A theorem on bounded analytic functions

By RAM SINGH (Patiala)

Introduction. Let $f(z) = a_1 z + a_2 z^2 + \cdots$, $0 < a_1 \le 1$, be analytic in the unit disc $E = \{z : |z| < 1\}$ and satisfy $|f(z)| \le 1$ in E. Since $\operatorname{Re} f'(0) = a_1 > 0$, it follows that there exists a positive number r_0 such that $\operatorname{Re} f'(z) > 0$ whenever $|z| < r_0$. The purpose of this note is to determine the number r_0 .

Theorem. Let $f(z) = a_1 z + a_2 z^2 + ...$, $0 < a_1 \le 1$, be analytic in E and satisfy $|f(z)| \le 1$ for all z in E. Then Re f'(z) > 0 in $|z| < r_0$, where

$$r_0 = \frac{a_1}{1 + \sqrt{1 - a_1^2}}.$$

The number ro cannot be replaced by a larger one.

PROOF. Define

$$F(z) = \frac{\frac{f(z)}{z} - a_1}{1 - a_1 \frac{f(z)}{z}}.$$

Then F(z) is analytic in E, F(0) = 0 and $|F(z)| \le 1$ in E. Therefore, by Schwarz' Lemma it follows that

(1)
$$\frac{\frac{f(z)}{z} - a_1}{1 - a_1 \frac{f(z)}{z}} \leq |z|$$

for all $z \in E$.

Squaring both the sides of (1) we obtain

$$\left| \frac{f(z)}{z} - a_1 \right|^2 = \left| \frac{f(z)}{z} \right|^2 - 2a_1 \operatorname{Re} \frac{f(z)}{z} + a_1^2 \le$$

$$\le r^2 \left[1 - 2a_1 \operatorname{Re} \frac{f(z)}{z} + a_1^2 \left| \frac{f(z)}{z} \right|^2 \right], \qquad |z| = r.$$

184 R. Singh

Or
$$(1-a_1^2r^2) \left| \frac{f(z)}{z} \right|^2 - (1-r^2)2a_1 \operatorname{Re} \frac{f(z)}{z} \leq r^2 - a_1^2.$$
Or
$$\left| \frac{f(z)}{z} \right|^2 - \frac{(1-r^2)}{1-a_1^2r^2} 2a_1 \operatorname{Re} \left| \frac{f(z)}{z} + \frac{(1-r^2)^2 a_1^2}{(1-a_1^2r^2)} \right| \leq \frac{r^2 - a_1^2}{1-a_1^2r^2} + \frac{(1-r^2)^2 a_1^2}{(1-a_1^2r^2)^2}.$$
I.e.
$$\left| \frac{f(z)}{z} - \frac{(1-r^2)}{1-a_1^2r^2} a_1 \right|^2 \leq \frac{r^2(1-a_1^2)^2}{(1-a_1^2r^2)^2},$$
or
$$\left| \frac{f(z)}{z} - \frac{(1-r^2)a_1}{1-a_1^2r^2} \right| \leq \frac{r(1-a_1^2)}{(1-a_1^2r^2)}.$$
Put
$$G(z) = \frac{f(z)}{z}.$$

Then G(z) is analytic in E. Also, since $|f(z)| \le |z| (f(z))$ satisfies the hypotheses of Schwarz's Lemma) in E, it follows that $|G(z)| \le 1$ in E. Also we have

(4)
$$|G'(z)| \le \frac{1 - |G(z)|^2}{1 - r^2}$$

([1], p. 168, equ. (28)) for all z in E.

Differentiating (3) and making use of (4) we obtain the following inequality:

(5)
$$\left| f'(z) - \frac{f(z)}{z} \right| \leq \frac{r \left[1 - \left| \frac{f(z)}{z} \right|^2 \right]}{1 - r^2}.$$

From (5) we see that f'(z) lies in the circle whose centre is at f(z)/z and whose radius is equal to $r\{1-|f(z)/z|^2\}/(1-r^2)$. Therefore, we conclude that

$$\operatorname{Re} f'(z) \ge \operatorname{Re} \frac{f(z)}{z} - r \frac{\left[1 - \left| \frac{f(z)}{z} \right|^2\right]}{1 - r^2} = \frac{r}{(1 - r^2)} \left[\left| \frac{f(z)}{z} \right|^2 + \frac{1 - r^2}{r} \operatorname{Re} \frac{f(z)}{z} - 1 \right] =$$

$$(6) \qquad = \frac{r}{(1 - r^2)} \left[\left| \frac{f(z)}{z} \right|^2 + \frac{1 - r^2}{r} \operatorname{Re} \frac{f(z)}{z} + \frac{(1 - r^2)^2}{4r^2} - 1 - \frac{(1 - r^2)^2}{4r^2} \right] =$$

$$= \frac{r}{(1 - r^2)} \left[\left| \frac{f(z)}{z} + \frac{1 - r^2}{2r} \right|^2 - \frac{(1 + r^2)}{4r^2} \right].$$

Now, from (2) we have

$$\left| \left\{ \frac{f(z)}{z} + \frac{1 - r^2}{2r} \right\} - \left\{ \frac{a_1(1 - r^2)}{1 - a_1^2 r^2} + \frac{1 - r^2}{2r} \right\} \right| \le \frac{r(1 - a_1^2)^2}{1 - a_1^2 r^2},$$

from which it follows that

(7

$$\left| \frac{f(z)}{z} + \frac{1 - r^2}{2r} \right|^2 \ge \left[\frac{a_1(1 - r^2)}{1 - a_1^2 r^2} + \frac{1 - r^2}{2r} - \frac{r(1 - a_1^2)}{1 - a_1^2 r^2} \right]^2 = \frac{(1 + a_1 r - 3r^2 + a_1 r^3)^2}{4r^2(1 - a_1 r)^2}.$$

Making use of (7) in (6) we conclude that Re f'(z) > 0 provided

$$\frac{r}{(1-r^2)} \left[\frac{(1+a_1r-3r^2+a_1r^3)^2}{4r^2(1-a_1r)^2} - \frac{(1+r^2)^2}{4r^2} \right] > 0,$$

or

$$\frac{a_1r^2-2r+a_1}{(1-a_1r)^2}>0,$$

i.e.

$$r < \frac{a_1}{1 + \sqrt{1 - a_1^2}} = r_0.$$

To show that our result is sharp, we consider the function

$$f_0(z) = \frac{z(a_1 - z)}{1 - a_1 z}, \quad 0 < a \le 1,$$

which satisfies the hypotheses of our theorem. A little compulation revelas that $f_0(z) = 0$ when $z = r_0$. This shows that the number r_0 cannot be replaced by any larger one. The theorem is therefore proved.

Now it is known ([2], [3]) that if F(z) is regular in a convex domain D and if Re F'(z) > 0 in D then F(z) is univalent in D. We, therefore, have the following corollary:

Corollary: If f(z) satisfies the hypotheses of our theorem then f(z) is univalent in $|z| < r_0$.

References

[1] Z. Nehari, Conformal Mapping, New York, 1952.

[2] K. Noshiro, On the theory of schlicht functions, J. Fac. of Sci., Hokkaido Imperial Univ., Sapparo, 2 (1934—35), 129—155.

[3] S. E. WARSCHAWSKI, On the higher derivatives at the boundary in conformal mapping Trans-Amer. Math. Soc. 38 (1935), 31—340.

(Received 22 December, 1969.)