On the set of normality and iteration of e*—1

By P. BHATTACHARY YA (Madras)

1°. Introduction

The theory of iteration of a rational or entire function f(z) of the complex variable
z treats the sequence of iterates { f;(z)} defined by

fo@ =z £i@) =@, firi@=1(/() n=12..,

and are respectively rational or entire according as f(2) is.

In the theory developed by Fatou [4, 5] and Julia [7] a fundamental role is
played by the set F( f) of those points of the complex plane where f,,(z) is not normal,
in the sense of Montel. &F( f) is a perfect set [4, 5] whose complement C( f) consists
of an atmost countably infinite set of components G; each of which is a maximal
domain where {f,(z)} is normal.

If f(z) is rational then it is known [4] that the number of components G; of C(f)
is 0, 1, 2, or ==. For entire f(z) we shall prove

Theorem 1. If f(z) is entire which is not a polynomial and if the set C(f) has a
finite number of disjoint components, then it is atmost one.

The determination of §( f) and G;’s corresponding to a given f(z) is a problem
of considerable difficulty, particularly when f(z) is entire. So it is that despite the need
urged by Fatou ([5]) to establish by numerous examples the various ways in which
& (f) can divide the plane only a few examples have been worked out so far [5, 6, 8].
In this note we shall consider the iteration of e —1.

All the cases of theorem can indeed occur. For example the function kze®,
where k is suitable constant considered by BAKER [2] has no component of normality,
the function sin z considered by TOPFER [8] has an infinite number of components of
normality. For e*—1 we shall show that C( /) has a single component.

2°, Preliminaries

A set D is said to be invariant under the iteration of f(z) if f(D)c D, and com-
pletely invariant if in addition f_ (D)< D for all the branches of the inverse function.
The following lemma is well known [4, 5, 7].

Lemma 1. The set §( f) and its complement C( f) are completely invariant.
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Among the components of C(f) there may occur completely invariant ones.
We have ([1])

Lemma 2. [BAKER] If f(z) is entire transcendental then C(f) has atmost one
completely invariant component.

Lemma 3. Let G be a component of C(f) such that some sequence {f,}, m
strictly increasing, k=1, 2, ... , has a nonconstant limit function ¢(z) in G. Then C(f)
has a component G*, which contains ¢ (G) and which is mapped one to one onto :rse{)"
by some iterate j:,(z) and Y(z)=z is a limit function of sequence { f,, }, my increasing
in G*. Further f(z) is univalent in G*.

If such a component G* exists then it is called a singular domain.

The proof of this lemma was given by FATOU [4] for rational functions. A proof
under more general circumstances is given by H. CREMER [3].

If w=f,(z) we say that w is successor of z and z is a predecessor of w in both
cases of order n.

A value z, is said to be Fatou exceptional, if it has atmost a finite set of pre-
decessors. It is easy to see that an entlre function can have atmost one such excep-
tional value.

Lemma 4. [Fatou, 5.] If « is any finite value other than a Fatou exceptional
one and if € § then there exists a sequence of integers n, — == and values fi, —~ p such

that f, (B =o.
Finally we have [4, 5]

Lemma 5. The set §(f) is identically equal to the extended plane if it has an
interior point.

3°. Proof of Theorem 1.

Suppose that G;, i=1,2,..., N are the disjoint components of C(f) where
N<-eo, For any G; consider f_,(G;) for any branch f_,(z) of the inverse function
j o off Then f_,(G;) will be in C(f) by lemma 1, i.e. will be in a number of G;.
If G; is a component meeting any f_, (G;), then since f(G;) belongs to a single com-
ponent of C(f), we must have f(G,)cG; Clearly then, f_ (G) and f_1(Gy), i#=k
will constitute different sets of domains and so f_, must induce a permutation 7
among the G, such that f_,(G;)c G, ;. There is an integer n for which z"=1 and
for this » we have f_,(G;))cG; for each i=1,2, ..., N where f_,(G;) means the
predecessor of order n of G;. Thus each G; is completely invariant for the function
Jfy» which is also entire transcendental. By Lemma 2. N cannot be greater than 1 and
the theorem is proved.
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4°, Iteration of e°*—1.

Let f(z) = -1, z=x+iy.

(a) Since | f(2)+1]| = |e*| = e* < 1 if x<0, we see that x<0 implies Re f(z) <0,
i.e., the left half plane H: Re z<0 is invariant and hence {f,(z)} is normal in H.
Also for x<0, x<f(x)<0 i.e. {f,(x)}, x<0, is a monotone increasing sequence
which must converge some limit 7(<0) for which f(r)=t. Then ¢ must be 0. Thus
{£,(x)} converges to 0 for all x<0, and hence since {f,(z)} is normal in H, {f,(2)}
converges to 0 for all z in H. Thus H belongs to an invariant component of C(f)
which is a maximal domain of normality, say G*.

(b) We now notice that G* extends across the imaginary axis except at the
countable set of points z=2nni, n integer. Because for any point z=iy (y#2nni)
of the imaginary axis f(z) = e”—1€H < C(f). Then by complete invariance of
C(f)[Lemma 1.] z=iy € H. Since f(z) = z+2z%/2+-+-, it is clear that {f,(z)} cannot
be normal at z=0, i.e. 0€ §. Since f(2nni)=0 we have [Lemma 1.] 2nzi € §. Hence not
only does H belong to G* but so do all points of the imaginary axis, except the points
z=2nmni, n integer.

(c) We now show that G* is completely invariant.

We prove

Lemma 6. Let G be a component of C(g) where g is an entire or rational func-
tion. Let € G be such that (i) « is not a singularity of any branch of g_,. (ii) g(x) €G
and g_,(B)€G for all the branches of the inverse function. Then G is completely in-
variant.

PrOOF. Let z€ G be any point. We need to show that g(z)€G and g_,(2)€G,
for all the branches of the inverse function.

Since G is a domain we can join « to z by a curve y lying wholly in G. We note
that y< C(g) and G c §, where 9G is the boundary of G.

First suppose g(z)¢ G. Now g(z)€ C(g) and g(y) is a continuous curve joining
g(@) €G to g(2) 4 G. This implies that g(y) must cross dG i.e. there is a point d which
belongs to g(y) and G at the same time. This is impossible since g(7y) belongs to
C(g) and dG belongs to §.

Next we show that g_, (z) belongs to G for all the branches of the inverse func-
tion. Suppose this is not true.

Now any z€G can be joined to 2 €G by a polygonal path. By slight variations
in the sides of this path, so small that they leave it (the path) in G, we can ensure
(Gross’” Star Theorem) that a given branch p of g_,(z) can be continued from z
along the path to a regular branch over «, lying arbitrarily near « and so along a
path right upto «. Since « is not a singularity of g_,(z) the continuation extends
further over to « itself, i.e. p may be obtained from a branch q of g_, («) by continua-
tion along a polygonal path y in G. But every branch g of g_, («) is in G by assump-
tion. Also by Lemma 1. we know that g_,(z) maps yc C(g) into C(g). This fact
gives us a contradiction as in the first case. This completes the proof of the lemma.

ProoF of (c). Consider the point z= —2 which belongs to G*. Clearly f(—2)
belongs to G* and f_;(—2) = log(—1) = (2n+ 1)ni belongs to G*, by (b) above.
Also —2 is not a singularity of f_, (z). Hence by lemma 6, it follows that G* is com-
pletely invariant.
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(d) The positive real axis belongs to the set &
We have already shown [in (b)] that

(1 0eg.

Take x,>0 and suppose x, ¢ &. Then {f,(z)} is normal in some neighbourhood
N:|z—xp| < 2R of xo. We observe that for x,=>0

2 lim £,(xo) = ==

and since {f,(z)} is normal in N we have lim f,(z) =< locally uniformly in N.
Thus
3) [fa(@)| =2 for some n=>n, in M:|z—xo| <R

This implies

4 Re[f,-,(2)] =0 for zeM

Now

®) £ = 1T S (fi-1(50) = exp (fo-1(50) =
by (2).

Thus by Bloch’s Theorem, the disc M contains a subdomain which is mapped
by f,-1(z) on to a domain U, containing a disc, say, U, of radius R-B-f,_,(x,)
where B is the Bloch constant. By (4) U; must lie on the right half plane Re z=0,
and by (5) the radius of U, can be made arbitrarily large for large enough ».

Let the disc U, be of radius =2n and let d denote the vertical diameter of
the disc U,. The equation of d is, say, Re z=4 where A=2 [by (3)] for n=n,.

We notice that dcC(f), since NcC(f). Now f(z) maps the vertical dia-
meter d of U, to the circle of radius A with centre at —1. We call this circle f(d).

Since f(d) meets G*, we must have f(d)cG*. Also from the maximum mod-
ulus principle, it is clear that G* is simply connected. Thus the interior of f(d) must
belongs to G*,i.e. to C(f). But this is absurd since the interior f(d) contains the point
0 which belongs to & [by (1)]. Hence x,=0 belongs to .

Summerising these results we have

Theorem 2. For f(z) = e*—1, the half plane Re z<0 is an invariant domain
and is contained in a completely invariant component G* of C(f). In G* we have
lim £, (2)=0. The domain G* includes all points of the imaginary axis except points

n-=oco

of the form z=2nni, n integer, which belong to §. Further, the positive real axis R*
belongs to §. The set & may therefore be defined as [by lemma 4 and since § is perfect]
as consisting of R* together with all its predecessors and points of accumulations. By
the periodicity of f(z), & also contains the reys

d*:y = 2nki, k integer.

ToprreR [8] made some statements about the iteration of e*— 1, without proof.
Theorem 1 contains essentially these statements.
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Next we prove
Theorem 3. G~ is the only component of C( f).

PROOF. Suppose there exists another component G;, which must necessarily
belong to the right half plane Re z=0. This is because the left half plane is contained
in G* and since G* is completely invariant we must also have f,(G,)NG* = 0.
Let p€G, and M:|z—f| < R be a neighbourhood of f, whose closure lies in G,.
Since {f,(z)} is normal in M every convergent subsequence tends either to a non-
constant or to a constant limit.

In the first case there is a component [by Lemma 3.] G, of C(f) mapped one to
one onto itself by some iterate f,(z) of f(z). Clearly G,#G" and G, together will
all its images f(G,), /2(G,), ..., f,-1(G,) lies in the right half plane Re z>0. More-
over z is a limit function of some sequence {f, } in G,. Take a point z, in G, and its
images f,(z,). Then f, (z,)~z, (as k—+<) and | f( £, (z,))| —~ le*!| (as k =) and
so > 146 =1 for large k. Hence for large n,

n—1

el = 1T

1) = T lexp (fiten)] =

Thus by Bloch’s theorem f,(G,) contains a disc of radius =>2x if n is large enough.
This disc lies in C(f) and also in the right half plane Re z=0. This implies that it
must meet one of the rays d* of Theorem 1. This is a contradiction since the rays
d* belong to §. Hence there is no subsequence of {f,(z)} with nonconstant limit
function.

In the disc M defined above any convergent subsequence of {f,(z)} thus has a
constant limit. Since Re [f,(f)] = 0 for all f€G,, we see that

@l =T 7B =TT exo (RO = 1

and by Bloch’s theorem the image of f,,(G,) Of,. (M) contains a disc of some fixed
radius for all m. Thus since no nonconstant limits exist, the only possible limit of
any subsequence is <. But then f,(z) === uniformly in M. Thus |f,(f)|=2xn for
n=N,. It follows that there is #=0 such that Re [ f,(f)]=n for every n=N,. For if
this were not true then

[ fos1(B)—=1]<e€" and |f,, (f)| = 1+e"< 2n, if n is small.
Thus for n=N,, we have

fa®) =TT exp(AB)| = explan—1-Nol==  (n~=0).

Then Bloch’s theorem gives us a contradiction just as in the case of nonconstant
limit function.

Thus G* is the only component of C(f).

Hence G* together with its boundary points [by Lemma 5.] covers the whole
plane.

Theorem 4. Every point interior to a line d* of theorem 2 is inaccessible from G*

3D
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PROOF. Since § is invariant under z — z+27i, we need only to show that every
interior point of d° (i.e. the positive real axis) is inaccessible from G*. The same
argument holds for any d*.

Let P be any point to d° which is suppose, accessible from G*. Then there
is a simple Jordan arc, say mP lying entirely in G* except for the end point P. We
may for example assume m on the imaginary axis and mP in the right half plane
except for m. Also the origin 0 is clearly accessible from G* by any path in the left
half plane H. Join m to 0 by a Jordan arc mn0 lying in G* (| H except for m and 0.
Then L=0Pmn is a simple closed Jordan curve dividing the plane into two parts.
Let D be the set of predecessors od every order of the rays d*' and d~'. Then D
is symmetric with respect to the real axis since f(z) is real for real z. Every point
of OP (=segment of the real axis joining 0 to P) is a limit point of points belonging
to the set D (say predecessors of d*!) [by Lemma 4.] and since these are symmetric
with respect to the real axis, it follows that there are points of D inside L. Further-
more the curves in D go to infinity since d*' and d~' do. Hence they (curves in D)
must meet either Pmn0 or OP at some point. But this is is impossible since all f,
are real on OP and Dc § cannot meet Pmn0c C(f). Thus every point of d° (save
for 0 and =) is inacessible from G*. The same property applies to antecedent curves.

The proof of Theorem 4. is now complete.

I am indebted to Dr. I. N. BAkER of Imperial College, London for his sugges-
tions in the preparation of this note.
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