A theorem on bounded analytic functions

By RAM SINGH (Patiala)

Introduction. Let f(z) = a,z+a,z*+---, 0=a,=1, be analytic in the unit
disc E={z:|z| =1} and satisfy | f(z)|=1 in E. Since Re f'(0)=a,=0, it follows that
there exists a positive number r, such that Re f(z)=0 whenever |z| <r,. The purpose
of this note is to determine the number r,.

Theorem. Let f(z) = a,z+a,z*+..., 0<a, =1, be analytic in E and satisfy
|f(2)|=1 for all z in E. Then Re f'(z)=0 in |z|<r,, where
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The number r, cannot be replaced by a larger one,
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Then F(z) is analytic in E, F(0)=0and |F(z)| =1 in E. Therefore, by Schwarz' Lemma
it follows that
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Squaring both the sides of (1) we obtain
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Then G(z) is analytic in E. Also, since | f(z) = |z| ( f(2) satisfies the hypotheses of
Schwarz's Lemma) in E, it follows that |G(z)|=1 in E. Also we have
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([1], p. 168, equ. (28)) for all z in E.
Differentiating (3) and making use of (4) we obtain the following inequality:
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From (5) we see that f’(z) lies in the circle whose centre is at f(z)/z and whose
radius is equal to r{l—|/f(z)/z|*}/(1 —r?). Therefore, we conclude that
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Now, from (2) we have

(0, 1= faa-ry 1=rt)  ra—ay
Il z 2r |l —air? 2r })| T 1—ajr?’



A theorem on bounded analytic functions 185

from which it follows that
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Making use of (7) in (6) we conclude that Re f“(z)=0 provided
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To show that our result is sharp, we consider the function

z(a,~2)

A 0<a=1,
l—a,z

fo(2) =
which satisfies the hypotheses of our theorem. A little compulation revelas that
f5(2)=0 when z=r,. This shows that the number r, cannot be replaced by any larger
one, The theorem is therefore proved.
Now it is known ([2], [3]) that if F(z) is regular in a convex domain D and if
Re F’(z)=0 in D then F(z) is univalent in D. We, therefore, have the following
corollary:

Corollary: If f(2) satisfies the hypotheses of our theorem then f(z) is univalent
in|z|<ry.
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