Valued vector spaces of countable dimension

By RON BROWN (Burnaby)

The structure theory of valued vector spaces ([2], [S]) is especially simple for
those of countable dimension; indeed, they are completely determined by their
associated graded vector spaces. In this note') we prove the above assertion, and
illustrate it with applications to reduced p-primary abelian groups, linearly ordered
abelian groups, and the square factor groups of certain valued fields.

Let G be an additively written abelian group, and let A be a linearly ordered
set. Let v:G — Al {e=} be a valuation on the group G; that is, for all @, b€ G we
have v(a+b) = inf {v(a). v(b)}, v(a) = v(—a), and v(a)=- if and only if a=0.
(== is a formal symbol with == 4 for all A€ A.) v determines a A-filter on G

G,={acGlv(a)= 4} (A€ A)

and thence a A-graded group (by which we simply mean a family of groups indexed
by 4)
AQG_—‘G;'/US;.;_G‘Q (AEA).

Finally, we let 2AG denote the valued group
2;c44,6G

where the valuation maps each nonzero element of the direct sum to the least A€ A
at which it is nonzero,

We say G is a valued vector space when in addition to being a valued group it
is a vector space with v(a)=v(ra) for all @€ G and all nonzero scalars r. If G is a
valued vector space, we may regard XAG as a valued vector space. Note that any
valued group of prime exponent p may be regarded as a valued vector space over
the field with p elements.

Proposition. Suppose G is a valued vector space of countable dimension. Then
G is isomorphic as a valued vector space to ZAG.

PROOF. Let b,,b,,...,b,,... be a basis for G (possibly finite). One checks
that a set of elements of G taking distinct values in A (that is, on which v is injective)
is linearly independent (use that v(a+b)=v(a) whenever v(a) <v(b)). Hence, for each n
there is an element of maximal value among those elements in the span of {b,, ..., 5,}
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which are not in the spanof {b,, ..., b,_}: pick such an element @,. Then a,, a,, ...,
a,. ... is a basis for G. Further, for any scalars r;

v(Zr;a;) =min {v(a;)|r;# 0}.

For each A€ A, let m; denote the composition of the canonical homomorphism
G; ~4,G with the injection 4,G —~24G. We obtain the desired isomorphism by
mapping each g; to m,,,(@;), and extending this map linearly to all of G. The proposi-
tion is proved.

We now illustrate the proposition with several applications. We will denote by
AG the graded group of the valued group G.

1. Suppose G is a reduced p-primary abelian group. The height function (defined
into a suitably large set of ordinal numbers A) is a valuation on the group G (cf.
[7], p. 28). Restricting the height function to the set of elements of G of exponent p,
call it P, makes P into a valued vector space. Knowledge of the graded vector space
AP=(4,P),. 4 is equivalent to knowledge of the Ulm invariants of G (for each 4, P
is determined as a vector space by its dimension, which is simply the /-th Ulm
invariant of G).

It is interesting that in several cases in which G is known to be determined by
its Ulm invariants, P is isomorphic as a valued vector space to X4P. For example,
if G is countable, then the proposition says P is isomorphic to Z4P, while Ulm’s
theorem says G is determined by its Ulm invariants. For other examples, consider
the case when G is a direct sum of countable groups [8], or when P is the union of
an ascending chain of groups of bounded height ([7], p. 25). In general, 4P does
not determine P as a valued vector space; this is one reason that G is not in general
determined by its Ulm invariants, An unanswered question is whether it is the only
reason; that is, whether the valued vector space P is a determining invariant for G.

2. Now suppose G is a linearly ordered abelian group. For each a¢€G let v(a)
denote the convex (="*‘isolated™) subgroup of G generated by a (i.e. the set of b€G
with —na=b=na for some integer n). Then v may be regarded as a valuation on
the group G (note that {v(a)|ac G} is linearly ordered by inclusion). If G is divisible
(i.e. nG=G for all natural numbers n), then G may be regarded as a valued vector
space over the rational numbers.

Now assume G is countable. By the proposition there is a value preserving
isomorphism @:G —~XAG. For each A€ A, give A,G the Archimedean linear order
induced by @ and G (an element of 4, G is positive if and only if it is the image of a
positive element of G, under the composition of @ with the projection 24G ~ 4, G).
Then @ is easily seen to be an order isomorphism, where we give ZAG the lexico-
graphic order (i.e. a formal sum

Z;64:€2;¢44,G
is positive if a, is positive, where y=min {4/a; #0}). Since by Holder’s theorem 4, G
is order isomorphic to a subgroup of the additive group of real numbers, we have
shown:

Let G be a divisible countable linearly ordered abelian group. Then G is order
isomorphic to a lexicographic direct sum of subgroups of the real numbers.

A similar application of the proposition to ordered vector spaces over the real
numbers yields Theorem 3. 5 of [3].
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3. We mention an application of the proposition, appearing in [1]. Let v be a
valuation on a field F (in the usual sense). We suppose F does not have characteristic
two, and further, that the residue class field of v is perfect if it has characteristic
two. Let F* denote the multiplicative group of nonzero elements of F, and F*/F*?
its square factor group.

If F with v has no immediate quadratic extensions (e.g. F is “algebraically
complete” in the sense of Ersov [4]), then F*/F*2 naturally (but nontrivially) takes
the structure of a valued vector space (the valuation takes each coseta- F*2¢ F* |F*?
to the maximum of {v(1—b)bea-F*2}). Thus if F has no immediate quadratic
extensions and F (or even F*/F*?) is countable, then F*/F*2 is isomorphic as a
valued vector space to Z4(F*/F*?). Further, A(F*/F*?) can be explicitly calculated;
it turns out to depend only on the value group of v, the image of 2 in the value group,
and the residue class field of v. (For all details see [1], Remark (5. 6).)

4. A final example. Suppose G is any valued vector space. For simplicity, let
us suppose that ZAG has countable dimension. Denote by HAG the well-ordered
product of the family AG (see [5]; briefly, HAG is the set of maps in the direct product
IT,. ,4,G which are zero except on a well ordered subset of A. HAG is made into
a valued vector space by assigning to each nonzero element the least A€ A at which
it is nonzero). It is well known ([2], p. 11) that G can be embedded as a valued vector
space into HAG: further, various restrictions can be placed on this embedding and,
in particular, on its image (sec [6], Theorem (3. 1), which can be easily set into the
language of valued vector spaces). Our proposition gives some idea of how arbitrary
this image can be even with additional restrictions on the embedding. For if G has
countable dimension, then it is isomorphic as a valued vector space to every sub-
space of HAG of countable dimension which contains ZAG!

Some acknowledgements are called for., The author thanks Professor D. K.
HARRISON for a very helpful conversation and, in particular, for the “unanswered
question™ of the first application. The method of proof of the proposition — insofar
as there is one — is at least implicit in the proof of Theorem 3. 5 of [3]. The techniques
of the second application are quite standard (e.g. [2]).

Added in proof: F. RiICHMAN has given. among other things, a negative answer
to the question posed in the first application above (see Extensions of p-bounded
groups, Arch. Math. 21 (1970), 449—454). wa
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