On the deformed areal spaces

By OM P. SINGH (Agra)

§ 1. Introduction. The deformation theories of metric spaces have been studied
by SHOUTEN, KAMPEN, DAvies, DINEs, YANO and others'), and of generalized
metric spaces were developed by KNEBELMAN [1]?) in Finsler space and by DAVIES
[2] in a Cartan Space, but the works of these two later Geometers mainly concern
with the spaces admitting motions. However, in a most general case, a coherent
and very lucid study of the deformation of Riemannian space was made by SUGURI
[3]. Later on, generalizing the idea, MisrA [4] studied the properties of the deformed
Finsler space. In the present paper, we shall discuss the deformation of a general
Areal space, inaugurated by A. KAwAGUCHI [5] and studied by himself and many
others [6, 7]. Mainly, the problem in hand has been treated in such a manner that
our course of investigations would be motivated with a new avenue of approach
to develop the basic aspects of the theory by stand point of view in the general
interests. On the other hand, the treatment of the problem is based on the idea that
our results are the natural consequence of the generalisation of the deformation
theory of Riemannian space to the areal space of the general type so as to include
the results of the deformations of the areal space of submetric and metric class
and particularly those of Riemannian and Finsler one as special cases.

AREAL SPACE AND SOME FUNDAMENTAL NOTATIONS. Let us consider an n-dimen-
sional space, in which the area of a domain on an m-dimensional subspace given
by the parameter form3):

x = xX@W); i=1,2,...;n a=1,2, ....m,
is defined by an m-ple intégral

S = f _/’ F(x', Ox'[0u?) du® du? ... du™
i

. 0 sl &
extended over a region 2 of the subspace, where F(x,p): p=p. = (,’E; being given

by the a priori with the measure of its m-dimensional plane element (x, p) which

) J. A. SHouTeN: Ricci-Calculus (1954), p. 335.

2) Numbers in brackets refer to the references at the end of the paper.

3) The Latin indices 4, , /, ... run from 1 to # and the Greek indices «, £, y, ... from 1 to m,
throughout this papaer.
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is a positive analytical function of x’s and dx/du’s, and satisfies the following con-
ditions:%)

a) F(x,p) = 0 for linearly independent m vectors pf,
b) F(x, 23 p) = |4z| F(x, p) for |23 = 0,

JoF

R

¢) F;ipy = 63F, where F;} =

Such a space is called an areal space denoted by A, and F(x, p) is named as the
fundamental function of this space.

In such an areal space A,™, let g;(,1 ;i be the fundamental metric m-tensor
which is expressed as

Sitmy, itm) = iy, iz iim, 1 jzeedm®

The contravariant components g'"}/"] of the metric m-tensor g;(,. jr. are deter-
mined uniquely by the relation

&itm, jtm & = mISiEa).

Putting
Wk — T AT P
8™ = 8yt din. g 8w k2 I

if we consider the quantity

R Lz -2 o, hk n—2 5 5
P;; =[m—]] {(('"—])-) i SR o; j},

. —h
where [:z—;] and [:1_5 represent binomial coefficients, then we can take the
quantity A; " which is the symmetric part of @; and is given by

A — A — n—=2)"" =25 n—=2) .

Ay =@y =, ((m—=1)1)"2gup"*— S e
Now, let us put A;* = A, pipf, where pj=F~'. 0F/dp}, and consider the quantity
A, which is determined uniquely by the relation

/1“’3 Ahj-iﬂ - 6?6;,

under the assumption that the mn-rowed determinent |A;;*#| constructed of A,

does not vanish. . :
The parameter of the line connection coefficient I'*};(x, p) in AJ™ is defined by

r*ly = ¥ —{C*1aB};+ C*4, By — C* I B},
where

4) E. T. Davies, Areal spaces, Annali di Mat. (IV), 55 (1961), 63—76.
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71 (x, p) is the Christoffel symbol of the space under consideration and is
given by

1y [0A4% 0A%8  OA*
”?J‘W"hﬁ’{ T T e }

Atuaﬁ = FZ;‘MA‘_J_aﬂ, A'Uaﬁ 22 F—Z!mAUaﬂ,

| dA* | oA*, P
- 1 Mg | *hi hj
C ij k A aff a :, ’ A af a Y. ’

2m
and Bj; is the base connection coefficient of the space A;™. Also, we have the quantity
CiJin A{™ given by

Cxi_}'k — ngi'_;ak =
I I zm

Cik = C*iu—C*4u4 ks

Except this, in what follows, we shall frequently use the similar notations and ter-
minologies as those employed by A. Kawaguchi and his collaboraters without ex-
planations.

§ 2. The deformed areal space. Let us consider an n-dimensional areal space 4™
of the most general type, due to A. Kawaguchi and Y. KATSURADA [8], which is
not necessarily to be of the submetric class, say that is, not always referred to the
existence of the matric tensor g;; of covariant order two. The fundamental metric
function of this space is F(x, p), p=pL=0x'/0u*, which is homogeneous of degree
one in every line element contained in the element (x, p) and is not only to be in-
tegrable but also of differentiability class at least three with respect to its argu-
ment p.

In the space A™, for a contravariant vector X'(x, p), there exist two types of
covariant derivative [10, 11] with respect to x/ and p/ respectively

(2. 1) X'iIJ: 3JX‘—(')§X'B£}+F*LX”,
(2_ 2) Xilj = a?Xi“"Cifn}Xk?
where
] 0
B, =rtpt, 9= o’ 0% = R

Following GAMA [10], these two types of covariant differentiation give rise to the
curvature tensors Rjy, Kiy, pix  and S; 7 4.
Now, we consider an infinitesimal transformation defined by

2.3 X = x4+ E(x)dr,
where &(x) is a contravariant vector field of class C?, defined over a region 2 of

A{™ depending only on the position x (or tosay &' is independent of the directions)
and dr is an infinitesimal constant.
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The Lie-derivatives of a tensor field 7} and of the connection coefficient I'*i;
with respect to the transformation (2. 3) are given by

dT!—dT!
2.4) 2T = S = TS+ GiTHEPA— Thu+ TiEh,
and
. dv =i __dm *i E -
2.5) s % = &+ @F M) & ph+ Riud',

where a small vertical bar denotes the covariant differentiation with respect to
connection coefficients I'j{. Thus, if we interpret the deformation of a general geo-
metric object Q(x, p) in A{™ by the reasoning as given below:

(2.6) Q = Q+(dQ—dQ),

where JQ is the variation of Q(x, b) arising from (2. 3) and d"h is the difference
in the displaced quantity Q(X, p) of Q(x, p) from (x, p) to (%, p) (under the coor-
dinate transformation (2. 3), if regarded) and the quantity Q(x, p), then we can
have the

Definition 1. The quantity Q(x, p) is the deformed quantity of Q(x, p) under
the transformation (2. 3) and is given by (2. 6).

Hence, by reason of (2. 6), the deformed tensor field }'='j of T} and the deformed
connection coefficient I'j{ of I'}i may be defined as follows:

2.7 T} = Ti+ £T}dr,
(2.8) [ = %+ 2% .

The transformation (2. 3) carries the point x of a surface V,:x'=x'(v*) to
the neighbouring point X* of a surface V,,: ¥ =%(«*), such that «* being always fixed
and &'(x)=0 on the boundary point of both the surfaces V,, and V,,. If we dif-
ferentiate (2. 3) with respect to u* then

P = P+ (0;8)pidr, p, = OX'|0w,
so we notice immediately that, under the transformation (2. 3), the corresponding
variation in the m-ple line element p; may be expressed as

dp; = py—ps = (9;&) pldr,

but this is also the displaced value c?pi of p; as is quite obvious when we regard (2. 3)
as an infinitesimal coordinate transformation. Hence the Lie-derivative #p! of pL

bl e _
as defined by £p. = % vanishes, i.e.
(2.9) Fpt = 0.

Thus, preserving the above statement, we can enunciate the
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Theorem 1. The m-ple line element p. does not deform under the transforma-
tion (2. 3).

Next, we see that, under the transformation (2. 3), the fundamental metric func-
tion F(x,p) varies as

(2.10) F = F+(9,F)& dr + (01 F) (0, pl dr.

Since the vector &' is only a point function, so the relation (2. 10) can be writ-
ten as

F = F+[F &+ @i F)&, plldr,
but F; = 0;F—(0;F)Bj; = 0. Therefore
(2.11) F = F+(dF)E, pidr.

Again, if we put ZF=(07 F)¢{; p, the relation (2. 11) is finally rewritten into the
form

(2.12) F = F+ %Fdr.

THE DEFORMATION OF 3};(x, p). The Lie-derivative of the Christoffel symbols
7% (x, p) of the space under consideration with respect to A4*;;* can not be determined
by making use of the formula (2. 5), because the transformation law of the symbols
7{', does not resemble with that of I’ *{’j. Therefore, first we write down the transforma-
tion law of the symbols y};:

ox" ox® ox© ox" oxb 0% x? oxh dxa 0% x4
{11 I e i P sl St P Sk e § T R 3 57 A SR PN
i = 3xd ot 951 et 9u7 957 € b4 gxiom vt ger ot C e i oz o
ox*t ox" ox* oxt 0% x4 ox" 0*x4

~ox® 0xF 95 951 C b psigm Pt od oxiomd

and then proceed as usually in the same manner as to calculate ZI'*};. In this way
the Lie-derivative of y}; is obtained in the form

Lyl = 0,0;8"+ 29k :0jE* — 750, E" + (O Y1) EF +
+{(0} 1) 8 +2C*5 ] 101y 0,54 — C* 1} 10,0, &%) ;.

Using the formula (2. 4) and by reason of A4%;*,=0 and A*";, =0, the Lie-deriva-
tive of the four-index metric tensors are given by

2.13)

(2.19) LA = (R A" ) Eh Pt 24% 7,
(2.15) LNy = (A o) Sl pa— 24" (o),

where the quantity 4*",, is the contravariant counterpart of A*;** and is determined

uniquely by the relation
A*uuﬂA*h_}?’ = 5:‘5;.
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Hence in our present discussion, for the 4-index metric tensors, we have
(2.16) A = A+ A M dr,

@2.17) Ay = A%+ LAY, d.
Now, we define the Christoffel symbols 7;(x;p) with respect to =*U“" as
follows:

(2.18) et T {(r)jl:*rjuﬂ DA JA }

2m ox! oxi  ox

If we introduce the relations (2. 16) and (2. 17) in (2. 18), then on simplification, it
follows that

(2.19) 7= v+ Lyl de
Consequently, we can state the

Theorem 2. The Christoffel symbols ??j calculated with respect to /T*,-f’ are the
deformed counterparts of the symbols y!; of the space A{™, under the transforma-
tion (2. 3).

Now, analogous to the quantity B =I"};p], we consider the quantity ?{',- by

B, = T*"p) (because p! = p)).

The Lie-derivatives of the base connection coefficients Bj; are determined with
the same proceedure as to those needed in the calculation of £y};. In this way, we
can obtain

Jﬂgi_de?i Iy By E§ - N i j h £j
ZBY = S - e (0:0,&") pl + (0, Bhy) & + (0F BYy) (9,&) pl— BS;0;&" + B, 0,8,

which on making the use of covariant derivatives of &" with respect to x/, may be

written as
ZBY; = &Pl + Ry &+ (O By Eu P — T3 84 P

Where R’;“:R}Hp{.
Now, following (2. 6), we can write

(2.20) B' = B+ ZB" dx.

Thus, in view point of the definition 1, and from (2. 12), (2. 16), (2. 17) and
(2. 20), we can have the

Definition 2. The quantities F(x, p), A*,*, A%, and BY may be defined
as the deformed counterparts of the quantities the fundamental metric function
F(x, p), the four index metric tensors A*;*#, A*/_; and the base connection coefficient
B; of the space A, under the infinitesimal transformation (2. 3), and will be known
as the fundamental metric function, the four index metric tensors and the base con-
nection coefficient of the space A4\™ respectively.
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Let us construct the quantities (of x#. with respect to /F‘, ;* as follows:
1

= = SA*. 2B
xhry *hr ij
C*ijk= —Zru'A aﬂ_a_p:_-

Making use of (2. 16), (2. 17) and the result £(95X")=05(ZLX")°) in the above
relation and on simplifying this neglecting the higher powers of dr, it can easily be
verified that

(2.21) C*¥1 = C*}1+2C*¥1dr.
From this, it is easy to see that
(2.22) Cx¥t, = C*ie, 4+ LC %, dr,
where
= = 1 =, 04%,"
ij‘,i = Cx}t,: = 2—m/l “‘yé -‘—"“——B;; .

Thus, obviously the quantities C*#/} and C_"},i defined with respect to Z"‘,,-" are
the deformed quantities of C* {’J-'_: [ and C*} i respectively.

Finally, let us define the connection coefficients I'*}; with respect to A*;;* as
follows:

(2.23) Py = 7y —(C 81 B, + C¥1 B, —C*B1BY).
Substitution of (2. 19), (2.20) and (2. 21) in (2. 23) yields the result

(2.24) Yy = Y+ 2r+ de.
Hence we have the

Theorem 3. The connection coefficients F"‘{’j with respect to the four index metric
tensor A*;* are nothing but only the deformed counterparts of the connection co-
efficients I'*}; with respect to A*;;*® of the space AY", under the transformation (2. 3).

Of course from the above discussion, by cause of no doubt, we can give the fol-
lowing pertinent conclusion:

Definition 3. The areal space A"™ with the entities the fundamental metric
function F(x, p), the 4-index metric tensors A™;*#, A™/ 4, the parameters of the

line metric connection coefficients I'*}; and the base connection coefficients By; is
called the deformed space of A{™ with respect to the infinitesimal transforma-
tion (2. 3).

Let us take the contravariant components of the m-vector p defined by

'™ = m!pl p# ... i,

%) T. Igarashi [13], p. 206.
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so that /"] are the contravariant components of the unit m-vector which are

iven b
§ y Jilml — F—lpilm]'

Applying the formula (2.4) for the Lie-derivative of the unit m-vector /i) along pt,
we can have

3 ) T s 1 - . . :
LI = — L I @3 F) &y ph+ 5 057 ™) o ph— PG,

Hence, under the transformation (2. 3), the unit m-vector /(") deforms into

" . 1 et
(2.25) ' = [ |- S P05 F) S ph+ 55 (5 T Eh Pl — HImE | d.

Multiplying (2. 25) with (2. 12) and on simplifying by neglecting the higher
powers of dt, we get at once
(2.26) Fpom = pitm) 4 gpitel g,

where we have put Zpl™ = (95 p't™)&i, ph—pit™IE ;| so that if we notice that the
m-vector p'l™l is the deformed m-vector of p'l™ and 1s defined by

)‘fiIMJ - pi[m]_{_gpi[nl]dr’
then, the relation (2. 26) may now be put into the form

7itm) _ ﬁftm]/f;:
Hence, we have the

Theorem 4. The deformed m-vector 1''™ of the unit m-vector I''™ along p. in
A", under the transformation (2. 3), is also the unit m-vector along the same direction

in A,

Now, we shall examine the deformation of the quantity pf in A{™ under the
transformation (2. 3). For the Lie-derivative of p?, we approach with the fundamental
procedure and after some simple calculation, we get our required result:

Zpt = (0; D& + (9] pD) &' pj + P3(9,Y).
Hence, on writing the quantity p? by the relation
(2.27) pi = pi+ &ptdr,

we can give the

Definition 6. The quantity E‘E 9 ](;)p‘g 4 in A is nothing but the deformed

x
counterpart of the quantity p?, under the transformation (2. 3). .
At last to cover this section, we consider the connection coefficients Cj [ in

the space A™ in analogy with the connection coefficients C§7; of Ay™, which are
defined by

(2.28) L= f‘*;’;a,

1]
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where

h"‘sj —PaDj-

If we substitute (2. 22) and (2. 27) in (2. 28) and simplify the result, then, in con-
sequence of the theorem 1, it gives us

(2.29) C},1 = C},1+%Cj 1 dr,

showing that C £.% is also the deformed quantity of Cj j.k» which will serve a very
purposeful meamng in the discussion of the theory of covariant differentiation in

A™_ dealt in the next section.

§ 3. The theory of Covariant derivation and the curvature tensors in the defor-
med space 4",

In the present section, for the sake of brevity we shall consider an areal space

A™ of the submetric class and its corresponding deformed space 4™. Following
Gama [10], let us introduce the process of covariant differentiation in the deformed

space A™. We define the covariant derivatives of a mixed tensor T‘ for the con-
nection parameters I’ "‘,‘ and C' {in the deformed space A™ by

(3.]) j|:k=0ij—(3;,Tj)B*k+r* gTJ—r jlt.Tln
(3.2) it =XTi+CleT—ClsT}
respectively.

Since it is well known that an areal space of the submetric class is a special
case of an areal space of general type and consequently, the theory of an areal
space of submetric class is easily derivable from the general theory of areal space
in particular, so there is no harm in makmg the use of the results of preceding section.

We substitute for T‘ B", and I'*}, from (2.4), (2.20) and (2.24) respectively in
(3.1) and carry out the operations indicated therein. Thus, we obtain

(3.3) T‘ ik = Tiu+ [T+ Ti Ry — T} R + (05 T)) Rhupa P2} E* +
+ Tl + Tiplhi— Thé&h+ (05 m)‘: | Pl dr.
Employing the expression for the Lie-derivative of the tensor Tjy in (3. 3), we get
(3.4 This = Tip+ LThadx,
where we have also used the commutation formula
T}p.u- }ilih — T}th" Tli-Rjﬁk_(a? T})Ri-up?-

Next, substltutmg the expressions for T Ti and C,,,,‘ in (3. 2) and on simplifying the
concerned operations, we get

(3.5) Tilz = Tif+ £LTjidr.

4%
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Hence we have the

Theorem 5. The tensors ﬁ[|k(x, p) and ﬁ":(x, p) are the deformed counterparts
of the covariant derivatives T} (x, p) and T}|i(x, p) of the tensor Tj(x, p) respectively,
under the transformation (2. 3).

Further, we note that the processes of covariant differentiation in the deformed
space A™ as introduced above will give rise to the following curvature tensors:
(3.6) Rip = hI"l— 0k + R4y — Ty a+ TR — YT,

G-7 Ei'}lr = th‘f'a'jﬁm;':,
G-8) F:'.rl b a?ff#?j _&juj*'z?,-;;ia“?*:}:
G.9) $1i = s3Chy—Ch3Cri— 01 Chi+ChACHS.

Substituting for I *}; from (2.24) in (3.6) and on solving out the relation, we
obtain

(3.10) Ry = Rly+ LR dv,

where we have used the definition (4. 5) of Gama [10, III]. a
~ Also, substituting the appropriate expressions for the quantities I, C!iand
Eﬁ'ﬂ, inserted on the right hand sides of (3. 7), (3. 8) and (3. 9) from (2. 24), (2. 29),
(3. 10) respectively, and carrying out the calculations for the operations indicated
therein with the use of relation (3.4) and the definitions (4. 2), (4.3) and (4.4)
of Gama [10, III], we see that the identities (3. 7), (3. 8) and (3. 9) reduce to

KE’:'I}I( = K;}g + .?’K,';;‘ dT,

Py s = Pl i+ 2Pl 1dv,
and
Skt = Shi S+ ZShijd
respectively.
In this manner, we have the

Theorem 6. The curvature tensors of the deformed space A™ are respectively
the deformed tensors of those of A{™.

Remarks. It is very interesting to note that an areal space of the submetric
class is a special case of the areal space of general type, and the areal space of the
metric class is a subclass of the submetric class. Therefore, in the case when an
areal space A™ is of the submetric class and the following relations ([8], p. 152,
theorem 3. 4)

Auu = gughk; Aifﬂ = gijg"a- A'j;,a = 2785,
and
F2 T% det [g:ﬁiy
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where g;; and g are the fundamental metric tensors of order two and Lap=8i J-p:_p-L,
hold good, then we have .

98
opk’

. 0A*P 0 :
aff 6;: — g” 8i£ ] Cx?;.’l e ghr

and y}; is the Christoffel symbol in the usual sense.

Next, we remember that ‘in virtue of the theorem of Iwamoto®), an areal
space of the metric class belongs to the submetric class, and for a space of mettic
class, the above relations also hold good always ([8], p. 153).

Consequently, we deduce that the theory of an areal space of the submetric class
and of metric class can directly be derived from that of the theory of an areal space
of general type successively. From this we may have the

Conclusion 1. All the results of the theory of deformed areal space of the
submetric and of metric class exist in the theory of deformed areal space of general
type and thereby can be deduced without any loss of generality.

As well known, an areal space of the metric class is always one of the Rieman-
nian, Finsler or cartan spaces, ‘the theorem is due to Tandai’.”) By virtue of this
theorem for the cases m=1 and m = n—1, our space A{™ becomes A" and A"~V
as special cases, which are Finsler and Cartan spaces respectively. In these cases
all the results of 4™ of metric class hold good almost coinciding with the results
obtained by many researchers as the most natural approach to the problems in
Finsler and Cartan spaces. Thus, in view point of this property of 4™ for the above
particular cases, of course, we can argue that our results of the theory of deformed
areal space also hold good in Finsler and Cartan spaces. Hence, we have the

Conclusion 2. All the results of the theory of deformed areal space consist of
the results of a deformed Finsler space (the case m=1) as well as of a deformed
Cartan space (the case m = n—1).

Finally, we notice that when an areal space A{™ is a Riemannian space in
particular, C*!7 =0, (A KAWAGUCHI [8], p. 143), then, no doubt, we can draw the
following:

Conclusion 3. For the special case C*}]]=0, all the results of the theory
of deformed areal space 45™ hold good for the deformed Riemannian space.

Conclusively, if we make our results of the deformed areal space as specialized
one for the cases C*}} =0and for m=1, they almost coincide with those of SUGURI
[3] and MisrA [4] for Riemannian and Finsler spaces respectively. From this dis-
cussion, it is worthwhile to state that our theory of deformed areal space stands as a
most general one in itself consisting of the theory of deformed areal space of the
submetric and metric class and of the deformed Riemannian, Finsler and Cartan
spaces, and many results of theory of these deformed spaces can easily be obtained
by making them specialized one rather than to achieve them by way of direct approach
as a natural generalization.

6) A. KAWAGUCHL, ..., [6], p. 15; H. IwamoTo, On geometries associated with multiple inte-
grals, Mathematica Japonicae, 1 (1948), 74—91.
7) K. Tanpar [9], p. 44, Theorem 3.2.
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§ 4. After having discussed the theory of covariant differentiation in the de-

formed space A™ of submetric class, in this section we consider a tensor T’ iy de-
fined by

@1 T}u(x; p) = R}u(x’ p)— R(‘stgjt — & gin)s (R#=0),

where E}u(x, p) is the curvature tensor of 4{™ and R is a scalar called Riemannian

curvature in 4. Then, under the transformation (2. 3) the deformed tensor }‘='j,,k(x, p)
of T}, (x, p) is expressed by the relation

@.2) Tia(x, p) = Riu(x, p)— R(64x— 042,

where ﬁ}u(x, p) and g;, are the deformed tensors of Ry, and g, , under the trans-
formation (2. 3) and are said to be the curvature tensor and fundamental metric

tensor of order two of the deformed space A{™ respectively, and R is the deformed
scalar of R under the transformation (2. 3).

For the purpose of our present discussion, we see that, under the transformation
(2. 3), the fundamental metric tensor g;;(x, p) deforms as

4.3) gij = &+ Zg;dr,

where
Zgij = S+ S + (9% &) Eh k-

Now substituting for I?}u and g;; from (3. 10) and (4. 3) respectively in (4. 2), we get
(4' 4) 7:-‘}“ = Tj”, + gT}M, dr,

where we have assumed R as a constant.
If the areal space A{™ is of constant Riemannian curvature [12], R is a con-
stant (as assumed before) and the tensor 77, (x, p) vanishes identically. Therefore,

we see that for R(x, p)=R(x, p) and from (4. 4), f’}k,,(x, p)=0. Consequently, from
(4. 2), we obtain

@.5) Ri(x, p) = R(34 &5 — 0k jn)-

Thus, we conclude that R=R will be a constant Riemannian curvature of the de-
formed areal space 4™, because the relation (4. 5) is identically satisfied. Hence,
we have the

Theorem 7. If A™ is an areal space of the submetric class of constant Rieman-

nian curvature, the deformed space A\™ is also a one of the same constant Riemannian
Curvature.

On the other hand, KikucHr [12] has shown that an areal space A™ of the
submetric class is isotropic when and only when the areal space 4,™ of the sub-
metric class has a constant Riemannian curvature. Therefore, from the theorem 7,
we establish the following:

Corollary: If an areal space Af™ of the submetric class is isotropic, the de-
formed space A{™ of the submetric class is also isotropic.
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Of course, without any difficulty, we can also prove the following theorems:

Theorem 8. If an areal space A™ of the submetric class is of affinely connected,
the deformed space A\™ is also of affinely connected.

Theorem 9. If an areal space Al™ of the submetric class is Minkowskian, the
deformed space A{™ is also Minkowskian.

Theorem 10. If an areal space A\™ of the submetric class is a conformally flat space,

the deformed space A™ is also a conformally flat space having the same property as
that of original one.

§ 5. In this last section, we shall generalize some of the theorems of Suguri [3].
Let us consider U::(x, p) and V::(x, p) two tensor fields in an areal space A{™. Then,

by virtue of (2. 4), their deformed tensor fields U~ (x, p) and ?;;;(x, p) respectively
are given by
Uihey, = URRoh+2Us ol dn
]/Ikllkzl o V*:kz .+_¢?Vh"z 'd'l.‘

1%+

Multiplying these two relations side by side and on SImphfymg by neglecting the
higher powers of dz, we get

G.1)  URRg N = U ik, '+£"U’J: WA

from which, it is quite obvious that the product Ui.‘ o V;""“ ¥ of two tensors

I
is nothing but the deformed tensor of the product U f;j: f Pi",:" * of two tensors.
Now we shall define a harmonic vector in an areal space. Let Qi(x,p) be a
vector field well defined in a region # of an areal space A{™ of the submetric class.
If the vector Q;(x, p) satisfies the following relations:

Qilj_ Jlf - 0 al’ld g” Qﬂj:O’
then we will call this vector a harmonic vector in the space 4{™ of the submetric
class.

Let us consider a tensor field 7;;(x, p) and a scalar field ¥ (x, p) for any vector
field Q,(x, p) in the space 4™ of tﬁle submetric class which are defined by

(5.2) a) Ty(x, p) = Qyi— Qs b) 9(x,p) = g" ;>

such that, if these are vanished identically, they leave Q;(x, p) as a harmonic vector
field in the space under consideration.
Correspondmgly, we are now in a position to construct the tensor field 7; ,(r, p)

and a scalar field 4 (x, p) with regard to the deformed vector Q (x, p), such that
they are given by

(5.3) a) Typ)=Qy—Qu b 9(xp) =59y,
Making use of (3.4) and (4. 3) in the above relations, we get
(5.9 a) Ty(x,p) = Ty+<LT,dr, b) 9(x,p) = 9(x, p)+ L%(x, p)dr.



56 Om P. Singh

Thus, by cause of no doubt, we can state that the tensor 7 /(x, p) and the scalar
@ (x, p) are nothing but the deformed counterparts of the tensor Ti{(x, p) and the
scalar #(x, p) respectively.

On account of the fact that, if £;(x, p) is a harmonic vector, the tensor Tj;(x, p)
and the scalar @(x, p) vanish identically, we have

Ty(x,p) =0, and %(x,p)=0.
By this reason, from (5.4), we get at once
(5.9 Q-2 =0 and §"55”” = 0.
Consequently, we can state the

Theorem 11. If Qi(x, p) is any harmonic vector field in an areal space A™ of the
submetric class, then the deformed vector field Qi(x, p) of the vector field Qi(x, p),

under the transformation (2.3), is also harmonic in the deformed space A_‘,,"') of the
submetric class.

Furthermore, we shall endeavour ourselves to generalize the preceeding theorem
for a harmonic tensor field in the space 4™ of the submetric class. For this specific
purpose in hand, we take any tensor field Qi, ... i,(x, p) in the considered space.
Then, with respect to this field, we can consider two tensor field 77, ... i,j(x, p) and
i, ... 1,_,(x, p) defined by

P
(5.6) Ti..iyi®p) = Qi 15— 21 Qi b Jlpas o b i
(5.7) P :',,-,(x’P) = ghlQ; s Baat]d
respectively.

Now, if we suppose that 51', ... Ip(x, p) is the deformed tensor field of the
considered tensor field Qi, ... i,(x,p), then, analogous to the above two tensor

fields we can construct two tensor fields ?il . ipj(x, p) and 51’1 eor By (% D)

successively with regard to the deformed tensor field Qi, ...ip(x, p), which will
be defined by

= = P —
(5.8) i AN i,J(st) =0 .. isll j—"g; v Y TREY ipllir?
(5.9) G iy 0) =BG, i
respectively.

On account of the relations (3. 4) and (4. 3), we approach in the same manner
as before and we get finally

(5.10) Tyt 16 0) =Ty o s D+ 2T, o (5, D) e,
(5.11) Bty D) =S D)+ 2F, o, (x, P)dr.

Evidently, the tensors T: .ipj(X,p) and 9?,-" wip-y (X, p) are the deformed
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tensors of T . ;, J;(:Ac, p) and &, _ (x,p) of the space A™ respectively, un-
der the transformation (2. 3).
Now, we assume that the tensor field Q; ; (x,p) is harmonic in A™, ie,

a) @, ., (x,p): is skew symmetric in all its indices,
(5.12) by ¥e . i,f(x;P) =0,
) %, (x,p) = 0.
Employing these relations in (5. 10) and (5. 11), we see that the following rela-
tions hold good:

o FE

a) Q,, .1,(x, p): is Skew symmetric in all its indices,
(5-13) b) T:, Lips(X%P) =0
0 ¥ i =0,

which shows that the deformed tensor field 5& "(x, p) is also harmonic in A-,?").
Hence we have the

Theorem 12. If Q; , (x,p) is any harmonic tensor field in the space A{™
of the submetric class, the deformed tensor field Qil i, (6p) of @ i (x,p) is
also harmonic in the deformed space AX™ of the submemc class.

Of course, we know that, in case the tensor 2,...; (x, p) is a harmonic ten-
sor, the tensor T} ..., j(x, p) defined by (5. 6) vanishes 1dentlcally so that, in the
present case, the Lle operatlon on both sides of (5. 6) gives us

p
(5.14) 3’9:. = B 21' gg:, o bay iy wds |

Using the relations (2. 1), (2. 4) and (2. 5), we can easily derive the commutation
formula

(5.15) L, i) = (LR, )=
P
— "(aigt, l,)gB:}_ 2 B i s Bers ‘ﬁ’?r?'!‘j’

which is nothing but the generallzed identity of Igarashi (relation (3. 7), [11], p. 210).
Using the identity (5. 15) in (5. 14), we have
(L, ..)— (%2, ...)Z Bay =
P

2 {(’gﬂh iy lipwt o fp)lf _(aagfl e bpmt Jirs1 o !F)QB"“

r=1

r—=1
*k t
_3-2; gh oo lgmgbigyy voebpmt Jlpa1 o0 '?F igly Qfl cij=ykip sy .. gr

P P
*k *k
R Z Q!'] e bpay Jlpay oo lgayg Mgey ... f,'gr i.i..}_ Z; Ql] sielpaghipd g see i,'gr [SE
re=

s=r+1
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which on simplification, gives rise to
(29 ..i,)1i— R, ..i,) ZLB;; =

= Z (L, ..o iitiar ot D= i, ooy Sy ... 1,) LB} —

r=1

-

r—

(5.16) _Z Chnhbhed v bsi b i,gf;‘,k:,.—

i M‘

p—1 P &
- 2o B s s SR
s=r41

r=1

Interchanging the order of summation and taking note of (5. 12) a), we can see that

E ik
| M | P fpgr*lll, i

L L T ™

P
P *k -
= Z 9‘1 ce lgm 1 Kligtt coedpmy Jlp+1 oo f’yr i —
& *k
i 2 Qf; svi Qg b Bt siv Posst Bha b ¥ 650 fpy‘r £ o

P
sk
= = Q ...f,-;jl‘,H...f,-,ki.H.“l,-gr I £

r=1 s=r+1
By this reason of fact, (5. 16) reduces to
(-ggi; t,)u—(aign :,)f "7 i

5.17) »
2 {2, ... iitver i i— 8, ..oy sty .t,) LB}

r=1

On the other hand by making use of (5. 7), (5. 12) ¢) and (5. 15), we can easily derive
the relation

(Zg™)Q,, .. i,|,+8i’j{(ggu i i— (0%, . ip) L Baj—
(5.18) »
P g: Qi. i b R vee £,-g‘rti,,kj = 0.

Hence, in order that the Lie derivative £Q; ; (x,p) of the tensor Q; ; (x,p)
holds the relations

(5 19) ('? ig . l,)lJ Z ('?ng e lpmt Jipag o i,)li,.:

(5.20) gL, i )= 0,
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it is necessary and sufficient that the relations

(5.21) Zg' =0,
(5.22) ZB}, =0,
(5.23) #ri =0,

are identically satisfied. But from (5. 19) and (5. 20), it is quite evident that the
Lie derivative ZQi, ... i,(x, p) of the tensor Qi, ... i,(x, p) is a harmonic tensor, and
the relations (5. 21) and (5. 23) clearly shows us that the infinitesimal transformation
(2. 3) is now an areal motion. Therefore we have following:

Theorem 13. In order that the Lie derivative £ Qi, ...i,(x, p) of any harmonic
tensor Qi ... i,(x, p) with respect to the transformation (2. 3) in an areal space A™
of the submetric class is also harmonic, it is necessary and sufficient that the infinitesimal
transformation (2. 3) is now an areal motion in the same space.

At last while concluding this paper, the author is much grateful to Prof. A. Ka-
waguchi, K. Tandai, S. Kikuchi, M. Gama and M. Kawaguchi for providing the
reprints of their valuable papers and the subject matters. The author’s sincere thanks
go to all of them and to Dr. H. D. Singh with his best felicitations for their numer-
ous co-operations. Specially the author also owes many thanks to the refree for
his several valuable suggestions and for the improvement of the context of this

paper.
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