Local growth of the number of prime divisors of consecutive integers

By I. KÁTAI (Budapest)

1. Let $\omega(n)$ denote the number of the different prime factors of n. Similarly, let $\Omega(n)$ be the number of all the prime factors of n each counted by ts multiplicity. Let d(n) be the number of divisors of n.

As it is well known, $\omega(n) = (1+o(1)) \cdot \log\log n$ holds for all n except a set of zero density.

We shall investigate now the maximal term of $\omega(n+1), \ldots, \omega(n+k)$.

$$(1.1) O_k(n) = \max_{j=1,\dots,k} \omega(n+j),$$

$$o_k(n) = \min_{j=1,\dots,k} \omega(n+j).$$

Let $\psi(z) = z \log \frac{z}{e} + 1$ be defined for $z \ge 1$, and $\varrho(u)$ denote its inverse function $(n \ge 0)$.

I guess that the inequality

(1.3)
$$1 - \varepsilon \le \frac{O_k(n)}{\varrho\left(\frac{\log k}{\log \log n}\right) \log \log n} \le 1 + \varepsilon$$

holds for almost all n, uniformly in k (=1, 2, ...), ε being an arbitrary positive constant.

At this time, I can prove only the right hand side of (1.3), i.e.

Theorem 1. For every constant ε <0 and for all n except a set of zero density the inequalities

(1.4)
$$O_k(n) \leq (1+\varepsilon)\varrho\left(\frac{\log k}{\log\log n}\right)\log\log n,$$

(4.5)
$$O_k(n) \le \left\{ \varrho \left(\frac{\log k}{\log \log n} \right) + \varepsilon \right\} \log \log n$$

hold uniformly in k.

172 I. Kátai

We shall prove only (1.4), the proof of (1.5) is similar. We use the notation $x_1 = \log x$, $x_2 = \log x_1$, $x_3 = \log x_2$. The letters A, B, C denote suitable positive constants not necessarily the same at every occurrence; p will denote prime numbers.

 $D(x,z) = \sum_{n \le x} z^{\omega(n)}$ $(z \ge 1)$.

We prove the inequality

$$(1.6) D(x,z) \le B[(z-1)x_2]^4 x_1^{z-1} (x>10)$$

Assume that x is large enough. Let A be such a large integer that

$$\sum_{p \le x^{1/A}} \frac{1}{p} \le x_2$$

holds. The symbol Q_r denotes a general square free integer having exactly r prime factors. Since for $Q_r \le x$, Q_r has at most A prime factors greater than $x^{1/A}$ we have

$$\begin{split} & \sum_{Q_r \leq x} \frac{1}{Q_r} \leq \frac{1}{(r-A)!} \left(\sum_{p \leq x^{1/A}} \frac{1}{p} \right)^{r-A} \left(\sum_{p \leq x} \frac{1}{p} \right)^{A} < \\ & < \frac{1}{(r-A)!} (x_2 + B)^A x_1^{r-A} < \left(1 + \frac{B}{x_2} \right)^A \frac{1}{(r-A)!} x_2^r. \end{split}$$

Using the relation

$$z^{\omega(n)} = \sum_{r=0}^{\infty} \sum_{Q_r \mid n} w^r, \qquad w = z - 1,$$

we have

$$D(x,z) = \sum_{r=0}^{\infty} \sum_{Q_r \le x} w^r \left[\frac{x}{Q_r} \right] \le x \sum_{r=0}^{\infty} w^r \sum_{Q_r \le x} \frac{1}{Q_r}.$$

So by (1.7) we obtain

$$D(x,z) < Bxx_2^A w^A \sum_{r=A}^{\infty} \frac{w^{r-A}x_2^{r-A}}{(r-A)!} = Bxx_2^A w^A x_1^w,$$

which was desired.

Let M(x, z) be the number of those $n, \le x$ for which $\omega(n) > zx_2$. Let $\eta > 0$ be an arbitrary constant. By (1.6) we have

$$M(x, z(1+\eta))z^{z(1+\eta)x_2} \leq Bx[(z-1)x_2]^A x_1^{z-1},$$

whence

$$(1.8) M(x, z(1+\eta)) \leq Bx[(z-1)x_2]^A \cdot x_1^{z-1-z(1+\eta)\log z(1+\eta)}.$$

Instead of (1.4) we prove that

(1.9)
$$O_k(n) \le (1+\varepsilon)\varrho \left(\frac{\log k}{x_2}\right) x_2$$

for all $n, \le x$ except at most o(x) of n's.

Let $z=1+\varepsilon'$, $\eta=\varepsilon'$, ε' be a small positive constant. By (1.8) we have $M(x,(1+\varepsilon')^2) \leq Bx[\varepsilon'x_2]^A x_1^{\varepsilon'-(1+\varepsilon')^2\log(1+\varepsilon')^2} < Bxx_1^{-\varepsilon'/2}.$

Let k_0 be such an integer that

$$\frac{\log k_0}{x_2} < \frac{\varepsilon'}{\varepsilon}.$$

Then

$$(1.10) k_0 M(x, (1+\varepsilon')^2) < Bx \cdot x_1^{-\varepsilon'/\varepsilon}.$$

Hence it follows that $\max_{k \le k_0} O_k(n) \le (1+\varepsilon')^2 x_2$ except o(x) of *n*'s. Choosing $(1+\varepsilon')^2 < (1+\varepsilon)$, we obtain that (1.9) holds, if $\frac{\log k_0}{x_2} \le \frac{\varepsilon'}{3}(\varepsilon' > 0)$.

Let now $(\log k)/x_2 \ge \varepsilon'/3$, $k = x_1^{\Psi(z)}$, i.e. $z = \varrho\left(\frac{\log k}{x_2}\right)$. Observing that

$$[x_2(z-1)]^A < x_1^{(\eta/2)z\log z}$$
 for all large $x, z > 1 + \frac{\varepsilon'}{3}$,

we have

$$(1.11) kM(x, z(1+\eta)) < Bx \cdot x_1^{-(\eta/2)z \log z}$$

Let

$$k_m = [m^{4/\eta}] + 1$$
 $z_m = \varrho \left(\frac{\log k_m}{x_2} \right), \quad \psi(z_m) = \frac{\log k_m}{x_2}.$

Since

$$z \log z = \psi(z) + z - 1 \ge \psi(z) \qquad (z \ge 1).$$

from (1.11) we deduce

$$(1.12) k_m M(x, z_m(1+\eta)) < Bx k_m^{-\eta/2} < Bx \cdot m^{-2}.$$

Hence

$$\sum_{\log k_m \leq (\varepsilon'/3)x_2} k_m M(x, z_m(1+\eta)) = o(x).$$

Taking $\eta = \varepsilon$ we obtain that (1.9) holds for all, $k = k_m$.

Let now $k_m < k < k_{m+1}$. It is obvious that $O_k(n) \le O_{k_m}(n)$. To finish the proof it is enough to show that

$$\varrho\left(\frac{\log k_{m+1}}{x_2}\right) \leq (1+\eta)\varrho\left(\frac{\log k_m}{x_2}\right),\,$$

if m is large enough; η being an arbitrary positive constant. But this is an obvious consequence of the fact that $\varrho(u)$ has a bounded derivative in $u \ge u_0 (>0)$.

2. In a similar way we can prove the following assertion. Let $\psi(z) = z \log z - z + 1$ be defined for $0 < z \le 1$, and $\bar{\varrho}(u)$ its inverse function.

174 I. Kátai

Theorem 2. For every constant $\varepsilon > 0$ and almost all n, the inequality

(2.1)
$$o_k(n) \ge (1 - \varepsilon) \bar{\varrho} \left(\frac{\log k}{\log \log n} \right) \log \log n$$

holds uniformly in k.

This is an easy consequence of the fact that the number of $n \le x$ having exactly r different prime factors is

$$(1+o(1))\frac{x}{x_1}\frac{x_2^{r-1}}{(r-1)!}$$
.

I think that

$$o_k(n) \le (1+\varepsilon) \bar{\varrho} \left(\frac{\log k}{\log \log n} \right) \log \log n$$

holds for almost all n and every k.

3. Finally we scetch the proof of the following

Theorem 3. Let $k = x_1^{2 \log 2 - 1} \cdot e^{h(x)\sqrt{x_2}}$, where $h(x) \to \infty$, $h(x) = o(\sqrt{x_2})$. Then

$$(3.1) O_k(n) = 2(1+o(1))x_2$$

for all $n \le x$ except o(x) of them.

We need only to prove that

$$(3.2) O_k(n) \ge 2(1-\varepsilon)x_2.$$

To prove this we use a result due to P. Erdős [1]. Let

(3.3)
$$A(n) = \sum_{i=1}^{k} d(n+i),$$

 Σ_1 denotes that we sum over those integers for which $\Omega(n+i) \leq 2x_2 + \frac{1}{2}h(x)\sqrt{x_2}$. Then

(3.4)
$$\sum_{n \le x} (A(n) - kx_1)^2 = o(xk^2x_1^2).$$

We split the sum A(n) into two parts

$$A(n) = A_1(n) + A_2(n),$$

where in

$$A_1(n)$$
 $\Omega(n) - \omega(n) \le \eta x_2$, and in $A_2(n)$ $\Omega(n) - \omega(n) > \eta x_2$.

We can prove easily that

$$\sum_{n \le x} A_2^2(n) = o(xk^2x_1^2),$$

whence by (3.4)

(3.5)
$$\sum_{n \le x} (A_1(n) - kx_1)^2 = o(xk^2x_1^2)$$

follows.

Let now

$$B(n) = \sum_{i=1}^k d(n+i), \quad \omega(n+i) < (2-\varepsilon)x_2.$$

Similarly, we can prove easily that

$$\sum_{n \le x} B^2(n) = o(xk^2x_1^2).$$

Hence by (3.5) we have

$$A_1(n) - B(n) = (1 + o(1))kx_1 > 0$$

for almost all n.

Observing that

$$A_1(n) - B(n) = \sum_{i=1}^{k} d(n+i), \quad \omega(n+i) > (2-\varepsilon)x_2$$

our theorem follows immediately.

References

 P. Erdős, Asymtotische Untersuchungen über die Anzahl der Teiler von n., Math. Ann. 169 (1967), 230—238.

(Received November 21, 1969.)