the h-curvature tensor Rh

i
jk of CΓ

as follows:
Rh

j
jk = εR(`hmi − `imh)(`jmk − `kmj),

or the (v)h-torsion tensor Ri
jk = yhRh

i
jk as follows:

(3.5) Ri
jk(= ∂kGi

j − ∂jG
i
k −Gj

i
rG

r
k + Gk

i
rG

r
j) = εLRmi(`jmk − `kmj).

A Berwald space having R = 0 is a locally Minkowski space ([1], [3]).
We have the well-known Berwald’s theorem ([1], 3.5; [3], §28): All Berwald
spaces of dimension two are divided into three classes as follows:

(1) I = const. and R 6= 0,

(2) I = const. and R = 0,

(3) I 6= const. and R = 0.

}
. . . locally Minkowski,

The fundamental function L(x, y) of spaces belonging to (1) and (2)
are written in the following four kinds:

(i) ε = +1, I2 < 4 : L2 = (β2 + γ2) exp
{

2I

J
tan−1

(
γ

β

)}
,

J =
√

4− I2,
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(ii) ε = +1, I2 = 4 : L2 = β2 exp
(

I
γ

β

)
,

(iii) ε = +1, I2 > 4 : L2 = β1−I/Jγ1+I/J , J =
√

I2 − 4,

(iv) ε = −1 : L2 = β1−I/Jγ1+I/J , J =
√

I2 + 4,

where β and γ are 1-forms in (yi).

From (1) of Theorem 4 it follows that I = const. implies ε = −1 and
I2 = 1/2, so that (iv) leads to L3 = βγ2. Next (2) of Theorem 4 shows
that I = const. implies I = 0, or ε = −1, I2 = 4/3 and L4 = βγ3 from
(iv). Therefore we have

Theorem 5. (1) All Berwald spaces of dimension two with cubic met-

ric are divided into two classes as follows:

(i) locally Minkowski spaces,

(ii) ε = −1, I2 =
1
2
, L3 = βγ2.

(2) All Berwald spaces of dimension two with quartic metric are di-

vided into three classes as follows:

(i) locally Minkowski spaces,

(ii) Riemannian spaces,

(iii) ε = −1, I2 =
4
3
, L4 = βγ3.

In each case β and γ are 1-forms in (yi).

A locally Minkowski space is by definition a Finsler space such that
there exists a covering by local coordinate neighborhoods in each of which
L does not depend on the point variables (xi), so that all Gj

i
k vanish.

Such (xi) is called adapted. For a locally Minkowski space with m-th
root metric, in an adapted coordinate system (xi), the equation (Lm);j =
ai1...im;jy

i1 . . . yim = 0 in BΓ implies ∂jai1...im = 0. Therefore we have

Proposition 2. A Finsler space with m-th root metric is a locally

Minkowski space, if and only if there exists a covering by local coordinate

neighborhoods in each of which all coefficients ai1...im of Lm are reduced

to constants.
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§4. Examples of dimension two

Let us recall some results of the paper [6]. For a two-dimensional
cubic metric we used the notation: (xi) = (x, y), (yi) = (p, q) and
(a111, a112, a122, a222) = (c0, c1, c2, c3). Thus the metric is written in the
form

L3 = c0p
3 + 3c1p

2q + 3c2pq2 + c3q
3.

We get ai and aij as follows:

(4.1)

{
L2(a1, a2) = (c0p

2 + 2c1pq + c2q
2, c1p

2 + 2c2pq + c3q
2),

L(a11, a12, a22) = (c0p + c1q, c1p + c2q, c2p + c3q).

We introduced the quantities

(4.2)





H = Hijy
iyj ,

(H11, 2H12,H22) = (H0, 2H1,H2)
= (c0c2 − (c1)2, c0c3 − c1c2, c1c3 − (c2)2).

Then, since hij = 2(aij − aiaj) from (1.1), (4.1) yields
L4(h11, h12, h22) = 2H(q2,−pq, p2). From hij = εmimj and m1p + m2q =
0 we get

(4.3) (mi) = m(−q, p), m2 =
2εH

L4
.

Then, from mi`i = 0, mimi = ε and `i = ai we obtain

(4.3’) (mi) = m̄(−a2, a1), m̄ =
ε

mL
.

Further, to find the main scalar we introduced the quantities

(4.4)





G = Gijkyiyjyk,

(G111, 3G112, 3G122, G222) = (H0c1 −H1c0,

2H0c2 −H1c1 −H2c0,H0c3 + H1c2 − 2H2c1,H1c3 −H2c2).

Then the main scalar I was given by

(4.5) I2 = ε
G2

2H3
.

Now, to find Gi, Gi
j and Gj

i
k we shall consider the second Christoffel

symbols {hij, k}. In the two-dimensional case the symbols are divided into
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four types as follows:

(4.6)





(1) 4{iii, i} = 2∂iaiii,

(2) 4{iii, j} = 3∂iaiij − ∂jaiii,

(3) 4{iiij, i} = ∂iaiij + ∂jaiii,

(4) 4{iij, j} = 2∂iaijj ,

i, j = 1, 2, 6= .

Example 1 ([10], (7)). We are first concerned with a typical cubic
metric with c1 = c2 = 0:

L3 = c0(x, y)p3 + c3(x, y)q3.

Then we have H = c0c3pq and G = −c0c3(c0p
3 − c3q

3)/2. Consequently
we get the main scalar:

I2 = ε
(c0p

3 − c3q
3)2

8c0c3(pq)3
.

As a consequence I can not be constant , as indicated by Wegener.
Next, putting ∂jci = cij , i = 0, 3; j = 1, 2, we have from (4.6)

{111, 1} =
1
2
c01, {112, 1} = −{111, 2} =

1
4
c02,

{221, 2} = −{222, 1} =
1
4
c31, {222, 2} =

1
2
c32,

and {112, 2} = {221, 1} = 0. Hence we have

{000, 1} =
1
4
(2c01p

3 + 3c02p
2q − c31q

3),

{000, 2} =
1
4
(2c32q

3 + 3c31pq2 − c02p
3),

and (1.3) yields

2G1 =
1

6c0

(
2c01p

2 + 3c02pq − c31
q3

p

)
,

2G2 =
1

6c3

(
2c32q

2 + 3c31pq − c02
p3

q

)
.

Consequently it is obvious that the space is a Berwald space, if and
only if the last terms of the above vanish, that is, c0 = c0(x) and c3 = c3(y).
Therefore we have such a coordinate transformation (x, y) → (x̄, ȳ) that
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we have L3 = p̄3 + q̄3 and the space is reduced to a locally Minkowski
space.

Next we shall find the condition for the space to be a Landsberg space;
ahij|0 = 0 from Proposition 1. The equation Gi

j = ∂̇jG
i yields immediately

G1
2 = (c02p− c31q

2/p)4c0. From yhahij|0 = yh(LChij|0) = 0 it follows that
it is sufficient for us to observe

a112|0 = −a111G
1
2 =

1
4p

(c31q
2 − c02p

2) = 0,

which implies c31 = c02 = 0 is necessary and sufficient for the space to be
a Landsberg space. This coincides with the condition for a Berwald space.
Cf. Theorem 3 and [10].

Remark. Wegener [10] was concerned with the stretch curvature ten-
sor of the above space. But it seems to the author that to find this tensor,
introduced by Berwald in 1927, needs long and complicated calculations.

Example 2 ([10], (9)). We consider the quite special cubic metric with
c0 = c2 = c3 = 0:

L3 = 3c(x, y)p2q.

This is expressed as L3 = βγ2, (β, γ) = (3cq, p). Thus Theorem 5 shows
that ε = −1, I2 = 1/2 and the space is a Berwald space.

We consider the condition for the space to be a locally Minkowski
space, that is, to have the vanishing Gauss curvature R.

First, putting ∂ic = ci, i = 1, 2, we get

(G1, G2) =
( c1

4c
p2,

c2

2c
q2

)
, (G1

1, G
2
2) =

( c1

2c
p,

c2

c
q
)

,

G1
1
1 =

c1

2c
, G2

2
2 =

c2

c
, other Gi

j , Gj
i
k = 0.

Consequently we get

R1
12 =

p

2
∂2

∂x∂y
log |c|, R2

12 = −q
∂2

∂x∂y
log |c|.

On the other hand, we have H = −(cp)2 and

(`i) = (2cpq, cp2)/L2, (mi) = m(−q, p), m2 =
2c

3qL
,

(mi) = m̄(−cp2, 2cpq)/L2, m̄ =
−1
mL

.
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Thus (3.5) leads to

R = − 3pq

2L2

∂2

∂x∂y
log |c|.

Therefore the space is a locally Minkowski space, if and only if
∂2(log |c|)/∂x∂y = 0, which shows that c(x, y) is of the separate form
c = h(x)k(y). Then L can be transformed into the form L3 = 3p̄2q̄.

Remark. The coefficient 2/3 of R given in [10] must be corrected to
3/2 as above.

Example 3 ([6]). The strongly spherically symmetric metric was con-
sidered as Example 2 and 5 in [6]; it is a quartic metric of the form

L4 = c0p
4 + 6c2p

2q2 + c4q
4.

Let us deal with this metric again. From (a1111, a1122, a2222) = (c0, c2, c4)
we have aij as follows:

L2(a11, a12, a22) = (c0p
2 + c2q

2, 2c2pq, c2p
2 + c4q

2).

The second Christoffel symbols {hijk, `} have been given in [6].
Suppose that the space be a Berwald space. Putting ∂jci = cij ,

i = 0, 2, 4; j = 1, 2, Theorem 1 yields

4(c0p
2 + c2q

2)G1 + 8c2pqG2

=
1
2
c01p

4 +
2
3
c02p

3q + c21p
2q2 + 2c22pq3 − 1

6
c41q

4,

8c2pqG1 + 4(c2p
2 + c4q

2)G2

= −1
6
c02p

4 + 2c21p
3q + c22p

2q2 +
2
3
c41pq3 +

1
2
c42q

4.

Substituting 2Gi = G1
i
1p

2 + 2G1
i
2pq + G2

i
2q

2, i = 1, 2, with Gj
i
k(x, y)

and comparing the coefficients of p4 p3q, p2q2, pq3 and q3, we obtain ten
equations as follows:

{
4c0G1

1
1 = c01, 12c2G2

1
2 = −c41,

4c4G2
2
2 = c42, 12c2G1

2
1 = −c02,

(1)

6(c0G1
1
2 + c2G1

2
1) = c02, 6(c2G2

1
2 + c4G1

2
2) = c41,(2)

2c2(G1
1
1 + G1

2
2) = 2c0G2

1
2 + 2c2(G1

1
1 + 4G1

2
2) = c21,(3)

2c2(G1
1
2 + G2

2
2) = 2c4G1

2
1 + 2c2(G2

2
2 + 4G1

1
2) = c22.(4)
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(i) Suppose c0c2c4 6= 0: Then (1) and (2) give

G1
1
1 =

c01

4c0
, G1

1
2 =

c02

4c0
, G2

1
2 = − c41

12c2
,

G1
2
1 = − c02

12c2
, G1

2
2 =

c41

4c4
, G2

2
2 =

c42

4c4
.

Then (3) and (4) can be written as

1
2

(
c01

c0
+

c41

c4

)
=

c01

2c0
+

2c41

c4
− c0c41

6(c2)2
=

c21

c2
,(3’)

1
2

(
c02

c0
+

c42

c4

)
=

c42

2c4
+

2c02

c0
− c4c02

6(c2)2
=

c22

c2
.(4’)

The first equations of (3’) and (4’) yield respectively

c41

{
9(c2)2 − c0c4

}
= 0, c02

{
9(c2)2 − c0c4

}
= 0.

(i-1) If 9(c2)2 − c0c4 = 0, then the right-hand side of L4 becomes a
perfect square and the metric is reduced to a Riemannian metric obviously.
Cf. Theorem 5; [6], Example 5, I = 0.

(i-2) If c41 = c02 = 0, then (3’) and (4’) are reduced to c01/c0 =
2c21/c2 and c42/c4 = 2c22/c2 respectively. Consequently we have c0 =
c0(x), c4 = c4(y) and (c2)2 = kc0c4 with a constant k 6= 0. Then L4 can
be written in a coordinate system (x̄, ȳ) as L4 = p̄4 + c̄p̄2q̄2 + q̄4 with
a non-zero constant c̄ and the space is a locally Minkowski space. Cf.
Theorem 5.

(ii) Suppose c2 = 0 and c0c4 6= 0: Then (1) leads to c0 = c0(x) and
c4 = c4(y). Thus L4 = c0(x)p4 + c4(y)q4, which is obviously a locally
Minkowski metric.

(iii) Suppose c4 = 0 and c0c2 6= 0: Then (1) and (2) give

G1
1
1 =

c01

4c0
, G1

1
2 =

c02

4c0
, G2

1
2 = 0, G1

2
1 = − c02

12c2
,

and (3) and (4) are written respectively as

G1
2
2 =

1
2

(
c21

c2
− c01

2c0

)
=

1
8

(
c21

c2
− c01

2c0

)
,

G2
2
2 =

c22

2c2
− c02

4c0
=

c22

2c2
− c02

c0
.
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Consequently we have c02 = 0 and 2c0c21 − c2c01 = 0, which lead to
c0 = c0(x) and (c2)2 = c0g(y). Therefore we have

L4 = c0(x)p4 + 6{c0(x)g(y)} 1
2 p2q2,

which is obviously transformed into a locally Minkowski metric: L4 =
p̄4 + 6p̄2q̄2.

(iv) Finally we suppose c0 = c4 = 0 and c2 6= 0: Then we have a
(quasi-)Riemannian metric: L4 = 6c2p

2q2. Cf. [6], Example 5, I = 0.
Summarizing all the above we have

Proposition 3. If the strongly spherically symmetric Finsler space of
dimension two is a Berwald space, then it is a Riemannian space, or a
locally Minkowski space:

Riemannian space:

(1) 9(c2)2 = c0c4, or

(2) c0 = c4 = 0,

Locally Minkowski space:

(1) c0 = c0(x), c4 = c4(y), (c2)2 = kc0c4, k = 0, or non-zero
constant,

(2) c0 = 0, c4 = c4(y), (c2)2 = c4f(x),
(3) c4 = 0, c0 = c0(x), (c2)2 = c0g(y).

§5. Three-dimensional Berwald spaces with cubic metric
of the normal form

The first half of the third section of Wegener’s paper [10] is devoted
to making a list of Berwald spaces and locally Minkowski spaces with cubic
metric of the normal form. We again consider this subject throughly and
show that Berwald spaces with important and typical metric are omitted
from his list.

All cubic metrics of dimension three are divided into the following
six classes of the normal forms: In the abbreviations (xi) = (x, y, z) and
(yi) = (p, q, r)

(I) L3 = c1p
3 + c2q

3 + c3r
3 + 6bpqr, c1c2c3b 6= 0,

(II) L3 = c1p
3 + c2q

3 + c3r
3, c1c2c3 6= 0,

(III L3 = c1p
3 + c2q

3 + 6bpqr, c1c2b 6= 0,
(IV) L3 = c1p

3 + 6bpqr, c1b 6= 0,
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(V) L3 = 6bpqr, b 6= 0,
(VI) L3 = 3apr2 + bq3, ab 6= 0,

where c1, c2, c3, a and b are functions of (x, y, z).
The metrics belonging to (I)–(V) can be written together in the form

(5.1) L3 = c1p
3 + c2q

3 + c3r
3 + 6bpqr,

where some of the coefficients may vanish, but they must satisfy the reg-
ularity condition det(aij) 6= 0; we have Laii = ciy

i and Laij = byk,
i, j, k = 1, 2, 3, 6=, so that

(5.2) det(aij) =
(
c1c2c3 + 8b3

)pqr

L3
− b2 6= 0.

The second Christoffel symbols of three dimensions are of the following
six types:

(5.3)





4{iii, i} = 2∂iaiii, 4{iii, j} = 3∂iaiij − ∂jaiii,

4{ijj, i} = 2∂jaiij , 4{ijj, j} = ∂iajjj + ∂jaijj ,

4{ijj, k} = ∂iajjk + 2∂jaijk − ∂kaijj ,

4{ijk, k} = ∂iajkk + ∂jaikk, i, j, k = 1, 2, 3, 6= .

We shall research the condition for the Finsler spaces with cubic metric
above to be a Berwald space. We have already the condition in the form

(5.4) 2{ijk, h} = ahirGj
r
k + (i, j, k), i, j, k, h = 1, 2, 3.

We shall write down (5.4) for the metric (5.1): If we put ∂jci = cij and
∂jb = bj , then (5.3) gives

{iii, i} =
1
2
cii, {iii, j} = −1

4
cij , {ijj, i} = 0,

{ijj, j} =
1
4
cji, {ijj, k} =

1
2
bj , {ijk, k} = 0,

i, j, k = 1, 2, 3, 6= .

Consequently (5.4) for (5.1) is written as

(5.5)





(1) 3ciGi
i
i = cii, (4) 2bGj

k
j + 4cjGi

j
j = cji,

(2) 6bGi
k
i = −cij , (5) b(Gj

j
j + 2Gi

i
j) = bj ,

(3) ciGj
i
j + 2bGi

k
j = 0, (6) b(Gi

i
k + Gj

j
k) + ckGi

k
j = 0,

i, j, k = 1, 2, 3, 6= .
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(I) We are concerned with the metric (I). Then (1)–(4) of (5.5) give
immediately

Gi
i
i =

cii

3ci
, Gi

k
i = −cij

6b
, Gi

j
j =

cji

3cj
, Gi

k
j =

cicjk

12b2
.

From Gi
k
j = Gj

k
i it follows from the last one that cicjk = cjcik. Hence

we must have quantities dk such that cjk = cjdk Thus we have

(5.6-I)





Gi
i
i =

cii

3ci
, Gi

k
i = −cidj

6b
,

Gi
j
j =

di

3
, Gi

k
j =

cicj

12b2
dk,

i, j, k = 1, 2, 3, 6= .

The remaining equations (5) and (6) of (5.5) are written as

cjj

cj
+ 2dj =

3bj

b
,(5’)

(cicjck + 8b3)dk = 0.(6’)

(I1) We treat of the simple condition dk = 0 from (6’). Then cik (=
∂kci) = 0, so that ci = ci(xi), i = 1, 2, 3, and (5’) shows b3/c1c2c3 =
k3 (const.). Consequently L3 is written as

L3 = c1(x)ẋ3 + c2(y)ẏ3 + c3(z)ż3 + 6k(c1c2c3)1/3ẋẏż,

which can be transformed into the form L3 = p̄3+ q̄3+ r̄3+6kp̄q̄r̄ in a coor-
dinate system (x̄i). Therefore the space is reduced to a locally Minkowski
space.

(I2) We treat of the remarkable condition cicjck + 8b3 = 0, i, j, k =
1, 2, 3, 6=, from (6’). If we differentiate this by yi, then cik = cidk and
cicjck = −8b3 yield (5’) immediately.

Now cik = cidk shows that dk is a gradient vector which may be
written as dk = ∂kd, and, as a consequence, ∂k(log |ci| − d) = 0, i, j, k 6=.
Thus we have log |ci| − d = gi(xi). Therefore, putting egi = fi(xi), we
obtain

(5.7)

{
ci = edfi(xi), i = 1, 2, 3; d = d(x1, x2, x3),

8b3 = −e3df1f1f3.

We have now L of the form

L3 = ed
{

f1(x)ẋ3 + f2(y)ẏ3 + f3(z)ż3 − 3(f1f2f3)1/3ẋẏż
}

.
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Hence there exists a coordinate system, which is written as (xi) again,
such that L is of the form

(5.7’) L3 = eσ(ẋ3 + ẏ3 + ż3 − 3ẋẏż), σ = σ(x, y, z).

Thus this L is conformal to the typical Minkowski metric

(5.8) (L0)3 = ẋ3 + ẏ3 + ż3 − 3ẋẏż.

It is noted that Gj
i
k of (5.7’) are written as

Gi
i
i = Gj

k
j = Gi

j
j = Gj

i
k =

σi

3
,(5.6-I2)

i, j, k = 1, 2, 3, 6=; σi = ∂iσ.

(II) It follows from (2) of (5.5) that we have cij = 0, i, j = 1, 2, 3, 6=.
Hence the metric is written in the form L3 = c1(x)ẋ3 + c2(y)ẏ3 + c3(z)ż3,
which is clearly a locally Minkowski metric.

(III) In this case (5.5) yields

Gi
i
i =

bi

b
, i = 1, 2, 3; other Gj

i
k = 0,

cij = 0,
3bi

b
=

cii

ci
, i, j = 1, 2, 6= .

Consequently we have c1 = c1(x), c2 = c2(y) and b3 = c1c2w(z) with
a function w(z). Therefore the space is reduced obviously to a locally
Minkowski space.

(IV) Similarly we get

Gi
i
i =

bi

b
, i = 1, 2, 3; other Gj

i
k = 0,

c12 = c13 = 0,
c11

c1
=

3b1

b
.

Consequently we have c1 = c1(x) and b3 = c1g(y, z) with a function g(y, z).
Therefore we obtain Berwald spaces with L such that

(5.9) L3 = c1(x)ẋ3 + 6bẋẏż, b3 = c1(x)g(y, z).

(V) In this case (5.5) yields only

Gi
i
i =

bi

b
; other Gj

i
k = 0.
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Therefore the spaces with the metric (V) are Berwald spaces without any
condition.

(VI) For this exceptional case we put a133 = a and a222 = b. Denoting
∂ia = ai and ∂ib = bi, the surviving second Christoffel symbols are as
follows:

2{113, 3} = a1, 4{122, 2} = −4{222, 1} = b1,

4{233, 1} = 4{123, 3} = −4{133, 2} = a2, 2{222, 2} = b2,

4{133, 3} =
4
3
{333, 1} = a3, 4{223, 2} = −4{222, 3} = b3.

Then the condition (5.4) gives only

a2 = b1 = b3 = 0; G1
1
1 =

a1

2a
, G2

2
2 =

b2

6b
, G3

3
3 =

a3

4a
,

and other Gj
i
k = 0. Therefore the spaces are Berwald spaces, if and only

if a = a(x, z) and b = b(y).
Thus we have found all Berwald spaces with the metric belonging to

(I)–(VI). Summarizing up we have

Proposition 4. The three-dimensional Finsler spaces with cubic met-

ric of the normal forms (I)–(VI) are Berwald spaces, if and only if

(I1) c1 = c1(x), c2 = c2(y), c3 = c3(z), b3 = kc1c2c3,

k = const. 6= 0. The spaces are locally Minkowski.

(I2) c1 = edf1(x), c2 = edf2(y), c3 = edf3(z), d = d(x, y, z),
8b3 =−e3df1f2f3. The metrics are conformal to a Minkowski

metric (ẋ3 + ẏ3 + ż3 − 3ẋẏż)1/3.

(II) c1 = c1(x), c2 = c2(y), c3 = c3(z). The spaces are locally

Minkowski.

(III) c1 = c1(x), c2 = c2(y), b3 = c1c2w(z). The spaces are locally

Minkowski.

(IV) c1 = c1(x), b3 = c1g(y, z).

(V) The spaces are Berwald spaces with the metric conformal to
a Minkowski metric (ẋẏż)1/3.

(VI) a = a(x, z), b = b(y).
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Remark. (I2) and (V) give interesting Berwald spaces, because they
are conformal to typical Minkowski metrics

(ẋ3 + ẏ3 + ż3 − 3ẋẏż)1/3, (ẋẏż)1/3,

respectively. In particular, the former is interesting, though Wegener
[10] failed to find it . In the first half of 1940’s J. Devisme and P. Humbert
considered the geometry based on this metric [5].

We shall find the condition for the spaces above to be a locally Min-
kowski space. It is well-known ([3], Theorem 24.5; [1], Corollary 3.1.3.1.)
that a Berwald space is a locally Minkowski space, if and only if the (v)h-
torsion tensor Ri

jk vanishes.
(I2) It is sufficient to be concerned with the metric (5.7’) with Gj

i
k

given by (5.6-I2). Then we get

Gi
i =

1
3

(
σiy

i + σjy
j + σkyk

)
, Gi

j =
1
3

(
σjy

i + σkyj + σiy
k
)
,

i, j, k = 1, 2, 3, 6= .

Hence Gi
i
rG

r
j − Gj

i
rG

r
i = 0 and Gi

k
rG

r
j − Gj

k
rG

r
i = 0 are easily shown.

Then we get

Ri
ij = ∂jG

i
i − ∂iG

i
j =

1
3

{
(σjj − σki)yj − (σii − σjk)yk

}
,

Ri
jk = ∂kGi

j − ∂jG
i
k =

1
3

{
(σkk − σij)yj − (σjj − σik)yk

}
.

Consequently the space is locally Minkowski, if and only if σ(x, y, z) sat-
isfies

(5.10) ∂i∂iσ = ∂j∂kσ, i, j, k = 1, 2, 3, 6= .

We consider this condition (5.10) in detail. It is first remarked that

p3 + q3 + r3 − 3pqr = (p + q + r)(p + ωq + ω2r)(p + ω2q + ωr),

where ω =
(−1 +

√
3 i

)
/2. Thus we have

(p + ωq + ω2r)(p + ω2q + ωr) = {p− (q + r)/2}2 + (3/4)(q − r)2.

This suggests that we should consider the coordinate transformation
(x, y, z) → (u, v, w) such that

u = x + y + z, v = x− 1
2
(y + z), w =

(√
3/2

)
(y − z).
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In (u, v, w) we have the metric L under consideration of the form

(5.7”) L3 = es
{
u̇(v̇2 + ẇ2)

}
, s = s(u, v, w),

and it is easy to show that (5.10) is written in the form suv = suw = 0
and svv + sww = 0. Thus we have

(5.10’) s = f(u) + g(v, w), gvv + gww = 0.

Hence g(v, w) is a harmonic function. Consequently the metric is of the
form

(5.11) L3 =
{

ef(u)u̇
}{

eg(v,w)(v̇2 + ẇ2)
}

.

Since g(v, w) is harmonic, the curvature of the two-dimensional Riemann-
ian space with ds2 = eg(dv2 + dw2) vanishes. Therefore we have a coordi-
nate system (v, w) in which eg(v̇2 + ẇ2) = v̇2 + ẇ2, and it is obvious that
the metric (5.11) is certainly locally Minkowski.

We shall turn to the discussion of the Berwald spaces belonging to
(IV), (V) and (VI). They have such a similar property as follows: The
surviving components of Gj

i
k are Gi

i
i, i = 1, 2, 3, only. Thus the surviving

components of Ri
jk are Ri

ij = (∂jGi
i
i)yi. Consequently the conditions

under consideration are easily given as follows: (IV) b3 = c1(x)v(y)w(z),
(V) b = u(x)v(y)w(z), (VI) a = u(x)w(z).

Summarizing up we have

Proposition 5. The conditions for the Berwald spaces with cubic met-

ric belonging to (I2), (IV), (V) and (VI) to be locally Minkowski are as

follows:

(I2) L3 = eσ(ẋ3 + ẏ3 + ż3 − 3ẋẏż), ∂2
xσ = ∂y∂zσ, ∂2

yσ = ∂z∂xσ,

∂2
zσ = ∂x∂yσ. Then the metric can be written in a coordi-

nate system (u, v, w) as L3 =
{
ef(u)u̇

}{
eg(v,w)(v̇2 + ẇ2)

}
,

g(v, w) being a harmonic function.

(IV) b3 = c1(x)v(y)w(z),

(V) b = u(x)v(y)w(z),

(VI) a = u(x)w(z).
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