Radius of convexity of convex sum of univalent functions
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Introduction

Let S denote the class of functions f(z), normalized so that f(0)=0, f(0)=1,
that are regular univalent in E, the open unit disc. For a fixed real number 4,0<i<1,

consider the function /;(z) given by
(1 h,(2) = (1-2)z+ ().

TRrRIMBLE [4] showed that if /is convex then /;(z) is close-to-convex (and hence
univalent) in E for all admissible values of 4 and if A=%, then /,(z) is starlike
univalent in E.

Let J denote the class of functions f(z) normalized as above, for which Re f'(z) =0
for z in E. Then it is well known [3] that J is a proper subclass of S. In a recent
paper [1], the author considered the class of function /,(z) defined by (1) when
J€J and obtained its radius of convexity. In this paper we propose to consider a
similar problem. Let J denote the subclass of J whose functions f(z) are characterized
by the property that
(2) Iff(2)-=1 <1 z€E.

Let /,(z) be defined by (1) and f¢Jz. Then we obtain the radius of convexity
of the class of functions /;(z) so defined. It may be remarked that while in [1], ZmoO-

ROVIC’s technique [5] was found to work well, here a different method had to be
adopted.

Radius of convexity

Theorem For a fixed A, 0<A<1 let h,(z) be defined by (1) and fcJg. Then ,(z)
is convex in

/ —_—_ __ 2 1/2 3
[V(l A)(l;iﬁ.) (=3 B A v54+1,
3) 2| < r; = 1 l"}§+|
for ———=1<1.

24

These results are sharp in the sense that for each A, there exists a function h;(z)
which is not convex in a larger circle.



40 R. S. Gupta

PrOOF. Since the function Y (z) = f’(z)—1 is bounded by one, (0)=0, we
have by Schwarz lemma
) 1.1 = W@) = |z
Thus we may write

4) @=1=z28(2)

where @(z) is regular and |@(z)|=1 in E. Differentiating (1) and substituting the value
of f’(z) from (4), we obtain

(5) hi(2) = 14 229(2)
so that
zh;(2)| _ 22(®(2) + 29’ (Z))}
®) R°{'+ f:;.(z)} g {” 1+20G) | =
@ +r||]| _ A—=rx+r(l—x%
= 1-maxmax 2 L1 = 1 "‘3“"{ (T=r?) (1—7re) |

r=|z|, x=|d|, 0=x=1,

where we have made use of the well-known fact that ([2])

To maximize the second term on the right of (6), let us put

(A=r))x+r(l—2x?

Y = .
1 —Arx

which yields on differentiation

L AR Ar2x? —2rxe+1—r2+ir?
dr (1 —2rx)?

so that the absolute maximum of ¥ occurs for

-V -2 -f-}J‘Z)
r

(7 » 58y -
2
d =T
%, 18 clearly positive but not always less than or equal to one. So we have to consider
the case when %, ¢ [0, 1]. In this case ¥ is monotonic increasing so that the maximum

value of ¥ occurs at x=1.
Taking x=1, we obtain from (6)

zh; (2) Ar  1-24r
Re{ h()} i P ot e -

so that /;(z) is convex in |z]<=r; where r; is the smallest positive root of the equa-
tion

It is easy to verify that ——- = 0 so that we have indeed a maximum at (7). Also,

1-24ir=0.
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This gives
2 1
(8) rd= 7.
Since r;=1, we must have A=} so that formula (8) is not valid for A<4.
1—V(A=2)(1+r?)
ir

Taking x = %5 = , we obtain from (6)

2[1—|f(1—;.)(1+/1ur2)

; ](I-i-).Jr'z—,-?.)-2.'1.»'2

(1=r?)(1—irx)

—

zh’(z)

Re il =

{+mm}

Therefore h;(z) is convex in |z|<r; where r; is the smallest positive root of the equa-
tion

(9) (M=VQ=2HA+ir®)A +4r2=D)—2*r*=0
that is,
irt+r¥(1-)—(1-4) = 0.
This gives
/ _n\1/2
(10) v [l (l—A)(l;jA) — ,1)] e st

The transition from formula (10) to formula (8) occurs for that value of A for which
%o given by (7)=1. This gives

1=V (=20 +2ir?

(11) T =1 -
; : ; : ) V5 +1
Solving (11) with the help of (8), that is, taking r = 550 We obtain A = - ¥
V5 +1 V5 +1

So we have to use (10) for 0 = A = 4 and (8) for v T =A<l

We now determine the form of the extremal functions. In case (8) the extremal
function is easily seen to be

1 A z—f
2 D=0A=-Dz+Alz4+=2*| =2+ 22—
(12) h,(2)=(1-=2) +A[ +2 ] +2 —=sf
In case (10) we obtain the extremal function thus: We take @(z) = — lz—_zf; in
(5) and
1 —-A—4b?
(13) B=-a"75

where b is given by (10). Then /,(z) is given by

(14) W(2) = 1—'—‘-21—(5—:?@.
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From (14) we obtain

zh(z) _ B2z2(1— )+ 2Pz(A—1+Az?)+ 1 —Az2 — 2422
1@ (1—Bz) (1 =Pz +2pz—iz%) §

The numerator of the right side of (15) vanishes for z=5A and f given by (13) so
that /,(z) is not convex in a circle larger than |z|<b.
We have yet to prove that |f|=1 in order that & be bounded in E. That is, we

must show that

(15) 14

1—A—Aib?
1-5? Lok Y .
From (10) we deduce that 1 = 1= +b* so that the right inequality in (16) will
hold if
1—5b? 1-b

=

T=b+65 = T-b+b?

that is, if 1 +b = b2, so the right inequality holds. The left inequality will hold if we
show that

1-5* _  1+b
1—b2+b* = 1+

[IA

1+b+b*

that is, if
(17) o Ll

y 5

5 ;
Since for 0 < /4 = L?—;—l-, b= V-S—zﬁ-l-, (17) always holds. This completes

the proof of the theorem.
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