On the set of normality and iteration of $e^z - 1$

By P. BHATTACHARYYA (Madras)

1°. Introduction

The theory of iteration of a rational or entire function f(z) of the complex variable z treats the sequence of iterates $\{f_n(z)\}$ defined by

$$f_0(z) = z$$
, $f_1(z) = f(z)$, $f_{n+1}(z) = f(f_n(z))$, $n = 1, 2, ...$

and are respectively rational or entire according as f(z) is.

In the theory developed by Fatou [4, 5] and Julia [7] a fundamental role is played by the set $\mathfrak{F}(f)$ of those points of the complex plane where $f_n(z)$ is not normal, in the sense of Montel. $\mathfrak{F}(f)$ is a *perfect* set [4, 5] whose complement C(f) consists of an atmost countably infinite set of components G_i each of which is a maximal domain where $\{f_n(z)\}$ is normal.

If f(z) is rational then it is known [4] that the number of components G_i of C(f) is 0, 1, 2, or ∞ . For entire f(z) we shall prove

Theorem 1. If f(z) is entire which is not a polynomial and if the set C(f) has a finite number of disjoint components, then it is atmost one.

The determination of $\mathfrak{F}(f)$ and G_i 's corresponding to a given f(z) is a problem of considerable difficulty, particularly when f(z) is entire. So it is that despite the need urged by Fatou ([5]) to establish by numerous examples the various ways in which $\mathfrak{F}(f)$ can divide the plane only a few examples have been worked out so far [5, 6, 8]. In this note we shall consider the iteration of e^z-1 .

All the cases of theorem can indeed occur. For example the function kze^z , where k is suitable constant considered by BAKER [2] has no component of normality, the function $\sin z$ considered by TÖPFER [8] has an infinite number of components of normality. For e^z-1 we shall show that C(f) has a single component.

2°. Preliminaries

A set D is said to be *invariant* under the iteration of f(z) if $f(D) \subset D$, and *completely invariant* if in addition $f_{-1}(D) \subset D$ for all the branches of the inverse function. The following lemma is well known [4, 5, 7].

Lemma 1. The set $\Re(f)$ and its complement C(f) are completely invariant.

Among the components of C(f) there may occur completely invariant ones. We have ([1])

Lemma 2. [BAKER] If f(z) is entire transcendental then C(f) has atmost one completely invariant component.

Lemma 3. Let G be a component of C(f) such that some sequence $\{f_{n_k}\}$, n_k strictly increasing, $k=1,2,\ldots$, has a nonconstant limit function $\varphi(z)$ in G. Then C(f) has a component G^* , which contains $\varphi(G)$ and which is mapped one to one onto itself by some iterate $f_p(z)$ and $\psi(z) \equiv z$ is a limit function of sequence $\{f_{m_k}\}$, m_k increasing in G^* . Further f(z) is univalent in G^* .

If such a component G^* exists then it is called a *singular domain*.

The proof of this lemma was given by FATOU [4] for rational functions. A proof under more general circumstances is given by H. CREMER [3].

If $w=f_n(z)$ we say that w is successor of z and z is a predecessor of w in both cases of order n.

A value z_0 is said to be *Fatou exceptional*, if it has atmost a finite set of predecessors. It is easy to see that an entire function can have atmost one such exceptional value.

Lemma 4. [FATOU, 5.] If α is any finite value other than a Fatou exceptional one and if $\beta \in \mathfrak{F}$ then there exists a sequence of integers $n_k \to \infty$ and values $\beta_k \to \beta$ such that $f_{n_k}(\beta_k) = \alpha$.

Finally we have [4, 5]

Lemma 5. The set $\mathfrak{F}(f)$ is identically equal to the extended plane if it has an interior point.

3°. Proof of Theorem 1.

Suppose that G_i , i=1, 2, ..., N are the disjoint components of C(f) where $N < \infty$. For any G_i consider $f_{-1}(G_i)$ for any branch $f_{-1}(z)$ of the inverse function f_{-1} of f. Then $f_{-1}(G_i)$ will be in C(f) by lemma 1, i.e. will be in a number of G_j . If G_j is a component meeting any $f_{-1}(G_i)$, then since $f(G_j)$ belongs to a single component of C(f), we must have $f(G_j) \subset G_i$. Clearly then, $f_{-1}(G_i)$ and $f_{-1}(G_k)$, $i \neq k$ will constitute different sets of domains and so f_{-1} must induce a permutation π among the G_i , such that $f_{-1}(G_i) \subset G_{\pi(i)}$. There is an integer n for which $\pi^n = 1$ and for this n we have $f_{-n}(G_i) \subset G_i$ for each i = 1, 2, ..., N where $f_{-n}(G_i)$ means the predecessor of order n of G_i . Thus each G_i is completely invariant for the function f_n , which is also entire transcendental. By Lemma 2. N cannot be greater than 1 and the theorem is proved.

4° . Iteration of e^z —1.

Let $f(z) = e^z - 1$, z = x + iy.

(a) Since $|f(z)+1| = |e^z| = e^x < 1$ if x<0, we see that x<0 implies Re f(z)<0, i.e., the left half plane H: Re z<0 is invariant and hence $\{f_n(z)\}$ is normal in H. Also for x<0, x<f(x)<0 i.e. $\{f_n(x)\}$, x<0, is a monotone increasing sequence which must converge some limit t(<0) for which f(t)=t. Then t must be 0. Thus $\{f_n(x)\}$ converges to 0 for all x<0, and hence since $\{f_n(z)\}$ is normal in H, $\{f_n(z)\}$ converges to 0 for all z in H. Thus H belongs to an invariant component of C(f) which is a maximal domain of normality, say G^* .

(b) We now notice that G^* extends across the imaginary axis except at the countable set of points $z=2n\pi i$, n integer. Because for any point z=iy ($y\neq 2n\pi i$) of the imaginary axis $f(z)=e^{iy}-1\in H\subset C(f)$. Then by complete invariance of C(f) [Lemma 1.] $z=iy\in H$. Since $f(z)=z+z^2/2+\cdots$, it is clear that $\{f_n(z)\}$ cannot be normal at z=0, i.e. $0\in \mathfrak{F}$. Since $f(2n\pi i)=0$ we have [Lemma 1.] $2n\pi i\in \mathfrak{F}$. Hence not only does H belong to G^* but so do all points of the imaginary axis, except the points

 $z=2n\pi i$, n integer.

(c) We now show that G^* is completely invariant.

We prove

Lemma 6. Let G be a component of C(g) where g is an entire or rational function. Let $\alpha \in G$ be such that (i) α is not a singularity of any branch of g_{-1} . (ii) $g(\alpha) \in G$ and $g_{-1}(\beta) \in G$ for all the branches of the inverse function. Then G is completely invariant.

PROOF. Let $z \in G$ be any point. We need to show that $g(z) \in G$ and $g_{-1}(z) \in G$, for all the branches of the inverse function.

Since G is a domain we can join α to z by a curve γ lying wholly in G. We note

that $\gamma \subset C(g)$ and $\partial G \subset \mathfrak{F}$, where ∂G is the boundary of G.

First suppose $g(z) \notin G$. Now $g(z) \in C(g)$ and $g(\gamma)$ is a continuous curve joining $g(\alpha) \in G$ to $g(z) \notin G$. This implies that $g(\gamma)$ must cross ∂G i.e. there is a point δ which belongs to $g(\gamma)$ and ∂G at the same time. This is impossible since $g(\gamma)$ belongs to C(g) and ∂G belongs to \mathfrak{F} .

Next we show that $g_{-1}(z)$ belongs to G for all the branches of the inverse func-

tion. Suppose this is not true.

Now any $z \in G$ can be joined to $\alpha \in G$ by a polygonal path. By slight variations in the sides of this path, so small that they leave it (the path) in G, we can ensure (Gross' Star Theorem) that a given branch p of $g_{-1}(z)$ can be continued from z along the path to a regular branch over α , lying arbitrarily near α and so along a path right upto α . Since α is not a singularity of $g_{-1}(z)$ the continuation extends further over to α itself, i.e. p may be obtained from a branch q of $g_{-1}(\alpha)$ by continuation along a polygonal path γ in G. But every branch q of $g_{-1}(\alpha)$ is in G by assumption. Also by Lemma 1. we know that $g_{-1}(z)$ maps $\gamma \subset C(g)$ into C(g). This fact gives us a contradiction as in the first case. This completes the proof of the lemma.

PROOF of (c). Consider the point z=-2 which belongs to G^* . Clearly f(-2) belongs to G^* and $f_{-1}(-2) = \log(-1) = (2n+1)\pi i$ belongs to G^* , by (b) above. Also -2 is not a singularity of $f_{-1}(z)$. Hence by lemma 6, it follows that G^* is completely invariant.

(d) The positive real axis belongs to the set F We have already shown [in (b)] that

$$(1) 0 \in \mathfrak{F}.$$

Take $x_0 > 0$ and suppose $x_0 \notin \mathfrak{F}$. Then $\{f_n(z)\}$ is normal in some neighbourhood $N: |z-x_0| < 2R$ of x_0 . We observe that for $x_0 > 0$

$$\lim_{n\to\infty} f_n(x_0) = \infty$$

and since $\{f_n(z)\}\$ is normal in N we have $\lim_{n\to\infty} f_n(z) = \infty$ locally uniformly in N. Thus

(3)
$$|f_n(z)| > 2$$
 for some $n > n_0$ in $M: |z - x_0| < R$

This implies

(4)
$$\operatorname{Re}[f_{n-1}(z)] > 0 \quad \text{for} \quad z \in M$$

Now

(5)
$$f'_n(x_0) = \prod_{k=0}^{n-1} f'(f_{k-1}(x_0)) > \exp(f_{n-1}(x_0)) \to \infty$$

by (2).

Thus by *Bloch's Theorem*, the disc M contains a subdomain which is mapped by $f_{n-1}(z)$ on to a domain U_1 containing a disc, say, U_2 of radius $R \cdot B \cdot f'_{n-1}(x_0)$ where B is the Bloch constant. By (4) U_1 must lie on the right half plane Re z > 0, and by (5) the radius of U_2 can be made arbitrarily large for large enough n.

Let the disc U_2 be of radius $>2\pi$ and let d denote the vertical diameter of the disc U_2 . The equation of d is, say, Re $z=\lambda$ where $\lambda>2$ [by (3)] for $n>n_0$.

We notice that $d \subset C(f)$, since $N \subset C(f)$. Now f(z) maps the vertical diameter d of U_2 to the circle of radius λ with centre at -1. We call this circle f(d).

Since f(d) meets G^* , we must have $f(d) \subset G^*$. Also from the maximum modulus principle, it is clear that G^* is simply connected. Thus the interior of f(d) must belongs to G^* , i.e. to C(f). But this is absurd since the interior f(d) contains the point 0 which belongs to \mathfrak{F} [by (1)]. Hence $x_0 > 0$ belongs to \mathfrak{F} .

Summerising these results we have

Theorem 2. For $f(z) = e^z - 1$, the half plane Re z < 0 is an invariant domain and is contained in a completely invariant component G^* of C(f). In G^* we have $\lim_{n \to \infty} f_n(z) = 0$. The domain G^* includes all points of the imaginary axis except points

of the form $z=2n\pi i$, n integer, which belong to \mathfrak{F} . Further, the positive real axis R^+ belongs to \mathfrak{F} . The set \mathfrak{F} may therefore be defined as [by lemma 4 and since \mathfrak{F} is perfect] as consisting of R^+ together with all its predecessors and points of accumulations. By the periodicity of f(z), \mathfrak{F} also contains the reys

$$d^k$$
: $v = 2\pi ki$, k integer.

TÖPFFER [8] made some statements about the iteration of e^z-1 , without proof. Theorem 1 contains essentially these statements.

Next we prove

Theorem 3. G^* is the only component of C(f).

PROOF. Suppose there exists another component G_1 , which must necessarily belong to the right half plane Re z>0. This is because the left half plane is contained in G^* and since G^* is completely invariant we must also have $f_n(G_1) \cap G^* = \emptyset$. Let $\beta \in G_1$ and $M: |z-\beta| < R$ be a neighbourhood of β , whose closure lies in G_1 . Since $\{f_n(z)\}$ is normal in M every convergent subsequence tends either to a nonconstant or to a constant limit.

In the first case there is a component [by Lemma 3.] G_2 of C(f) mapped one to one onto itself by some iterate $f_p(z)$ of f(z). Clearly $G_2 \neq G^*$ and G_2 together will all its images $f(G_2), f_2(G_2), \ldots, f_{p-1}(G_2)$ lies in the right half plane Re z > 0. Moreover z is a limit function of some sequence $\{f_{n_k}\}$ in G_2 . Take a point z_1 in G_2 and its images $f_n(z_1)$. Then $f_{n_k}(z_1) \rightarrow z_1$ (as $k \rightarrow \infty$) and $|f(f_{n_k}(z_1))| \rightarrow |e^{z_1}|$ (as $k \rightarrow \infty$) and so $> 1 + \delta > 1$ for large k. Hence for large n,

$$|f'_n(z_1)| = \prod_{i=0}^{n-1} |f'(f_i(z_1))| = \prod_{i=0}^{n-1} |\exp(f_i(z_1))| \to \infty.$$

Thus by *Bloch's theorem* $f_n(G_2)$ contains a disc of radius $> 2\pi$ if n is large enough. This disc lies in C(f) and also in the right half plane Re z > 0. This implies that it must meet one of the rays d^k of Theorem 1. This is a contradiction since the rays d^k belong to \mathfrak{F} . Hence there is no subsequence of $\{f_n(z)\}$ with nonconstant limit function.

In the disc M defined above any convergent subsequence of $\{f_n(z)\}$ thus has a constant limit. Since Re $[f_n(\beta)] > 0$ for all $\beta \in G_1$, we see that

$$|f'_{m}(\beta)| = \prod_{i=0}^{m-1} |f'(f_{i}(\beta))| = \prod_{i=0}^{m-1} |\exp(f_{k}(\beta))| > 1$$

and by Bloch's theorem the image of $f_m(G_2) \supset f_m(M)$ contains a disc of some fixed radius for all m. Thus since no nonconstant limits exist, the only possible limit of any subsequence is ∞ . But then $f_n(z) \to \infty$ uniformly in M. Thus $|f_n(\beta)| > 2\pi$ for $n > N_0$. It follows that there is $\eta > 0$ such that $\text{Re}[f_n(\beta)] > \eta$ for every $n > N_0$. For if this were not true then

$$|f_{n+1}(\beta)-1| < e^{\eta}$$
 and $|f_{n+1}(\beta)| < 1+e^{\eta} < 2\pi$, if η is small.

Thus for $n > N_0$, we have

$$|f'_m(\beta)| > \prod_{i=N_0}^{m-1} \left| \exp\left(f_i(\beta)\right) \right| = \exp\left[\eta (m-1-N_0)\right] \to \infty \qquad (m \to \infty).$$

Then Bloch's theorem gives us a contradiction just as in the case of nonconstant limit function.

Thus G^* is the only component of C(f).

Hence G^* together with its boundary points [by Lemma 5.] covers the whole plane.

Theorem 4. Every point interior to a line dk of theorem 2 is inaccessible from G*

PROOF. Since \mathfrak{F} is invariant under $z \to z + 2\pi i$, we need only to show that every interior point of d^0 (i.e. the positive real axis) is inaccessible from G^* . The same

argument holds for any d^k .

Let P be any point to d^0 which is suppose, accessible from G^* . Then there is a simple Jordan arc, say mP lying entirely in G^* except for the end point P. We may for example assume m on the imaginary axis and mP in the right half plane except for m. Also the origin 0 is clearly accessible from G^* by any path in the left half plane H. Join m to 0 by a Jordan arc mn0 lying in $G^* \cap H$ except for m and 0. Then L=0Pmn is a simple closed Jordan curve dividing the plane into two parts. Let D be the set of predecessors od every order of the rays d^{+1} and d^{-1} . Then D is symmetric with respect to the real axis since f(z) is real for real z. Every point of OP (=segment of the real axis joining 0 to P) is a limit point of points belonging to the set D (say predecessors of d^{+1}) [by Lemma 4.] and since these are symmetric with respect to the real axis, it follows that there are points of D inside D. Furthermore the curves in D go to infinity since D and D is impossible since all D are real on D and $D \subset T$ cannot meet D and $D \subset T$ and $D \subset$

The proof of Theorem 4. is now complete.

I am indebted to Dr. I. N. BAKER of Imperial College, London for his suggestions in the preparation of this note.

References

- [1] I. N. Baker, Completely invariant domains of entire functions. To appear in *Memorial Volume* for A. J. Macintyre, Ohio.
- [2] J. N. Baker, Limit functions and sets of non-normality in Iteration Theory To be published.
- [3] H. CREMER, Über die Schrödersche Funktional gleichung ..., Ber. Sächsiche Akad. Leipzig, 84 (1932), 291—324.
- [4] P. FATOU, Sur les équations fonctionelles Bull. Soc. Math. France., 47 (1919), 161—271, and 48 (1920), 33—94, 208—314.
- [5] P. FATOU, Sur l'itération des fonctions transcendantes entières, Acta. Math. 47 (1926), 337-370.
- [6] A. VAN HASELEN, Sur l'itération de log (1+z) Enseignement Math. 30 (1931), 269-271.
- [7] G. Julia, Mémoire sur l'itération des fonctions rationnelles. J. Math. Pures Appl. (8) 1 (1918),
- [8] H. Töpffer, Über die Iteration der ganzen transcendenten Funktionen, insebesondere von sin z und cos z. Math. Ann. 117 (1939), 65—84.

(Received November 21, 1969).