On functions satisfying Re [ﬂzi)] >

By R. M. GOEL (Patiala)

Let S, denote the class of functions
(1) J@) = z+a,22+--+a,z"+ -

which are regular analytic in the unit disc |z/<1 and satisfy the condition

) Re [f‘;)] ~x  (0=x<1) for |z|<I.
In a recent paper [1] K. YAMAGUCHI has proved that if f(z)€ S,, then
(3 Re[f’(2)] = 1-2r—r7 for 0=r<)2-1, z=re®
) e T or =r< y Z2=re".

In the present paper, we increase the constant J2 —1 to 4. We shall however,
consider a class 7, of functions belonging to the class S, with the additional condi-
tion that the second coefficient a, is fixed. Without loss of generality we may assume
a, =0 since e~ "f(ze") belongs to T, whenever f(z) belongs to 7.

Let P denote the class of regular, analytic functions in the unit disc |z| =1 whose
real part is positive and which take the value 1 at the origin,

We need the following

Lemma. If p(z) € P and |p’(0)|=2b=0 then
) Re [p(2) +27'(2)] = - ‘(141—22;%1)‘,1‘, |
Jor 0= |z|<r, where r, is the smallest positive root of
(5) 1—3r2=2br3 =0
The result is skarp.
PRrOOF, Since p(z) € P, we can express it in the form

_ 1-0()
(6) | p(z) = l+r5(£)_
where w(z) is regular analytic in |z| < 1 and satisfies the conditions @ (0)=0, |®'(0)| =5
and lw(z)|<1.
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Using (6) we obtain
' —w(z) 2:0(2)
s PO+ D) = T - (1 +o@)

Such functions @(z) are known [3, p. 167] to satisfy the inequalities

r(b— » r(b+r)
®) 00 = o) = 22D
Let
©) o) = 2
then ¢(z) is analytic in [z| =1 and satisfies the inequality [2, p. 18]

!
(10) @l =20 for 2l <1
From (9) and (10) we get ik
2
(a1 W @-0@| = 2O oy
(7) gives in conjunction with (11)
1 2(r2—|w(2)?

(12 Relp@+z'@]= —1+2Re | s |~ i v eGP

which on substituting
1

(13) w,(2) = T :u_(;:)
reduces to
2 S 2
(14 Re[p(z)+ 27’ ()] = — 1 +2 Re i —2 11! —H—0[)
KE=r)
In view of the second inequality in (8) it is easy to see that
O
(12) 0@~ | =3

However, because of the first inequality in (8) all values in the interior of the circle
given by the (15) are not taken.
Putting @,(z) = u+iv and then denoting the right hand side of (14) by S(u, v)
we get
l +r? 4u
e G e + 42,

which shows that S(u, v) is a function of u only, say M(u). The absolute minimum

(16) S(u,v) =

of M(u) in (0, =) is attained at u, and equals

~ 1
~2(1-r?)
—rt
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Since w(z) is real whenever w, (z) is real, we have

IERRET I PR ..
~ 1+Rew(z) = 1—r2

and
1 &, 1+ br

= 1TRew@) = T+2br+r2’

where we have used the inequalities

—r(b+r) r(b+r)
b = Rew(z) = T
. 1+br " 1+br
It is easy to see that u, <= 13 but u, is not always greater than Ti o5 s"

25 5 14br 1+0r] .
In the latter case the minimum of M () in the segment T+ 42 1 ...j-'i] is

1+ br

attained at u = T i and equals

1+ br 1—4r2—4br3—r*
(18) M[l+2br+r2] T (1 +2br+r??
(18) will hold for those values of r for which

1 & 1+ br

2(1=r3) — 1+42br+r?
that is,
(19) 1-3r2-2br* = 0.

Since (19) holds at r=0 but it does not hold at r=1. Hence the minimum
value 518) is acceptable for 0=r<=r, where r, is the smallest positive root of 1 —3r2—
—2br® =0,

Inequality (4) follows from (18).

The equality sign in (4) is attained for the function

1—2z2

) PO =13+

Il
¥

This completes the proof of the lemma.
Remark. From (17) we find that
Re[p(z)+2p'(2)] = a=r?) for ro=r=l,

but the bound is not sharp.

8 D
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Theorem 1. If f(2) € T,, then
Qx—1)r*+4bQx—1)r? +(—4+ 62 +4ab”)r* + dabr + 1
(1+2br+r?)?

Jor 0=r<ry, |z|=r, a;=2b and r, is the smallest positive root of 1 —3r?—2br* = 0.
The bound is sharp.

PRrOOF. Since f(z)€ T,, Re [@] > o and hence

(21)  Re[f'(2)] = -

22) A2 o o

where p(z)€ P. Differentiating (22) we obtain
1) = a+(1=2)[p(2)+2p"(2)).

The theorem now follows easily on using the above lemma. The extremal
function is given by

ok 2
f(z) = 2(1+2baz + (22 : 1)z2)

Corollary 1. 1. If f(z)€ S, then on putting b=1 in (21) we have

—_ 2 —
(2e—1)r*+2Q2« l)f-l-_I for OEF-:-]—.

(23) Re[f'(2)] = T .

The bound is sharp.
On putting =0 in (23) we get

1—2r—r2 1
24 J —_— = - —
(24) Ref'(z) = d+r) for 0=r 5
Corollary 1. 2. On putting b=0 in (21) we obtain
ey Se= N+ Ga=4)r" +1 PR
(25) Ref {2) e (I. +_!:2)2 fO]' 0 =)y < }—3_.

This is the sharp estimate for odd functions f(z) = z+ayz*+... such that
Re [j(zz)] = o since an odd function has vanishing even coefficients and the extremal

function in this case reduces to f(z) = z(1+(2x—1)z?)/(1+2?).
We shall now consider some applications of Theorem 1.

Theorem 2. If f(z)€ T,, then

(26) f(z) is univalent in |z|<ry, for ,

Eézx-cl;
and

27 f(z) is univalent in |z|<min(ry,r,) for O0=a= ; :
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where ry, and r, are the smallest positive roots of 1—3r*—2br* = 0 and

(20— 1)r*+4b(2a— 1)r* +(—4+ 6o +4ab?)r? +4abr+1 = 0
respectively.

Proor. It is easily seen that for %—éz-ﬁl, right hand side of (21) is always

positive and consequently Re f'(z)<0 for |z|<r,. For 0=a< ; , Re f’(z)=0 pro-

vided
K(r) = Qu—1)*+4bQ2a—1)r3 +(—4+6x+4ab?)r* +4abr+1 = 0.

Let r, denote the smallest positive root of K(r)=0. Then Ref’(z)>0 for |z|<
<min (ry, ry).

Theorem 2. now follows immediately from the following well known Wolff—Nos-
hiro Lemma: If f(z) is analytic in |z]<=R and Re f"(z)=0 in |z| <R, then f(2) is uni-
valent in |z]<=R.

2—2u

Corollary 2. 1. If f(z)€S,, then f(z) is univalent in IZI{V_I_-vZ__I for

[IA

1
0=x 0"
The result follows by combining Theorem 2 with Corollary 1. 1.

Theorem 3. If f(z) = z+a,z2+---+a,z"+--- belongs to S,, then the partial
sums
S,(2) = z+ayz?+--+a,z" (n=23,..)

; . 1
are univalent in |z| < for 0 =o = L

|
4(1 —a)
ProOF. The function

(28) p(2) = f(z’/za Smid lia @22 +a3 22+ ...)

belongs to P. Hence, by Caratheodory — Toeplitz’s theorem

(29) la,| = 2(1—a) (n=2,3....).
Now

Re[S,(z)] = Ref(z)—Re WE' Y s '] .
m=n+1
which gives together with (23) and (29)

Qa—1)r*4+2Qx—r+1  2(1—x)@+1—nr)r" i
ERUEY fiips -

o 2— 20:
Iy = 4“_3) = [l/ ] then

(n+1—=nr)r" = (5—4ary* n=4.75 ...).

Re([S,(2)] =

8*
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1
and hence for r =

4(1 —m)’
, 7— 6 (4—5%) A A
ReS,(2) = B—;—%)i‘ 8(1 _a)2(3_4a)2 >0 for O0=sa= 10 and n = 4.

The real part of S,(2) is harmonic function and therefore by the principle of
minimum modulus we have

1 1
£ P = .
Re S,(z) = 0 for |z‘“4(l—:x)' n=4 0=aq= 0"
The theorem is thus proved for n=4.
Let us now consider the case n=2,
We have by (29)
Re S3(z) = Re(1 +24,z) = 1 -4(1 —a)|z| = 0 for |z| < I(IIT:)'

Finally we consider the case n=3.

Let p(z) = 1 +p,z+p,2*+... belong to P, then by Caratheodory—Toeplitz's
theorem we have
(30) 2p2—pi| = 4—|p: .
Let

- 1
e =3 e S foris o AP ARE
c=2p,—pi, prz=0o+if, Vez=y+i¥, || T

Then on substituting the power series expansion for p(z) in (28) we obtain

S3(z) = z+a,z2+ayz3 = z+p, (1 —a)z? +p, (1 —2)z3.
Therefore,

S3@2) = 1+(1—-a)(2py 2+ 3p,2%) = 1 +(1 —2a) 2p,z+-§ (c+p§)zz].

Re S5(z) = 1+(1 —a) [2a‘+%(y'2—6’2)+ ; (a'z_ﬁ'z)l -

L "y ’ 3 ’2 3_ 2 3 ’2_3 2 ’2 -
= 1+4(l :z)IZa +5a —213 +2'p —2—(|cz|—}' N=

W 3 ’ 3 ’ 3 ’ 3 4— 2 o
= tra-ofwrder-F o -G gl - =
3 3 3 ool A 1 ; . )
=R 2“'*‘2““’2“:"""*2v’-i[«r_'a)raz-ﬁ’—}' ’]I &

3 — 3 » *2
W = l——s(l _a)‘f*“ —C!)[zx +31 ]E

7 — 80 — 82 1
Embo fOr Oza:TO'_-

=1+(l—a) [2/.2’+3a’2+37'3—
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To show that the result is sharp, consider the function

@)=z llL(ll_—ZZa)zJ =z+2(l—a)z?+...

which belongs to S,. For this function
S,(2) = z+2(1 —a)z2,

' 1
and $2z2) =0 when :z= —-4—(—1—_?) g
This completes the proof of the theorem.
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