On the generalized uniform distribution (mod 1)

By A. F. DOWIDAR (Mansura)

Suppose that $0 \le s_n \le 1$ for every n, and denote the interval $0 \le a \le x \le b \le 1$ by I. We denote by I(x) the characteristic function of I which is 1 in I and 0 elsewhere. A sequence $\{s_k\}$ is then said to be uniformly distributed if

(1)
$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} I(s_k) = b - a$$

for every I.

By a well known theorem of WEYL [1], the condition (1) may be expressed alternatively as

(2)
$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} e(hs_k) = 0, \qquad h = 1, 2, ...,$$

where e(t) denotes $e^{2\pi it}$.

In other words, the sequence $\{s_k\}$ is uniformly distributed if and only if the sequence $\{e(hs_k)\}$ is (C, 1) summable to the value zero for every $h=1, 2, \ldots$

E. HLAWKA [2] has introduced the general concept of A-uniform distribution, where A is an arbitrary regular summability method. If $A = (a_{nk})$ then the sequence $\{s_k\}$ is said to be A-uniformly distributed if and only if the sequence $\{e(hs_k)\}$ is A-summable to zero for every $h=1, 2, \ldots$

J. CIGLER [3] considered the problem of determining the summation methods with respect to which the sequences $\{n\theta\}$ are uniformly distributed mod 1 for each irrational number θ , where $\{n\theta\} = n\theta - [n\theta]$.

Here we discuss the same problem for the sequences $\{n^2\theta\}$. To do this we require the following results of J. H. B. KEMPERMAN [4].

Let $A \equiv (a_{nk})$ denote a fixed nonnegative regular summation method; $n, k = 1, 2, \ldots$. For each sequence Z = (Z(k)) of complex numbers with

$$||Z|| = \sup_{k} |Z(k)| < \infty,$$

put

$$\alpha_n\{Z(k)\} = \sum_{k=1}^{\infty} a_{nk} Z(k).$$

Let

$$\|\alpha_n\| = \sum_{k=1}^{\infty} a_{nk}$$
 and $\|\beta_n\| = \sum_{k=1}^{\infty} |a_{n,k} - a_{n,k+1}|$.

Lemma 1. Suppose that $||Z|| \le 1$. Then, provided $||\alpha_n|| > 0$, we have for each positive integer m that

(3)
$$\|\alpha_n\|^{-1} |\alpha_n\{Z(k)\}|^2 \le \frac{4}{3} m \|\beta_n\| + \frac{1}{m} \|\alpha_n\| + \frac{2}{m} \sum_{h=1}^{m-1} \left(1 - \frac{h}{m}\right) \operatorname{Re}\left[\alpha_n\{Z(k+h)\overline{Z(k)}\}\right]$$

In the particular case where $\lim \|\beta_n\| = 0$, we have:

Lemma 2. Suppose that $||Z|| < \infty$. Let

(4)
$$\lim_{m \to \infty} \overline{\lim}_{n \to \infty} \frac{2}{m} \sum_{k=1}^{m-1} \left(1 - \frac{h}{m} \right) \operatorname{Re} \left[\alpha_n \left\{ Z(k+h) \overline{Z(k)} \right\} \right] = 0.$$

Then

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{n,k} Z(k) = 0$$

Using Hölder's inequality, it follows that a sufficient condition for (4) to hold is that for some $1 \le r < \infty$,

(6)
$$\underline{\lim}_{m \to \infty} \overline{\lim}_{n \to \infty} \frac{1}{m} \sum_{k=1}^{m-1} |\alpha_n \{ Z(k+h) \overline{Z(k)} \}|^r = 0$$

Let $p_0 > 0$, $p_n \ge 0$, and let $P_n = p_0 + p_1 + p_2 + \dots + p_n$. Let $\frac{p_n}{P_n} \to 0$ as $n \to \infty$. A sequence s_k is (N, p_n) summable to s if

$$\frac{1}{P_n} \sum_{k=0}^n p_{n-k} s_k \to s$$

when $n \to \infty$.

We now prove the following result:

Theorem 1. Let p_n satisfy, besides the above properties, the conditions:

(i) p_n decreases as n increases and $P_n \rightarrow \infty$,

(ii)
$$\frac{1}{P_m^r} \sum_{n=0}^m p_n^r \to 0$$
 as $m \to \infty$

for some $1 \le r < \infty$.

Then the sequence $\{n^2\theta\}$ is (N, p_n) uniformly distributed.

PROOF. Taking $a_{m,n} = \frac{p_{m-n}}{P_m}$, $n \le m$, $a_{m,n} = 0$ for n > m, we first show that

$$\lim_{m\to\infty} \sum_{n=0}^{\infty} |a_{m,n} - a_{m,n+1}| = 0.$$

Here we have:

$$\sum_{n=0}^{\infty} |a_{m,n} - a_{m,n+1}| = \frac{1}{P_m} \sum_{n=0}^{m-1} |p_{m-n} - p_{m-n-1}| + \frac{|p_0|}{P_m} =$$

$$= \frac{1}{P_m} [p_0 - p_m] + \frac{p_0}{P_m} \to 0 \quad \text{as} \quad m \to \infty.$$

Secondly we prove that

$$\lim_{n\to\infty}\sum_{k=0}^n\frac{p_{n-k}}{P_n}\,e^{2\pi ik^2\,\theta}=0.$$

We take $Z(k) = e^{2\pi i k^2 \theta}$.

$$Z(k+h)\overline{Z(k)} = e^{2\pi i [(k+h)^2 - k^2]\theta}$$

So we have

$$|\alpha_n \{ Z(k+h) \overline{Z(k)} \}|^r = \frac{1}{P_n^r} \left| \sum_{k=0}^n p_{n-k} e^{2\pi i [(k+h)^2 - k^2] \theta} \right|^r \le$$

$$\le \frac{1}{P_n^r} \sum_{k=0}^n p_{n-k}^r = \frac{1}{P_n^r} \sum_{k=0}^n p_k^r \to 0$$

as $n \to \infty$ for some $1 \le r < \infty$.

It follows that

$$\frac{1}{m} \sum_{h=1}^{m-1} |\alpha_n \{ Z(k+h) \overline{Z(k)} \}|^r \le \frac{1}{m} \sum_{h=1}^{m-1} \left(\sum_{k=0}^n \frac{p_k^r}{P_n^r} \right) \to 0$$

as $m \to \infty$. Hence condition (6) is satisfied provided that conditions (i) and (ii) are satisfied. It follows from Lemma (2) that

$$\lim_{n\to\infty}\sum_{k=0}^n \frac{p_{n-k}}{P_n} e^{2\pi i k^2 \theta} = 0$$

and the sequence $\{n^2\theta\}$ is (N, p_n) uniformly distributed mod 1.

As an example of a method (N, p_n) satisfying the above conditions is that one defined by the sequence $p_n = \frac{1}{n+1}$. Here we can take r any number greater than 1. It is well known that this method is weaker than any Cesaro mean of positive order, [5].

The regular Riesz weighted means (R, p_k) are defined by

$$\lim_{n\to\infty}\frac{p_0s_0+p_1s_1+\cdots+p_ns_n}{P_n},$$

where $P_n = p_0 + p_1 + \cdots + p_n$.

We now prove the following result:

Theorem 2. If (R, p_n) is a regular Riesz mean which satisfies the additional conditions:

(7)
$$p_{n+1} \ge p_n > 0$$
 for all $n = 0, 1, 2, ...,$

$$\lim_{n\to\infty}\frac{p_n}{P_n}=0,$$

(9)
$$\lim_{n\to\infty} \frac{1}{P_n^r} \sum_{k=0}^n p_k^r = 0 \quad \text{for some} \quad 1 \le r < \infty,$$

then the sequence $\{n^2\theta\}$ is (R, p_n) uniformly distributed (mod 1).

PROOF. Taking $a_{m,n} = \frac{p_n}{P_m}$ for $n \le m$, $a_{m,n} = 0$ for n > m we get, as before, from conditions (7) and (8):

$$\lim_{m \to \infty} \sum_{n=0}^{\infty} |a_{m,n} - a_{m,n+1}| = 0.$$

Also, using the same definitions for $\alpha_n\{Z(k)\}$, we get:

$$|\alpha_n\{Z(k+h)\overline{Z(k)}\}|^r \le \frac{1}{P_n^r} \sum_{k=0}^n p_k^r \to 0$$

as $n \to \infty$ for some $1 \le r < \infty$, by condition (9).

Hence following the same steps as above we get:

$$\lim_{n\to\infty}\frac{1}{P_n}\sum_{k=0}^n p_k e^{2\pi i k^2\theta}=0$$

This proves the required result.

As an example of a regular Riesz mean (R, p_n) satisfying the above conditions is the method (R, p_n) defined by $p_n = e^{\log^2 n}$ for all $n = 1, 2, 3, \ldots$. In this case r in condition (9) can be any number >1. On the other hand [6], this Riesz mean has all summability function $o(n/\log n)$ and does not sum all bounded (C, 1)-summable sequences.

References

[1] J. F. Koksma, Diophantische Approximationen, Berlin, 1936.

- [2] E. HLAWKA, Folgen auf kompakten Räumen. Abh. math. Sem. Univ. Hamburg 20, 223—241, (1956).
- [3] J. CIGLER, Methods of summability and uniform distribution mod 1, a paper presented at the nuffic International summer session in science held in Breukelen (The Netherlands), August 1—11, 1962.
- [4] J. H. B. KEMPEREMAN, On the distribution of a sequence in a compact group, ibid.

[5] G. H. HARDY, Divergent series (Oxford, 1949), 110.

[6] G. G. LORENTZ, Direct theorems on methods of summability, (I), (II), Canad. J. Math. 1 (1949), 304—19; 3 (1951), 236—56.

(Received March 2, 1970.)