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PREFACE

This paper is based on M. W, LopaT0’s Ph. D. thesis: On topologically induced
generalized proximity relations, the author’s Ph. D. thesis: Symmetric generalized
uniform and proximity spaces, the paper: Test for correctness of a uniform space by
A. G. MorpkoviC, and the paper: Correct spaces by V. A. EFREMovIC, A, G. MORD-
KOVIC, and V. Ju. SANDBERG.

In Lodato’s thesis the notion of an ordinary proximity space is generalized in
such a way as to obtain a partial generalization of the classical theorem which
states that every separated proximity space (X, é) is a dense subspace of a unique
compact T, space (Y, J) such that (40B) in X iff A\ B # @ where the closure is
taken in Y.

In the author’s thesis the notion of an ordinary uniform space is generalized
in such a way that every such uniformity generates a Lodato generalized proximity
in a natural way. It is then shown that the classical theorem which states that every
proximity class of ordinary uniformities contains one and only one totally bounded
uniformity can be generalized to these generalized uniform and proximity spaces
in such a way that the classical theorem follows as an immediate corollary, Generaliza-
tions and partial generalizations are also obtained for many other classical theorems
concerning uniform continuity, p-continuity, uniform convergence, convergence in
proximity, completeness, and compactness.

The correct spaces of Efremovi¢, Mordkovi¢, and Sandberg are a special sub-
class of the author’s generalized uniform spaces. The axioms for a correct space
are almost as strong as those for an ordinary uniform space. It can be shown that
every correct space has a completion.

In the last chapter we introduce the concept of a symmetric generalized topologi-
cal group and investigate the relationship between these groups and symmetric
generalized uniform spaces.

Part IT of this paper will appear in a subsequent issue of this journal.

NOTATION

Let X be a set.

P(X) denotes the power set of X.
P(X X X) denotes the power set of (XX X).
4 denotes the set: {(x, x)|x€X}.
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Let .# be a topology on X.

A° denotes the interior of 4 with respect to .7,
A denotes the closure of 4 with respect to .f,
Let UV (XXX). Let AcX and let xeX.
U-"' denotes the set: {(x, »)[(y, x)eU}
U[x] denotes the set: {y/(x, »)eU}.

U[A] denotes the set: U {U[x]lxcA4}.

{x} will be denoted simply as x.

Let  be a relation on P(X).

(A, B)£d is denoted A46B.

(A, B)4 4 is denoted AdB.

The expression “if and only if” will be abbreviated *“iff .

I

Symmetric generalized proximity spaces

Let X be a non-void set. Let é be a relation on P(X) We write AdB for (A, B)£d
and AJB for (A, B)4 5. Consider the following axioms:

(P. 1) A3B implies BoA.

(P.2) Co(A U B) iff either CoA4 or CoB.

(P.3) @A for every A X.

(P, 4) xéx for all xc X,

(P.4)" xdy implies x=y for all x.y in X,

(P.5) A6B and bdC for all h< B implies that 40C.

(P. 5)" AdBimplies the existence of Cand Dsuch that CN D = @, and 46(X —C)
B3(X —D).

(1. 1) Definition, & is a [separated] symmetric generalized proximity on X iff
o satisfies (P. 1), (P. 2), (P. 3), (P.4), [(P.4)], and (P.5).

(1. 2) Definition. 6 is a [separated] proximity on X iff ¢ satisfies (P. 1), (P. 2),
(P. 3), (P.4), [(P.4)7], and (P. 5)".

(1. 3) Remark. 1f 6 is a (symmetric generalized) proximity on X, then we call
(X, d) a (symmetric generalized) proximity space.

(1.4) Remark. Our definition of a symmetric generalized proximity is the same
as that given by S. LEADER in [21].

(1.5) Lemma. Let (X, 0) be either a proximity space or a symmelric generalized
proximity space. If ACA, X and BC B, — X and AdB, then A,dB,.

PROOF. A, = AlJ(A,—A); but by (P. 1) BéA. Hence by (P. 2) BéA,; so that
by (P.1) 4,0B. By a similar argument we have 4,08,.

(1. 6) Theorem. If (X, d) is a proximity space, then (X, d) is a symmetric general-
ized proximity space.

Proor. The following is essentially the proof given by M. W. Lodato in [23].
It is sufficient to show that (P. 5)" implies (P. 5). Suppose 40B and b6C for all b€ B,
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but A6C. Then by (P. 5)" there exist E and F such that 46(X—F), C6(X—E) and
EMNF= @. Suppose ASE. Then since (X — F) D E. we have by Lemma (1. 5) that
A3 (X — F) which is a contradiction. Hence 40E. Now BN(X—E) = @ ; for if there
exists some b€ (X —E), then by Lemma (1. 5) and (P. 1) b66C would imply Cé6(X —E).
Hence Bc E. But then since 438, we have by Lemma (1. 5) that ASE, and this is a
contradiction.

(1. 7) Theorem. Let X be a non-void set. Let & be a relation on P(X). é is a
symmetric generalized proximity on X iff o satisfies:

(L. 1) A6B implies BoA.

(L.2) C6(A'JB) implies either CoA or COB.

(L. 3) AOB implies A= @ and B= .

(L.4) ANB # & implies AdB.

(L. 5) A0B and bdC for all be B implies that ASC,

PRrOOF, Suppose é satisfies (L. 1), (L. 2), (L. 3), (L. 4), and (L. 5). (L. I)=(P. 1)
and (L. 5)=(P. 5). It is clear that (L. 3) implies (P.3) and (L. 4) implies (P. 4).
We show that if CoA4 or CéB then Cé(A |J B). Suppose CéA. Then since (4 B) D A4,
we have by (L. 4) that aé(A4 U B) for every a in A4; consequently, by (L. 5) we have
that Cé(A4 U B). Similarly, if CéB, then Cé(A4 ' B).

Conversely, suppose ¢ satisfies (P. 1), (P. 2), (P. 3), (P. 4), and (P. 5). It is clear
that (P. 2) implies (L. 2) and (P. 3) implies (L. 3). We show that (P. 4) implies (L. 4).
Let x,€(4) B). By (P. 4)xy0x,. Hence by Lemma (l.5) we have 44B. (L. 1)=
=(P. 1) and (L. 5)=(P. 5).

(1. 8) Remark. M. W. Lodato in [23] defines a symmetric generalized proximity
on a non-void set X to be a relation é on X that satisfies (L. 1), (L. 2), (L. 3), (L. 4),
and (L. 5). In a manner similar to our proof of Theorem (1. 7) he shows that his
definition is equivalent to Definition (1. 1).

(1.9) Theorem. Ler (X,d) be a symmetric generalized proximity space. The
Sfunction [:P(X) —~ P(X) defined by x € f(A) iff xdA is a Kuratowski closure function.

Proor. The following is essentially the proof given by S. Leader in [21]. We
derive the four Kuratowski closure axioms.

f(@)= @ : Suppose there exists a point x¢ f(#). Then xd# which contradicts
(P. 3).

AcC f(A): Let x€A. By (L.4) xdA4, and hence x€ f(A).

f(AUB) = f(4)U f(B): Suppose x€ f(4 U B). Then xé(4 U B) which by (P. 2)
implies that x64 or x6B and hence that x€ f(4)U f(B).

For the reverse inclusion suppose that x € f(A4) U f(B). Then either x64 or xdB.
Suppose xdA4. Then by Lemma (1. 5) we have xd(4 U B).

f(f(A))cf(A): Suppose x€ f(f(A)). Then x3f(A). But adA for all acf(A).
Hence by (L. 5) xdA4; so that x€ f(A).

(1. 10) Definition. The topology (which we denote .#(d)) induced on X by the
Kuratowski closure function fin Theorem (1. 9) is called the p-topology (or proximity
topology) on X,

(1. 11) Definition. A topological space (X, ) is symmetric iff for every x, y
in X, x€y implies y€X.

i6 D
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(1. 12) Remark. Note that any 7, space is symmetric. Also, for equivalent
formulations of Definition (1. 11) see Appendix /.

(1. 13) Theorem. Let (X, .#) be a symmetric topological space. The relation J,
on P(X) defined by Ad,B iff A(\B # @ is a symmetric generalized proximity on X
such that J(dy)=.F. Furthermore, if (X, d) is a symmetric generalized proximity
space such that ¥ (8)=.5, then d,C 4.

ProoF. The following is essentially the proof given by M. W. Lodato in [23].
It is easily shown that J, satisfies (L. 1), (L. 2), (L. 3) and (L. 4). We must show
that &, satisfies (L. 5). Suppose for some point b and a set C we have b C # &.
Then there exists a point ¢ € C such that c€b. Since S is symmetric we have that
beécC. Hence, if ANB # @ and b\ C # @ for every bé B, then BC C; so that
ANC # @. Consequently, 8, satisfies (L. 5).

To show that #(3,)=.# it is sufficient to show that xd,B iff x¢B. Clearly,
x€B implies XN B # @. Hence xd,B.

Conversely, suppose x3,B. Then for some y we have y&(X 1 B). Hence y B
and y€X. But since . is symmetric, y€X implies x¢y. Hence x¢€B.

Suppose 46,B. Then ANB # @&, and if x¢ AN B, then since (L. 1) we have
x0A, x0B as a consequence of Adx, xdB. Hence A5B from (L. 5).

(1. 14) Corollary. A topology 4 on X is the proximity topology for some
symmetric generalized proximity on X iff . is symmetric.

PROOF. Suppose there exists a symmetric generalized proximity é on X such
that #(0)=2. Let x€y. Then xdy; so that ydx and y€X.
The converse is an immediate consequence of Theorem (1. 13).

(1. 15) Remark. Contrast Corollary (1. 14) with the classical theorem which
states that a topology # on X is the proximity topology for some proximity on X
iff # is completely regular.

(1. 16) Definition. Let (X, 6) be a symmetric generalized proximity space. The
set B€ P(X) is a p-neighborhood of a set A€ P(X) (notation: 4<<B) iff AJ(X—B).

(1. 17) Theorem. Let (X, d) be a symmetric generalized proximity space. Let
F(0) be the topology on X. Then for all A, B in P(X) we have:

(a) ASB iff ASB. _
(b) A<=B implies A<B.
(c) A<B implies A<B°.

PROOF OF (a). Suppose 40B. Since A DA and B DB we have by Lemma (1. 5)
that A9B.

Conversely, suppose A3B. By definition for all b€ B we have that b3B; hence
by (P. 5) A6B so BOA. But for all ac A we have that adA; so that by (P. 5) BoA.
Hence 46B.

PROOF OF (b). A<<B implies A5(X—B). By Theorem (1. 17a) we have that
A3(X—B): so that by Lemma (1. 5) 4A3(X— B). Consequently, 4=B.
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PROOF OF (¢). Since A<=B it is easily shown by (P. 1) that (X —B) = (X—A).
By Theorem (l.17b) (X—B) < (X—A). Again by (P. 1) it is easily shown that
(X—(X—A)) = (X—(X—B)). Hence A<B°.

We next obtain a p-neighborhood characterization of symmetric generalized
proximity spaces.

(1. 18) Theorem. The relation << in a symmetric generalized proximity space
(X, 0) satisfies the following conditions:

(Q. 1) X=X.

(Q.2) A<B implies AC B.

(Q.3) AcB<Cc D implies A<D.

(Q.4) A<B,, k=12 iff A <(B,NB,).

(Q. 5) A<=B implies (X—B) =< (X—A).

(Q. 6) A<B implies that, for all C, A<C or there exists x € (X —C) with x<B.

If é is separated, then

Q.7) x =< (X—y) iff x+y.

Conversely, let a relation < satisfying (Q. 1) through (Q. 6) be defined on P(X).
Then 8, defined by AdB iff A < (X— B), is a symmetric generalized proximity on X.
Furthermore, B is a p-neighborhood of A with respect to d iff A<B; and if (Q.7) is
satisfied, then d is a separated symmetric generalized proximity on X.

ProOF. The proof of (Q. 1), (Q. 2), (Q. 3), (Q. 4), and (Q. 5) is straightforward
and is left to the reader.

(Q. 6): Suppose A-=<B, and it is not the case that A-<C. Furthermore, suppose
for every x € (X —C) it is not the case that x<=<B. Then 46(X—C)and forall xé(X—C)
we have that xé (X — B): so that by (P. 5) Ad(X — B) which is a contradiction,

(Q. 7): Suppose x <= (X—y). Then xdy; so that by (P.4) x=y.

Conversely, suppose x=y. Then by (P. 4)" xdy. Consequently, xé(X —(X—y)).

PrROOF OF THE CONVERSE of Theorem (1. 18).

(L. 1): Suppose A6B. Then A = (X—B); so that by (Q. 5) B < (X—A). Con-
sequently, BoA.

(L. 2): Suppose A3B and AS5C. Then A << (X—B) and 4 < (X—C). Hence by
(Q.4) 4 = ((X—B)N(X—C));sothat 4 = (X—(BU C)). Consequently, A3(BU C).

(L. 3): Let AcX. Then by (Q.1) AcX<X. Hence by (Q. 3) A<JX; so that
A0 . Now suppose A3B. Then B ¢j. But by (L. 1) BdA. Hence A= .

(L. 4): ASB implies A = (X — B): consequently, by (Q.2) we have that 4
C (X—B); so that ANB = @.

(L. 5): Clearly, by taking the contrapositive of (L. 5) it is sufficient to show that
AOB, implies A5C, or there exists x€ C, such that x6B,. Let B, = (X—B) and
C, = (X—C). A5(X— B) implies by definition that 4<<B; consequently, by (Q. 6)
A<<C or there exists an x€(X—C) such that x<B. Hence A3(X—C) or there
exists an x € (X —C) such that xé(X — B).

Hence 6 is a symmetric generalized proximity on X,

Suppose B is a p-neighborhood of 4 with respect to 8. Then A5 (X — B); so that
A<=B.

16*
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Conversely, suppose A<«<B. Then A5(X—B). Consequently, B is a p-neigh-
borhood of A4 with respect to 6.

Suppose <= satisfied (Q. 7), and xdy. Then x = (X —y); so that x#=y.

Conversely, suppose x=y. Then x << (X—y); so that xdy.

This completes the proof of Theorem (1. 18).

The following theorem which may appear unrelated at this time will be referred
to in the sequel.

11 19) Theorem. Let & be a symmetric generalized proximity on X. Let ACX.
Then A° = {x|x=<A}.

ProoF. It is easily shown that C ¢ .#(9) iff for every x€ C x=C. Let B= {x|x<=A4}.
It is clear that 4A° < B< A. Consequently, it is sufficient to show that if x€ B, then
x<<B. Let x¢ B. Then x<<A; hence by (Q. 6) x<B or there exists x, € (X — B) such
that x,<<A. But if x, <A, then x, € B; hence x<B.

We next obtain a characterization of separated symmetric generalized proximity
spaces which is analogous to the classical result of Smirnov which states that every
separated proximity space (X, é) is a dense subspace of a unique compact T, space
(Y..#) such that A6Bin X iff AN\ B # & where the closure is taken in Y. For a proof
of this theorem based on the concept of a ““cluster” see [17].

(1. 20) Definition (S. LEADER [17]). A class of subsets of X is a cluster (denoted )
from a symmetric generalized proximity space (X, d) iff = satisfies:

(C. 1) ASB for all A, Benr.

(C.2) AU Ben implies that either A€x or Ben.

(C. 3) If B3A for every A€m, then Bem,

The proofs of the rest of the theorems in this chapter are essentially the same as
those given by Lodato in [23].

(1. 21) Theorem. Let (X, d) by a symmetric generalized proximity space. The
class n, of all subsets of X which are close to x is a cluster from (X, J).

Proor. We verify (C. 1), (C. 2), and (C. 3).

(C. 1): Suppose A, Ben,. Then x4 and xéB; so that by (L. 1) and (L. 5) we
have that 46B.

(C. 2): Suppose AUBen,. Then xd(4 U B); so that by (L.2) xé4 or xéB.
Hence A€n, or BEm,.

(C.3): By (L.4) x€en,. Suppose BdA for every Aem,. Then Bdox; so that
Bem,.

(1. 22) Remark. The following facts about clusters are easily established. Let
(X, d) be a symmetric generalized proximity space. Let = and =" be clusters from
(X,0). (A)If A€n, and ACBC X, then Ben. (B) If A€n and adB for every ac A,
then Ben. (C) If ncn’, then n==". (D) If x€xn, then n=mn,, the class of all subsets
A of X such that 46x. (E) Let A X. Then Acnor (X—A)én. (F) Let ACX. If 4
has a non-void intersection with every element of n, then A€n. (G) @ 4n, Xéen
for every .



Symmetric generalized topological structures I 245

(1. 23) Definition. Let (Y, .#) be a topological space. Let X Y. X is regularly
dense in Y iff given M open in Y and p€ M there exists £ X such that pc EC M,
the closure being taken in Y.

(1. 24) Theorem. Let (Y, J) be a topological space. If X is regularly dense in Y,
then X is dense in Y. If (Y, ) is regular and X is dense in Y, then X is regularly dense
in Y. g

PrOOF. Let p€ Y. Since Y is open there exists EC X such that pc EcX Y.
Hence Yc Xc Y;sothat X=Y.

Suppose (Y, ) is regular and X is dense in Y. Let M be an open subset of Y
and let p€ M. Then there exists an open subset N such that pe N and Nc M. Let
E = NN X. Then since X is dense in Y we have that E=N; so that pc EC M.

(1. 25) Theorem. Let X be a non-void set. Let  be a relation on P(X). The follow-
ing are equivalent:

(I) There exists a T, topological space (Y, ) and a mapping f:X —Y such
that f(X) is a regularly dense in Y and (AdB) in X iff f(A)Nf(B) = @ in Y.

(IT) (X, 0) is a symmetric generalized proximity space that has the property
that given (AdB) in X there exists a cluster n to which both A and B belong.

Proor. We first show (I) implies (II). To show that (X, J) is a symmetric general-
ized proximity space we verify (L. 1), (L. 2), (L. 3), (L. 4), and (L. 5). Clearly, (L. 1),
(L. 2), (L. 3), and (L. 4) are immediate by the properties of closure.

(L. 5): Suppose A6B and boC for all b€ B. Then f(A) N f(B) # @ and f(b)
Nf(C) # @ for all be B; so that since (Y,.#) is T, f(b)€f(C) for all b€ B. Thus
S(B) f(C) or f(B)c f(C) so that f(A)Nf(C) # &. Consequently, 45C.

Suppose A6B. Then there exists 1€ f(A4) " f(B). Let n={Sc X |t€ f(S)}. Clearly
Acm and BEn. We now show that n is a cluster from (X, ). Clearly, n satisfies
(C. 1) and (C. 2).

(C. 3): Supposethat /(D) f(C) # @ forevery C€ nbut that D¢z, i.e., 1§ f(D).
Then 7€ Y— f(D) and since f(X) is regularly dense in Y there exists a subset E of X
such that 7€ f(E) < Y—f(D). Thus there exists an E€ = such that f(D)Nf(E) = &
which is a contradiction. Hence D e .

We now show that (IT) implies (I). Let x¢€ X. Let 7, ={E < X |x3E}. By Theorem
(1.21) =, is a cluster from (X, d). Let ACX. Let o ={n,lac A}. Let o*={n|r is
a cluster from (X, d) and A€n}. Let Y={xn|x is a cluster from (X, d)}. Clearly, for
every A X we have that o/ C.o/* C Y. We say that a subset 4 © X absorbs a sub-
set ZCY iff B|o*. For every ZC Y let Z={n|E€n if E absorbs #}.

We show that for every 4 © X .o/ =.o/*. For suppose n € .o/. Then since A absorbs
s, A€n;so that n € o/*,. Conversely, if n € .o/* then A€ n. Let E€n, for every € o/,
i.e., Eda for every ac A and hence A E. Then by Remark (1. 22B) E€n; so that
neEd.

We now show that the operator defined above is a Kuratowski closure operator.

# < #A: Immediate since if E absorbs #, then Ecn for every me 4.

@ = @ : Suppose 7€ . Clearly, every subset of X absorbs (7 ; so that every sub-
set of X is in 7. In particular, @ and X are in 7. Hence by (C. 1) @dX which is a
contradiction.
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#c 7: Suppose n¢# and that E absorbs #. Then E absorbs 4. Hence E€n;
so that 7€ 4.

(#ZU#) = #UH : Suppose that (% #’) and that A absorbs # and A’
absorbs #’. Then, by Remark (1. 22A), AU A" absorbs #J %’ so that A JA €n.
But, by (C. 2), this means that either A€n or A" €, that is neR or n€A . Thus
BUB < BUH. To show the reverse inclusion let ne# ) #’. Then ne# or
n€#’. Now if E absorbs 2 | #’, then E absorbs # and also absorbs #’. Hence E€ r;
so that rc 2 U %#'.

We now show that the topology induced by the Kuratowski closure operator
above is T,. Suppose n" €7 where m and =’ are in Y. Then every set in =« is also in

n’. Thus, nCn’, and by Remark (1. 22C) n=n". Hence #=n for every point € Y.
Define a map f: X =Y by f(x)=n,. Clearly f(A4)=.s for every subset 4 of X.

We now show that 468 in X iff f(4) f(B) # @ in Y. Clearly it is sufficient to
show that A6B in X iff &* N #A* # @ in Y. Suppose A3B. Then by hypothesis there
exists a cluster = to which both 4 and B belong. Hence ne .o/ () #*. Conversely,
if n€d*N#* then Acn and Benr; so that by (C. 1) 40B.

We now show that f(X) is regularly dense in Y. Suppose « is open in Y and
that n€a. Then n€ Y—a = (¥Y—ua). Hence there exists some subset E of X such
that E is in every cluster of Y —« but that £ is not in n. Consequently, by (C. 3),
there is a C € such that E5C. But since €* is the set of all clusters to which C belongs,
we have n€%*. And since E belongs to every cluster in Y—« and EJC, then C can-
not belong to any cluster in Y—a, by (C. 1). Hence ¥* ca and f(X) is regularly
dense in Y.

(1. 26) Theorem. Let X be a non-void set. Let  be a relation on P(X). The follow-
ing are equivalent :

(I) There exists a T, topological space (Y, J) in which X can be topologically
imbedded as a regularly dense subset; so that (A6B) in X iff ANB # & in Y.

(Il) (X, 0) is a separated, symmetric generalized proximity space that has the
property that given (AdB) in X there exists a cluster n to which both A and B belong.

Proor. We first note that if (X, d) is separated, then every cluster = from (X, J)
possesses at most one point,

We show that (I) implies (II). By Theorem (1. 25) it is sufficient to show that
(X, 0) is separated. But this is clear since x*(y* = & implies that x=y.

We next show that (II) implies (I). Again by Theorem (1. 25) it is sufficient to
show that the mapping f is a topological imbedding. It is clear that fis 1—1, onto
f(x). To show that fis bicontinuous we must show that if A C X, x€ 4 iff n ecl (/)
where cl (o) is the closure of o7 in f(X) relative to (Y, ).

Suppose x€ A and E absorbs 7. Then E is a member of every r, in o/ and it
follows that adE for every a€ A. Thus A CE and since A4 ¢n, we have by Remark
(1. 22B) that E€n,; so that m, €cl (o).

Conversely, suppose m,cl (o). Then since 4 absorbs o/ we have Acn,, ie.,
Aox and hence x€ A4.

(1. 27) Remark. In [25] Lodato obtains by means of the concept of a “‘bunch™
an improvement of Theorem (1. 26).
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H.

Symmetric generalized uniform spaces

Let X be a non-void set. Let  be a non-void subset of P(X X X). Consider the
following axioms:

(M. 1) For every Uc%UD A.

M.2) N{U|Ueu}=A.

(M. 3) For every Uc«U=U"".

(M. 4) For every A€ P(X) and U, V in % there is a W% such that W[A] ¢
< U[A]N V[A].

(M. 5) For every U, Vin % (UNV)eu.

(M. 6) For every 4, Bin P(X) and U, if V[A]N B # & for all V€%, then
there exists x€ B and there exists a We# such that W[x]c U[A].

(M. 7) For every U€% there exists a VE# such that (Vo V) c U.

(M.8) If Uc# and ¥V < (XXX) and UcV and V=V"1, then Ve #.

(2. 1) Remark. It is clear that (M.5) implies (M. 4). The following simple
argument shows that (M. 7) implies (M. 6): Let 4, B be in P(X) and let Uc%.
By (M. 7) there exists a V€4 such that Vo V < U. But by hypothesis there exists
an x€ V[A]N B; hence there exists z€A4 such that (z, x)€ V. Let p€ V[x]. Then
(x, p)€V; hence (z, p)€U; so that pc U[A], and V[x]C U[A].

(2. 2) Theorem. Let % be a subset of P(XXX) with the property that for all
Uec, U contains a member of U. Define a relation 6(%) on P(X) by AS(%)B iff
U[AINB = & for all Uc%. Then 6(¥%) satisfies (L. 1), (L. 2), (L. 3), (L. 4), and
(L. 5) iff % satisfies (M. 1), (M. 4), and (M. 6).

Proor. Suppose % sauisfies (M. 1), (M. 4), and (M. 6). We show that é(%)
sat.sfies (L. 1), (L. 2), (L. 3), (L.4), and (L. 5). To simplify the noiation we will
write J in place of §(%).

(L. 1): Suppose A3B. There exists by hypothesis a Uc# such that U[A]N
NB= .Suppose U"'[B]NA # @.Let xo € U~'[B]N A. Then x, € U~ [B]; so that
there exists y, € B such that (y,. x,)€ U™, and consequently (x,, y,) € U. But this
means that y, € U[A] N B which is a contradiction. Hence U~'[B]N A = . But by
hypothesis U~V where Ve#; so that V[B](14 = &. Hence B3A.

(L. 2): Suppose CoA4 and COB. Then there exists Uc# and V€% such that
U[C]NA =@ and V[C]NB = &. But by (M. 4) there exists a W¢e# such that
W[C] < U[C]N V[C]. Consequently, W[C]N(AUB) = @& ; so that Co(A4 U B).

(L. 3): Immediate from the definition of d.

(L. 4): Suppose ANB # @. By (M. 1) for all Ue% U[A]N B # @. Consequ-
ently, 49B.

(L. 5): Suppose A3B and b3C for all b€ B, but ASC. Then there exists a Ue %
such that U[4]N C = . But since A6B, we have that V[4]N B # @ for all Ve,
so that by (M. 6) there exists x,€ B and there exists We# such that W[x,]
< U[A] < (X—C). But this implies that W[x,] 1 C = @ ; so that x,6C which is a
contradiction since x, € B.

Conversely, suppose o satisfies (L. 1), (L. 2), (L. 3), (L. 4), and (L. 5). We show
that % satisfies (M. 1), (M. 4), and (M. 6).
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(M. 1): LetxeX. Let Uc%. xNx # @ implies by (L. 4) that xdx. Consequently,
Ulx]Nx # @ : so that (x, x)e U. Hence U D A4.

(M. 4): Suppose not true. Then there exists 4 € P(X) and U, V in % such that
for every Wea there exists x€ W[A] such that x¢ U[4]( V[A]. For each We%
let B(W)={x|xc W[A] and x4 U[A]N V[A]}. Let B = J{B(W)/We#«}. Suppose
there exists U, €% such that U,[4]N B = @. Then since B(U,)c B, we have that
U,[A4] < U[A]( V[A], but by assumption this is not possible. Hence M[4] B = &
for all M€%; so that 40B. Let B, = (B—U[A]) and B, = (B—V|[A]). Clearly,
U[A]NB, = @ and V[A]N B, = @& so that A5B, and AJB,. Consequently, by
(L.2) A3(B, U B,). But by the definition of B we have that B = B, |JB,. Hence
AJB which is a contradiction.

(M. 6): Suppose not true. Then there exists A, B in P(X) and U¢€ % such that
VIA]N B # & for all V€% and for every b¢ B and for every W& we have that
Wbl (X—U[A]) # @. Consequently, 4B and bhd(X—U[A]) for every bEB; so
that by (L.5) A6(X—U[A]). But U[4A]N(X—U[A]) = @; so that 4d(X— U[A]).
Hence our assumption leads to a contradiction.

(2. 3) Definition. Let % be a non-void subset of P(XXX). % is separated iff
U satisfies (M. 2). % is a symmetric generalized uniformity on X iff % satisfies (M. 1),
(M. 3), (M. 4), (M. 6), and (M. 8). % is a correct uniformity on X iff % satisfies
(M. 1), (M. 3), (M. 4), (M.7), and (M. 8). % is a symmetric uniformity on X iff U
satisfies (M. 1), (M. 3), (M. 5), (M. 7), and (M. 8).

(2. 4) Remark. If 9 is a symmetric generalized uniformity on X, then (X, %)
is called a symmetrix generalized uniform space. Similarly, we define a correct uniform
space and a symmetric uniform space.

(2. 5) Remark. Note that if ¥” is any classical uniformity, then {V' € 7’ |V=V""}
is a symmetric uniformity.

(2. 6) Theorem. Let (X, #) be a symmetric generalized uniform space. The
SJunction g:P(X) into P(X) defined by xcg(A) iff Ulx)(VA = @ for all UEW is a
Kuratowski closure function.

Proor. We derive the four Kuratowski closure axioms.

g(@)= @ : Suppose there exists a point x€g(@). Then Ux] @ = @ for
every Ue€ % which of course is not possible.

Acg(A): Let xcA. Then U[x]NA = @ for all Uc: so that xcg(A).

g(AUB) = g(A) Ug(B): Itisclear that g(A4) g(B) — g(AUB).Letx€g(A B).
Suppose x ¢ (g(A4)Ug(B)). Then there exists U,, U, in % such that U,[x]"4 = &
and U,[x] N B = @. Then by (M. 4) there exists a W e # such that W[x] < U,[x]N
M U,[x]. But W[x]N(4UB) # @; so that x¢(g(4) g(B)).

2(g(A))=g(A4): Let xcg(A). Then U[x]NA # @ for every Ue#; so that
Ulx]Ng(A) = @ for every Uc#%. Hence x¢g(g(A)).

Conversely, suppose x¢€g(g(A)). Let Uc#. Then V[x]MNg(A4) # & for every
Ve. But by (M. 6) there exists x, € g(A4), and there exists W€ # such that W{x,]
< Ulx]. But W[x,)NA = @; so that U[x]NA # @. Consequently x¢g(A).

(2. 7) Remark. Note that since g(4)= {x|x 6(#)A} it is possible to derive Theo-
rem (2. 6) directly from Theorem (1.9) and Theorem (2. 2).
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(2. 8) Definition. The topology induced on X by the Kuratowski closure function
g in the above theorem is called the uniform topology on X induced by # (nota-
tion S (%)).

(2.9) Theorem. Let (X, %) be a symmetric generalized uniform space. Then
AcF(U) iff for every x< A there exists a UeU such that Ulx]c A.

PROOF, Suppose A< .#(%). Then (X—A) is closed. Let x¢ A. Since x4 (X —A),
there exists a U€# such that U[x]N(X—A4) = @: so that U[x]c A.

Conversely, suppose x¢ A4 and there exists U€# such that U[x]< A. Then
x4 (X—A): so that (X—A) contains all its accumulation points. Hence (X —A) is
closed: so that 4 is open.

(2. 10) Remark. Note that since U[x]A = @& for every U % iff x d(#)A we
have that if (X, %) is a symmetric generalized uniform space, then .7 (%)=.#(d(%)).

The following theorem and corollary are very important for the development of
the theory of symmetric generalized uniform spaces.

(2. 11) Theorem. Let (X, %) be a symmetric generalized uniform space. Then
Jor every A€ P(X) we have that A°={x|U[x]< A for some Uc¥).

PrOOF. Let B={x|U[x] < A for some Ue#}. It is clear that A >B> A°. Con-

sequently, it is sufficient to show that (X— B) is closed. Suppose y¢& (X —B). Then
VI¥]N(X—B) # & for every Ved. Suppose yé B. Then there exists U, € % such
that U,[y]C A. But then by (M. 6) there exists x<(X— B) and there exists We#
such that W[x]c U,[y]< A. So that x¢< B which is a contradiction. Consequently,
yE(X—B) and (X — B) is closed.

(2. 12) Corollary. For every x< X{U[x]|Uc %} is a base for the neighborhood
system of x.

PROOF. Let x € X. Let M be an open set that contains x. There exists by Theorem
(2.9) a U such that U[x]< M. But by Theorem (2. 11) we have that x € (U[x])".
Hence UJx] is a neighborhood of x.

(2. 13) Remark. Note that it is possible to derive Theorem (2. 11) from Theorem
(1. 19) if in the latter theorem we let d=4(%).

(2. 14) Theorem. Let (X, %) be a symmetric generalized uniform space. Then
Jor every AcX we have that A = N{U[A]|Uc#}.

PROOF. Let x€ A, Then U[x]NA = @ for all U€#; so that x& U~ '[A] for all
Ue . But since U=U"", this implies x € U[A4] for all UcZ.

Conversely, suppose x € U[A] for all Uc%. Then xc U~ '[A] for all Ue#; so
that U[x]NA # @ for all Ue#. Hence x€A.

(2. 15) Theorem. The following are equivalent for any symmetric generalized
uniform space (X, %):

(a) J (%) is a T, topology.

(b) N{U|Ucu})=4

(¢c) F(#)isaT, topology.
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Proor. We first show (a) implies (b). Assume 7 (%) is T,., and x#y. Suppose
there exists an open set M such that y€ M and x¢ M. Then by Corollary (2. 12)
there exists a U€ % such that U[y]< M., Consequently, x¢ U[y]: so that (x, y)¢ U.
Hence N{U|Uc%}=A.

We now show (b) implies (c). Assume N{U|Uc%}=A4, and suppose x=y.
Then (x, »)4 U, and (y, x)¢ U, for some U, €. Hence y4 U,[x] and x4 U,[)];
so that by Corollary (2. 12) we have that #(%) is T,.

(2. 16) Definition. # is a base for a symmetric generalized uniformity % on X
iff (1) #c % and (2) for every U€ % there exists a V€4 such that Vc U.

(2. 17) Definition. & is a subbase for a symmetric generalized uniformity % on
X iff 2. the set of all finite intersections of elements of .%, is a base fo %.

(2. 18) Remark. In the sequel we will show that a base for # need not be a
subbase for %.

(2. 19) Remark. If # is a base for % on X, and if each element of # is open
with respect to the product topology on (XX X), then # is called an open base.
Similarly we define a closed base.

(2. 20) Theorem. Let (X, %) be a symmetric generalized uniform space. If U
has a closed base then 5 () is regular.

(2. 21) Lemma. Let (X, %) be a symmetric generalized uniform space. If V is
closed in (X X X') where the topology on (X X X) is the product topology of J (%), then
for each x € XV|[x] is closed with respect to J ().

PROOF of Lemma (2. 21). Let x,€X. Let {y,n€D} be a net in V[x,). Then
{(xo, y)|n€ D} is a net in V. Suppose {y,} converges to b. We know the constant
net {x,} converges to x,. Hence {(x,,),)|n€ D} converges to (x,,b)€V; so that
b€ V[x,)] and V]x,] is closed.

ProoF of Theorem (2. 20). This is an immediate consequence of Lemma (2. 21)
and Corollary (2. 12).

(2. 22) Theorem. 4, a subset of P(X X X). is a base for some symmeltric general-
ized uniformity on X iff # satisfies (M. 1), (M. 3), (M. 4), and (M. 6).

Proor. Clearly, if % is a base for some symmetric generalized uniformity on
X, then # satisfies (M. 1) (M. 3), (M. 4), and (M. 6).

Conversely, let ={U|U=U"" and U > V for some V¢ #}. Clearly, % satisfies
(M. 1), (M. 3), and (M. 8). We now show # satisfies (M. 4). Let 4<€P(X) and let
U, V be in %. There exist U,, V, in # such that U > U, and V O V,. But since #
satisfies (M. 4), we have that there exists WeZ such that W[A4] < U,[A] "V, [A].
But U,[4] N V,[A4] © U[A]N V[A]. Consequently, % satisfies (M. 4). We now show
U satisfies (M. 6). Let 4, B be in P(X) and U< %, and suppose V[A] B = @& for
all V€. Then V[A] N B = @& forall V€2, But there exists U, € # such that UD U, .
But since # satisfies (M. 6), we have that there exists an x¢ B and there exists a
W< # such that W[x]c U,[A4]. But U,[4] < U[A4]. Consequently, % satisfies (M. 6).

(2. 23) Theorem. Let (X, d) be a symmetric generalized proximity space. Then
there exists a symmetric generalized uniformity % ,(8) on X such that (%, (5))=0d.
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ProOF, For every A, B in P(X) let Uy g = (XX X)—(4X B)J(BX A)). Let
¥ ={U, plAdB}. 1t is clear that ¥~ satisfies (M 1) and (M. 3). We now show that
ASB iff for some C, DC3D and U p[A] B = . Suppose AdB and there exists
1€ Uy p[A] 1N B: Then there exists s€ A such that (s, 7)€ Uy, g- But this is a contra-
diction since (s, 7)€(4X B). Hence Uy sl[AINB = . Conversely, suppose there
exists C, D such that CD and U ,[4]N B = @. We first assert that 4 < CUD;
for if 1€ 4A—(CUD), then Uc p[r]=X and so also Uc p[4]=X, a contradiction,
Next we show that A< C or 4 D. Suppose there exist 7,€ A4, 1,€A such that

t;€C and 1,€D. Then U¢ p[t;] = (X—D) and Uc p[t,] = (X C). But since CbD
we know by (L.4) that (X C)U(X—D) = X. Hence Uc p[t;]UUc plt2] =
so that U p[4]=X which is a contradicton. Consequently, AcCor AcD. Sup-
pose the ﬁrst case is true. Then Ug p[A4] = (X—D); so that B— D, and by Lemma
(1. 5) ASB. The proof in the second case is similar.

By the above argument and Theorem (2. 2) we have that ¥~ also satisfies (M. 4)
and (M. 6). Consequently, by Theorem (2.22) #,(0)={U|U=U"" and U DV for
some V€¥7}is a symmetric generalized uniformity on X. It is clear that §(%, (8))=4.

(2. 24) Corollary. A topology # on X is the uniform topology for some sym-
metric generalized uniformity on X iff .# is symmetric.

ProoF. This is an immediate consequence of Corollary (1. 14), Theorem (2. 23),
and Remark (2. 10).

(2. 25) Remark. Contrast Corollary (2. 24) with the classical theorem which
states that a topology # on X is the uniform topology for some uniformity on X iff
J is completely regular.

(2. 26) Definition. If we are given 6, a symmetric generalized proximity on X,
then the class of symmetric generalized uniformities % on X such that 6(#%)=0o
is called a proximity class of symmetric generalized uniformities on X and is denoted
by #(8). Similarly, if 4 is a proximity on X, then the class of symmetric uniformities
% on X such that é(%)=24 is called a proximity class of symmetric uniformities on X
and is denoted n*(d).

(2. 27) Theorem. Let (X, d) be a symmetric generalized proximity space. Let
U €n(d). Then

(a) ASB iff for every UcU(AXB)NU #~ @.

(b) A<<B iff there exists U€ ¥ such that B> U[A].

PROOF (a). Let % € n(5). Suppose (AX B)N U # @ for every U€%. Then U[A]
NB # @ for every U ; so that AJB.

Conversely, suppose 46B and U € #%. Then since % € n(8), there exists b€ U[A]
M B. Hence there exists a€ A with (a, b)€ U: so that (AXB)NU # @.

ProoOF (b). Let % €n(8). Suppose A<<B. Then ad(X — B); so that there exists
Ue such that U[A]N(X—B) = @. Hence B> U[A].

Conversely. suppose there exists U such that B> U[A]; then U[A]N
N(X—B) = @. Hence A6(X—B); so that A<B.

(2. 28) Theorem. Let (X, 8) be a symmetric generalized proximity space. Then
U, (0) (as constructed in Theorem (2.23)) is the least element of n(d) (where the
parriai order on n(d) is set inclusion).
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PROOF. Let # €n(d). Let U, pc#,(5). ASB. Then by Theorem (2.27) part
(a) there exists V€4 such that (4 X B)( 1V = . But since ¥=V""! we have that
(BXA)V = @. Hence Uy yo V; so that U, z€%.

(2. 29) Theorem. Let (X, d) be a symmetric generalized proximity space. The
union, A, of an arbitrary family of members of n(d) is a base for a symmetric gene-
ralized uniformity in m(9).

ProOF. It is clear that # satisfies (M. 1) and (M. 3). By the definition of 7(d),
we have that A0B iff, for every Uc#, U[A)NB # . Hence by Theorem (2.2)
we have that # satisfies (M. 4) and (M. 6). Consequently, by Theorem (2. 22) # is
a base for a uniformity on X which clearly is in n(d).

(2. 30) Corollary. Let (X, ) be a symmetric generalized proximity space. Then
7(0) has a greatest element.

Proor. This is an immediate consequence of Theorem (2. 29).

(2. 31) Remark. C, DOWKER in [7] has shown that a proximity class of symmetric
uniformities may fail to have a greatest element.

(2. 32) Lemma. Let (X, %) be a symmetric generalized uniform space. If (x, y)eV
Jor every VEU and (y, z)€V for every VEU, then (x,2)EV for every VEU.

PRrROOF. Let U€ #%. By hypothesis V[x] "y # @& for every V€ #. Hence by (M. 6)
there exists W, €% such that W,[y]c Ulx]. But V[y](z = @ for every VEX,
consequently, there exists W, € % such that W,[z]< W,[y]. Hence z€ W, [y]C U[x];
so that (x,z)€ U,

(2. 33) Theorem. Let (X, %) be a symmetric generalized uniform space. If U
has a least element (with respect to set inclusion), then (X, U) is a symmetric uniform
space.

ProOOF. It is immediate by the hypothesis that % satisfies (M. 5). We now show
that % satisfies (M. 7). Let Uc# and let V be the least element in #. Suppose
(x, €V and (y,z)€V. Then by Lemma (2.32) we have that (x,z)€V; so that
(VoV)cC V c U.

(2. 34) Definition. A decomposition of a set X is a disjoint family Z of subsets
of X whose union is X. A decomposition Z of a topological space (X, .J) is upper-
semicontinuous iff for each D< % and each open set A containing D there exists an
open set B such that D Bc A, and B is the union of members of &.

(2. 35) Theorem. Let (X, %) be a symmetric generalized uniform space. Let
R=N{U|U€u)}. Then R is an equivalence relation on X, and X|/R is an upper semi-
continuous decomposition of (X, J (U)).

Proor. Clearly, R is reflexive and symmetric, and by Lemma (2. 32) R is trans-
itive, Let A€.#(%). Let x€A. Then there exists U€# such that U[x]C A. But
Rc U for every Ue#. Hence R[x]C A for every x¢ A. Hence 4 = U {R[x]|x€ A4}.
But R[x]€ X/R for every x< 4. Consequently, X/R is an upper semi-continuous
decomposition of (X, S (%)).
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(2. 36) Example. There exists a symmetric generalized uniform space that does
not satisfy (M. 5).

Proor. Let § be the usual proximity for the reals X. Let %, (J) be the symmetric
generalized uniformity on X as constructed in Theorem (2.23). Let A=[l, 2],
B=[2,3]; A,=[3,4]; B,=[4, 5]. Clearly 454, and B3B,. We will show that there
does not exist P, Q such that P6Q and Up o © U, 4, (g 5, For suppose there
does exist such a P and Q. Then

(PXQ)U@XP)D(AX A,)U(A4, X A)J(BX B,)U(B, X B);

so that (P'JQ) = [I. 5]. This may hold only in the case of P[Il, 5] or Q2][I, 5]
by the connectedness of the interval. In the first case QN [1, 5] =@, i.e. QX P con-
tains no point of the set on the right hand side, from which Q = [1, 5] follows, which
is a contradiction.

(2. 37) Remark. Example (2. 36) shows that a base for a symmetric generalized
uniformity % on X may not necessarily be a subbase for % because a base need not
be closed with respect to finite intersections.

II1.
P-correct and totally bounded spaces

In this chapter we obtain a generalization of a theorem of Alfsen-Fenstad, Gal,
and Smirnov which states that every proximity class of symmetric uniformities
contains one and only one totally bounded uniformity.

Let X be a non-void set. Forevery A, Bin P(X)let Uy 5 = (XX X)—((4AX B)U
U(BX A)).

(3. 1) Definition. Let (X, %) be a symmetric generalized uniform space. (X, %)
is p-correct iff there exists a symmetric generalized proximity 4 on X such that the
family & ={U, 3/A6B} is a subbase for #. é is called the generator proximity for .

(3. 2) Remark. On page 194 in [38] W. J. PErvIN states without proof that if
(X, d) is a proximity space with a proximity class n*(d) of symmetric uniformities,
then &= {U, g/A3B} is a subbase for a uniformity, %, which is in z*(5). This con-
struction is the dual of that in Lemma 3. 4 in [11]. Note that it omits the topology
parameter from consideration.

(3. 3) Definition. Let (X, %) be a symmetric generalized uniform space. (X, %)
is totally bounded iff for every U€ there exists x,.....x, in X such that
X=U{U(x)k=1,...,n}.

(3. 4) Remark. Note that if (X, %) is a symmetric uniform space then it can
be shown that (X, %) is totally bounded iff for every Uc%, there exists a finite
family of sets {4,,...,4,} such that U{4,| k=1,...,n}=X and such that
U {(4,X4) k=1, ...,n} c U.

(3. 5) Remark. 1t is clear that %, (d), as constructed in Theorem (2. 23), is totally
bounded. For if U, z€%,(9), let x, be any element in A4 and let x, be any element
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in B. Then U, g[x,] = (X—B) and U, g[x;] = (X—A); so that since ANB= @&,
Uy, s[x]U Uy p[xs] = X

The following lemma is crucial for the development of the theory of p-correct
symmetric generalized uniform spaces.

(3. 6) Lemma. Let (A,,..., A, and (B,, ..., B,) be n-tuples of non-void sub-
setsof aset X. Let U=Uy,, p, s .NUy,, s,- Let!, {ky, ...k} and L={j,, ..., j,}
be subsets of {1, ..., n}. Suppose xgé(Ahﬂ N4, NB; ﬂ .(1B;) and xo4 A; if
i¢l, and x4 B; :f i¢ly. Then Ulx,]|=E, nirere E is equa! to

=B )N .. NEX=B)I)NX—4,)N...0(X— 4,).

(3. 7) Remark. In the sequel to simplify the language we will abbreviate the
hypothesis of Lemma (3. 6) as follows: “Suppose x, € (4,, ... A, N B; N...NB; )
and x, is in no other 4, or B;.”

PROOF of Lemma (3. 6). By DeMorgan’s law.

= (XXX)- y [(A:XBa)U(Baan)]]-

Suppose 1€ U[x,]. Then (xo, t)eU so that since IOG(A,‘I N...N4,NB; N...N By,
we have that 14 B,, i=1,...,p and 144, i=1,...,q. Consequemly, {€E and
E> Ulxy). To show the reverse mcluswn, suppose there exists 1, €(E—U[x,)).

Then (xq, 1,) ¢ U; so that (x,, 7,) is an element of U [A; X B;) U(B; X ;A)]. Suppose

(xo,1,)€(A,, X B,) where 1=m=n. Then since r,eE we have that m#=k; for
i=1, ..., p: so that xo€ 4, and md I, which is a contradiction. Suppose (x,,#,)¢
E(B,,,)( A,) where 1=m=n. Then since ¢, € E, we have that m=j; for i=1, ..., ¢;
so that x, € B,, and m ¢ I, which is a contradiction, Hence E= U[x,].

(3. 8) Remark. Let (A,, ..., A,) and (B,, ..., B,) be n-tuples of non-void sub-
setsof aset X, Let /;, = {k,, ..., k,}and I, ={ j;, ..., j, } be any two subsets of {1, ..., n}
and let

E={x|xcA;ifficl, and x€ B;iff ic I,}. If E# &, we call E a residual intersection
of the A; and B;.

It is clear that residual intersections are mutually disjoint; so that 2, the
family of all residual intersections of the A4, and B;, provides a decomposition
of U{(4;UB)li=1,...,n} into mutually disjoint sets.

(3.9) Theorem. Let (X, %) be a p-correct symmetric generalized uniform space.
Then (X, ) is totally bounded.

PROOF, Let U, and let é be a generalor proximity for %. Then there exists
a finite family of sets 4,, ..., 4,; B,, ..., B, such that 43B; for i=1,...,n and

Up,3,N...NU, 5, =V C U Now if U {(4;UB,)|i=1, ...,n}=X, then for any
XoEX— U {(AJUB) i=1, ..., n} we have that V[x,]=X, and the theorem follows; so
we assume that d{(A;UB)I:wl n} = X. Let # be the family of all res;dua]

intersections of the A4; and B,. From each R€# choose one and only one point
and denote that point xgz. Let S={xz|Rc¢Z}. Clearly, since 2 is finite, S is also
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finite. We now show that V[S]=X. Let z€ X. Since we assume that U {(4,UB)i=
=1, ..., n}=X, we have that z€ R for some R¢ . Consequcntly, forsomek,, ..., k,;
Jis ...,jq,ZG(Ak M...00 A4, M B; (... B;)and z is in no other A; or B;. But by the
definition of S there exists xg in S such’ that Xg€(A,, N .. ﬂA, ﬁB“ﬁ .M B;)
and xg is in no other A4; or B;. By Lemma (3. 6) we have that V[xg]is equal to (X — Bk )
N..NX=B,)N(X=A4;)N...N(X—A4, ). But since 4, 0B; for all i we have that
z¢ By, for i=1, ..,p and z¢ 4 for :—I e Consequently, z€ V[xg]. But z is
an arbitrary point in X. Hence V[S]= X so that U[S]=X

(3. 10) Theorem. Let (X, %) be a p-correct symmetric generalized uniform space.
Then (X, %) has an open base.

ProoOF. Let U< %. Then there exists a finite family of sets A,. corgillyy By g isiyl
such that 4;9B; for i=1,...,n and (U, 5 (N..."NU, ) = V is contained in U.
But for each i 1 =i=n, 4, DA and B; = B;; so that Uy, 8,2 Ui, s,. But by Theorem
(1. 17a) A,0B,; for :_l ,n; so that Uz g €% for 1=i=n. But it is easily shown
that Ujz, g, is open for !—l, ...,n. Hence V is open.

Note that we assume thats (U)=.9(J) and d(U)=4. Thisis established in
(3. 19).

(3. 11) Remark. 1t is clear that %, (8) as constructed in Theorem (2. 23) has an
open base; for if U, p is an element of %,(4), then by the same argument that is
given above we have that U, y > Uy p: Uz p€%,(): and Uy pis open.

(3. 12) Remark. 1t will be shown (6. 20) that there exists a symmetric generalized
uniform space that does not have an open base.

(3. 13) Theorem. A symmetric uniform space (X, ¥) is totally bounded iff for
some proximity & on X the family & ={U, y|AdB} is a subbase for (X, %).

(3. 14) Lemma. Suppose {A;} and {B;} i=1, ..., n are finite sequences of non-
void subsets of a set X such that for all i A;> B; and U {B;li=1, ..., n}=X. Then we
have that

= (@xX)= U [0r-4)x BIUIBX (X—A)]] < U (4 AL

PROOF of Lemima (3. 14). Let (x, y)€ F. Then since U {Bjli=1, ....n}=X we
have that (x, p) € (B, X B,) where | =k, =n and 1 =k,=n. But is it clear that (x, y)¢
¢ [(X—A,,) X By ]; sothatsince y € By,, x € A,. But 4, © B, ,. Hence (x, ) € (4;, X A,).

(3. 15) Lemma. Let (X, d) be a proximity space. Let ¥« be a totally bounded
symmetric uniformity on X that is in n*(8), a proximity class of symmetric uniformities
on X. Then for every U€9U there exist sets A, ..., A, By, ..., B, such that U O
DUy, 8,N...NUy,, s, and AdB; for i=1, ..., n.

PROOF of Lemma (3.15). Let U€%. We know there exists V€4 such that
V=V-1! and (FoVoV) c U. Then since (X ) is totally bounded, there exists

sets B,, ..., B, such that U [B,] = X and U [B;XB) < V. Let A;=V|[B;]. Since
i=1

VIBIN(X—VI[B)) = &, A > =B, i=1, ..., n Also, by a straightforward calculation
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we can show for i=1,...,n that (4;XA4;) < VeVoV. Hence we have that

U [4;XA4;] < U. But by Lemma (3. 14)
i=1

xX)= U [0 A)x BIUEB X (X— AT < U (4 A:

so that

UB.,X—AI q res ﬂUB,..X—A,.C U.
and

BES(X'_A;) fOl’ — l_. ooy M.

PROOF of Theorem (3. 13). Suppose for some proximity é on X & ={U, 5 A6B}
is a subbase for #. Then % is a p-correct symmetric generalized uniformity on X,
and hence by Theorem (3.9) # is totally bounded.

Conversely, suppose 7 is totally bounded. It is known (cf. [40] Theorem (21. 14)
and Theorem (21. 15)) that for some proximity é on X % € n*(8), a proximity class
of symmetric uniformities on X. Suppose 4,08, fori=1, ..., n. Foreach i,i=1,....n
there exists a symmetric V;¢#% such that (4;,XB;) N V; =@, and hence such that
Uy, 8,2 V;i- Consequently, we have that U= (U,, 5, N...NU, p) 2 (V,N...0V);
so that U € %. By this fact and Lemma (3. 15) we have that the family & = {U, 4/ 40B}
is a subbase for %.

The following theorem is a generalization of the theorem of Alfsen-Fenstad,
Gal, and Smirnov which is mentioned a, the beginning of this chapter.

(3. 16) Theorem. Let (X, 8) be a symmetric generalized proximity space. There
exists in n(d) one and only one p-correct symmetric generalized uniformity, U ,(d),
on X,

(3. 17) Lemma. Let (X,9d) be a symmetric generalized proximity space. Let
(C,,....C,) and (D,, ..., D,) be n-tuples of non-void subsets of X such that C;dD;
Jor 1=L, s . Thes (O 1Y NCD L. 41D

PROOF of Lemma (3. 17). Suppose that (C,...NC,) é(D,U...UD,). Then
by (P.2) (C,N...NC,)éD, where 1=k=n. But C, > (C,N...NC,); so that by
Lemma (1.5) C, 6D, which is a contradiction.

(3. 18) Lemma. Let (X, 0) be a symmetric generalized proximity space. Then
POQ iff there exists n-tuples (A, ..., A,) and (B,, ..., B,) of subsets of X such that
(Ug3,N...NU,, s )IPINQ = &, and A;dB; for i=1, ..., n.

PROOF of Lemma (3. 18). If P3Q, then by the same argument that is given in the
beginning of the proof of Theorem (2.23) U, o[P]NQ = @.

Conversely, let V=U,, 5, N...NU,, s, Since V[P]NQ = & we have P C U
J{(4;UB)i=1, ...,n}. Let o ={E,, ..., E,} be the pairwise disjoint family of all
residual intersections of the 4; and B; that have a non-void intersection with P.
Clearly, P © M = U {E_c=1, ..., m}. By Lemma (3. 6) since o/ is a pairwise dis-
joint family, if t,€(PNE,) and t,&€(PNE,) where 1=c=m, then V[t,]=V[1,].
Let F.=V][t] for ¢=1,...,m where ¢, is a fixed point in E.. Then we have that
VIP]=U{F.c=1,...,m}. But since V[P]NQ =8 we have that Q c (X—V[P));
so that by DeMorgan’s law QN where N = N{(X—F)lc=1,...,m}. Let E.€ o/
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where 1=c=m. We may assume that E.CE’=A, N...NA4, NB; N..NB,
for some k,, ..., k,; j,, ..., J, and E, intersects no other 4; or B Consequently
by Lemma (3. 6) and DeMorgans law (X—F) = (B,,U...UB, UA U UA,)
Hence by Lemma (3.17) EX3(X—F,) where |=c=m; so that by Lemma (3 5)
E5(X—F,) where 1=c=m. Hence again by Lemma (3. 17) MON; so that by
Lemma (1. 5) PSQ.

(3. 19) Lemma. Let (X, %) be a p-correct symmetric generalized uniform space
with generator proximity 6. Then 8(U)=0.

PrOOF of Lemma (3. 19). Suppose P6Q. Then by Lemma (3. 18) there exists
Uc# such that U[P]NQ = @; so that Pé(#%)Q.

Conversely, suppose P3(#%)Q. Then there exists V€% such that V[P]NQ = & ;
so that by Lemma (3. 18) P3Q.

PROOF of Theorem (3. 16). Let & ={U, y/49B}. Let #={all finite intersections
of members of #}. It is clear that # satisfies (M. 1) and (M. 3). By Lemma (3. 18)
and Theorem (2. 2) we have that # also satisfies (M. 4) and (M. 6). Consequently,
by Theorem (2.22) we have that #,(8)={U/U=U"" and V> U for some V¢ #}
is a symmetric generalized uniformity on X. It is clear that %,(d) is p-correct, and
by Lemma (3. 19) that %,(d) € n(5). We now show that %,(d) is the only p-correct
symmetric generalized uniformity on X that is in n(d). For suppose ¥ ¢ n(d) and
(X, ¥") is p-correct with generator proximity d,. Clearly, é, #d if %,(8)#7". But by
Lemma (3. 19) we have that 8(¥")=4, which is a contradiction, since we assume
¥ €n(0). Hence ¥ =%, (9).

(3. 20) Remark. We note that if U, V are in %,(d) (as constructed in Theorem
(3. 16)). then (UM V) €%, (d). Hence if d is the usual proximity on the reals X, then
 , (0) (as constructed in Theorem (2. 23)) is properly contained in %, () (cf. Theorem
(2. 28) and Example (2. 36)). Hence we see that a proximity class of symmetric
generalized uniformities may contain two distinct totally bounded uniformities. It is
easily shown that a proximity class may contain more than two distinct totally
bounded uniformities (cf. (6. 20)).

(3. 21) Corollary. (Alfsen-Fenstad, Gal, Smirnov). Let (X, d) be a proximity
space. There exists in 7#(d) one and only one totally bounded symmetric uniformity
on X.

PrOOF. By Theorem (3. 13), Theorem (3. 16), and Remark (3. 20), it is sufficient
to show that %,(d) satisfies (M. 7). We note that if VioV; < U; for i=1, ..., n,
then (Vi N...NV)o(V;N...NV,) < U;N...NU, where V; and U, for i=1, ..., n
are subsets of (XX X). Consequently, it is sufficient to show that for each U, p¢
€U ,(0) there exists a V' €4,(d) such that Vo V' < U, 5. We now show the existence
of such a V. By (P. 5) there exist sets C and D such that CND = @& and C=A4 and
D=B. Let V = (Uy, x-¢) N (Up, x-p). We show VoV < U, p. Suppose (x,y)cV
and (y, z)€ V. We must show that (x, z) € U, g or equivalently that (x, z) § (4 X B)U
U(BXA). Clearly, if x4(A4 U B), then for every 1€X we have that (x,7)c U, ;.
Hence we may assume that x € (4 U B). Two cases now occur. Case I x¢€ A and Case 2
x € B. These are the only possibilities for x since AN B = &.

17 D
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Claim 1. If x€ A, then z¢ B. For suppose z¢€ B. Then (y, z) €(C X B). But since
CND =@, (Xx—D) D C; so that ((X—D)XB) > (CxB). Hence (y,z)¢ ¥V which
is a contradiction. By a similar argument we get

Claim 2. If x€ B, then z¢ A.
By Claim 1 if x€ A4, then (x, z)§(AXB); so that (x,z)c U, . By Claim 2 if
x€B, then (x,z)¢(BXA); so that (x,2)eU, g.

(3. 22) Remark. The symmetric generalized uniformity %,(d) as constructed in
Theorem (3. 16) satisfies (M. 5), but might fail to satisfy (M. 7). For let (X, ) be
any symmetric topological space which is not completely regular. Define the relation
d, on P(X) by (4,B)iff AN B # @, so that #(d,)=.F. Then #,(J,) cannot satisfy
(M. 7): for if so, then %,(d,) would be a symmetric uniformity and hence .# would
be a completely regular topology.
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