A characterization of biperfect topogenous orders

By SANDOR GACSALYI (Debrecen)

As is known, biperfect topogenous orders play an important role in the syn-
topogenous build-up of general topology (see [1], in particular Chapter 5). Their
importance is largely due to the fact that a natural one-to-one correspondence exists
between the biperfect topogenous orders and the reflexive relations defined on a
given set ([1], theorem (5. 39)—(5. 41)).

In this short note we are going to establish a result, running parallel as it were,
to the theorem just quoted. Biperfect topogenous orders over a given set will be
shown to be equivalent to a class of entities, more complicated than reflexive
relations, but endowed with a simple meaning that may appeal to our intuition.

We start with two definitions, one of them well-known:

Definition 1. A biperfect topogenous order on a set E is a relation < defined
on the set of all subsets of E, satisfying the following axioms:

©l) @<@, E<E;
(02) A-<B implies A< B;

(03) ASA"<=B"S B implies A=B;

(Bn) A<B, for icl implies A<= N {Blic1}:
(B,) A;<B for icl implies U{A,licI}<B. §

Definition 2. A kernelled covering of a set E is a triple (y, m, f), with y a
covering of E, m a partition of E and f a one-to-one mapping of n onto 7, satisfying
PZ f(P) for any Pcn. |§

The intuitive background of the second definition is quite simple. If y is a cover-
ing of E, then for each x € E let us choose a set G € y containing x. (In other words:
for each x € E, choose a member of St (x, 7).) Now, two points of E will be considered
equivalent, if the same set has been chosen for them. If we still make correspond to
each equivalence class its chosen covering set, then we obtain a kernelled covering
(71, 7. f), 7,being the class of chosen sets'), « the partition formed by the equivalence
classes just defined, with the correspondence f clearly one-to-one.

Thus we see that each covering of a set gives raise in a natural way to kernelled
coverings, these being essentially the same as the selection functions operating on
the stars of the space’s points.

') 7, 1s a subset of ;. There are cases when this subset is necessarily proper. (E.g. cover a set
by all its subsets.)
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Let now = be a biperfect topogenous order. Put
U<(x) = {ylx<E—y} = N{¥|x<V}.

Then y.={U.(x)|x€E} is a cover of E. — Write now x~y if and only if
Uc(x)=U(y).

This is clearly an equivalence relation, and if we still write X={y|x~y} and
f<(X)=U<(x), then the function f. will be a one-to-one mapping of the partition
n.={X|x € E} onto the cover y., satisfying X S /. (X) for any X €. Thus we have
established the following

Proposition 1. If < is a biperfect topogenous order on the set E, then U=
=(y<, n<,f<) is a kernelled covering of E. |§?)

Let now a kernelled covering A =(y, n,f) of E be given. We write A<B iff
x<=Bforany x¢ A, and x<=Biff xé P f(P)< B for some P n. The relation = = <
so defined is a biperfect topogenous order on E; the verification is straightforward.?)

We thus have

Proposition 2. If U is a kernelled covering of the set E, then < is a biperfect
topogenous order on E. |

The following proposition will show that the mappings = —2_ and A - =4
are one-to-one correspondences, inverse to each other, between the sets of all bi-
perfect topogenous orders and all kernelled coverings on E.

Proposition 3.

(I) Let <—+U. and V- <g. If A=W, then <y = <.
(I) Let A— <y and <—+W.. If <= <y, then A =U.

Proor. (I) If A=A, then each of the following statements is equivalent to

the next one:
x<=yB;

XeySUL(y)EB for some ycE;
xéfg U.:(.Y)%B;
U<(x) & B;

x<B,.

Thus <g= < results proved.

(I) It is clear that if <= = < for some kernelled covering 2, then in view of
“x<B iff xe PC f(P)S B” we have U_.(x)=f(P). Clearly, if x runs through E,
S(P) will run through y. This proves y.=7. Also n. =m, because x~y, i.e. U.(x)=
=U.(y) iff x and y belong to the same member of the partition 7. By what has

2i_ff_the‘ relation = is a semi-topogenous order (i.e. if it is supposed to satisfy only the first
three of the five conditions listed in Definition 1), then the two formulae used to define U . (x) fail to
be equivalent. This yields two possibilities for the definition of U . (x), the validity of Proposition 1.

being preserved by each of the two.
3) Of course, m being a partition, the set P¢ m is uniquely determined by x, a fact needed in

establishing property (Bn).
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already been said, we clearly have also f.=/. since to a given member of n_.=n
there belongs the same f(P)=U-(x) according to A and to A_=A(=y). @

Thus we have proved the two notions of biperfect topogenous order and ker-
nelled covering to be equivalent.

Definition 3. A biperfect topogenous order = on a set E is subordinated
to a covering y of E. if == <= for some kernelled covering 2 =(x, n, /) such that
a=7y?).

A covering 7 is superposed to the biperfect topogenous order <, if = is sub-
ordinated to 7. |

One easily sees that the symmetrical perfect topogenous order defined by

A<,B if and only if St(4,y)SB

is the intersection of all the biperfect topogenous orders subordinated to 7.
As a matter of fact, let <= be the intersection of all the biperfect topogenous
orders subordinated to y. Then

A<B iff A<gB for each A=(a,n,f) with a=y

Equivalently, A< B iff for each x€A4 and any G¢€y satisfying x¢ G, one has
X€GS B.5) Thus
A<B iff U Si(x,7) = St(4,y) S B,
xEA
i_c_ - = {T'
The one-to-one correspondence existing between biperfect topogenous orders
and kernelled coverings over a given set £ makes it natural to adopt the following

Definition 4. If A, =(x,, n{,f;) and A,=(x,, n,,f;) are kernelled covers
and <4 and <, are the corresponding biperfect topogenous orders over a set
E, then

9[[ é‘![z if and 0!‘I|y if {"'I g “‘:.uz. .ﬁ)

If we wish to obtain an “inner” characterization of the partial order thus in-
troduced, we arrive at the following

Proposition 4. A, =N, iff for any Pcn, and Q€ n,y, P(1Q # @ implies f,(Q) <
S /i(P).

Corollary. If W, =N, then u,=u, for the first components.

Proor. The condition is necessary:

Let A, =A,. If PNQO # @ (PEmn,, Q€m,), then x€ PN Q for some x€ E, and
x€ PSf,(P)implies x <, f, (P).

Then, however, x <, f,(P), i.e. x€ Q'S £,(Q') S f, (P) for some Q'€ n,. But n,
is a partition of £, so Q"=Q and /5(Q) S/, (P).

The condition is sufficient:

[

9) l.e. for Aca there is G ¢ y such that ASG.
*) This in view of the ‘‘selection-function™ aspect of the notion of kernelled covering.
¢) Sometimes, for simplicity’ sake we write <, instead of <gy,.
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Suppose it is satisfied, and let x<, B, i.e. x¢ PS f,(P)S B for some P€mn,.
Now for the uniquely determined Q¢ m, satisfying x€ Q we have xc QS f,(Q) <
€ f,(P) S B, hence x < , B. By the biperfectness of <, thisyields <, S <=,,i.e. W, =U,.

This completes the proof of the proposition.

Now let A, =9, . Since f; is an onto mapping, each member of «, can be written
in the form f,(Q), Q€n,, and if x€ Q then for x€ Pcn, we have f,(Q)=f,(P)€«,.
Hence x,=2,. |§

In the same manner as one partially orders the kernelled covers of a given set
by referring to the corresponding biperfect topogenous orders, one can also define
unions and intersections of kernelled covers with the help of their biperfect topo-
genous counterparts,
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