The minimum number of spanning paths in a strong tournament

By J. W. MOON (Cape Town)

1. Introduction. A rournament T, consists of a finite set of nodes 1,2, ...,n
such that each pair of distinct nodes i and j is joined by exactly one of the arcs ij
or ji. If the arcij is in T, we say that 7 beats j or j loses to i and write i —j. If each
node a subtournament A4 beats each node of a subtournament B we write 4 —B
and let A+ B denote the tournament determined by the nodes of 4 and B.

A pathis a sequence P={p,, p,, ..., p;} of distinct nodes of T, such that p; =p,.,
if 1=i<k: a spanning path contains every node of T,. Let 4#(7,) denote the number
of spanning paths in the tournament 7,. REDEI [1] showed that h(T,) is odd for
every T, and SzeLE [2] showed that if H(n) denotes the maximum of A(T,) over all
tournaments with » nodes then

nY2"-1= Hin) = (n+1) 12343 for an=1l.

A tournament T, is strong if it cannot be expressed as T, = A+ B for some
nonempty subtournaments 4 and B. If a tournament 7, is not strong, or weak,
it has a unique expression of the type 7, = A+ B+---+ K where the nonempty
subtournaments A, B, ..., K all are strong and h(T,) = h(A)+h(B)...h(K). Thus
in considering lower bounds for i#(7,) we may as well assume T, is strong. Our
object here is to prove the following result.

Theorem. If h(n) denotes the minimum number of spanning paths a strong tourna-
ment T, can have, then h(1)=1 and

' n=1(mod3)
(1) " 1=h(n) =19:5-*3p"! if n=2(mod 3)
3.5-283 -1 p=3(mod 3)

for n=3, where a=64=1.565 and p=5"3=1.710.

2. An upper bound for /(n). If n=3 let R, denote the strong tournament in
which i—j if and only if i<j except that n —1. Any spanning path P of R, that
involves the arc nl partitions the nodes (2, 3, ..., n—1) into two subsets, those that
come before n and those that come after 1; it fo!lows from the definition of R, that
the nodes in these two subsets must occur in natural order in the path P. Converse]y,
each partition of the nodes (2, 3, ..., n—1) into two subsets determines a unique

spanning path that involves the arc nl. Thereis only one spanning path of R, that doesn’t
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involve the arc nl, namely, {1, 2, ..., n}. Consequently, #(R,) = 1+2"~2 for n=3.

More generally, let {s,, s5;, ..., 5,} denote an increasing subsequence of the nodes
1,2, ...,n such that s;=1, s,=n, and «; = 5;,,—5;—1 =1 for 1=i<t. Let S,
denote the strong tournament in which i<j if and only if i<j except that s;,; —=s;
for 1=i<t. It is not difficult to show, by an extension of the argument just used for
the case 7=2, that .

. t—1
h(S) = [T (1+2%)
i=1
for n=3. (Notice that i(S,) is always odd, in accordance with Rédei’s theorem.)
To minimize /(S,) for given values of n, notice that

(1+2**)>(1+2>)(1+29 for a=l,

(1 +23‘)2 > (1 +21) (1 +22)2,
and
(A4+2H(1+2%) = (1+2Y) = (1+2%)2

Thus if n = 3k+1 the minimum occurs when ¢ = k+1 and all the «’s equal two;
if n = 3k+2 it occurs when ¢t = k+1 and one z equals three and the rest equal
two or when ¢ = k+2 and two «’s equal one and the rest equal two: if n = 3k+3
it occurs when 7 = k42 and one z equals one and the rest equal two. It follows,
therefore, that the minimum value of A(S,) is 5% 9.5-!, or 3.5* according as
n = 3k+1, 3k+2, or 3k+3. This implies the upper bound in inequality (1).

3. A lower bound for /i(n). Before proceeding we remark that if node y is not
contained in a path P and y beats some node x of P then y can be inserted in the
path P before x: in particular, y can be inserted immediately before the first node
of P it beats. Similarly, if y loses to x then y can be inserted in P after x.

It is not difficult to verify that A(1)=1, h(3)=3, h(4)=5, and Ah(5)=9 so the
lower bound in inequality (1) certainly holds for small values of n. Suppose the in-
equality has been established for 3=n=m—1 and consider a strong tournament 7,
such that h(m)=h(T,,).

Let K denote any minimal subset of nodes of T,, whose removal, along with
all incident arcs, leaves a weak subtournament R; such a subset K exists since, for
example the removal of the nodes that lose to any given node of 7,, leaves a weak
subtournament. Since R is weak there exist subtournaments 4, B and C where A
and C are strong such that R = A+ B+C; it may be that B is vacuous. Let a, b, ¢
and k denote the number of nodes in A, B, C and K so that a+b+c+k =m. It
follows from the minimality property of K and the fact that 7, is strong that each
node of K loses to at least one node of C and beats at least one node of 4. We now
construct two families of spanning paths of T, and thus obtain a lower bound
for h(m).

Let P,, P,, and P, denote any spanning paths of 4, B, and C; there are at
least h(a)h(c) spanning paths of R and they all are of the type P, + P, +P;. Now
let X and Y denote any partition of the nodes of K into two subsets. Since each
node of X beats some node of 4 and each node of Y loses to some node of C it
follows that the nodes of X and Y can be inserted in the path P, +P,+P; so as
to form a spanning path Q of T,, that first passes through the nodes of X and 4,
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then passes through the nodes of B, and finally passes through the nodes of ¥ and
C. Different paths P; and P; and different partitions X and Y yield different paths
0 so T, must have at least 2*A(a)h(c) spanning paths of this first type.

Let x denote any given node of K and let # and v denote given nodes of 4 and
C that lose to x and beat x, respectively. For any spanning path P, of A4 let P,,
denote the (possibly empty) subpath determined by the nodes that come before u
in P, and let P,, denote the subpath determined by u and the nodes that come after
u in P,; for any spanning path P; or C let P,; denote the subpath determined by
v and the nodes that come before v in P; and let P;, denote the (possibly empty)
subpath determined by the nodes that come after v in P;; for any partition of the
nodes of B into two subsets W and Z, let P,; and P,, denote spanning paths of
the subtournaments determined by W and Z. It is not difficult to see that for each
partition W and Z there are at least /(a)h(c) paths of the type P* = P, +P,, +
+ Py, + {x}+ Py, + P,,+ P5, that pass through x and the nodes of R. We now
estimate the number of ways of inserting the remaining nodes of K into such a
path P*.

If k=2, let y denote any node of K— {x}. Since y beats some node of 4 it fol-
lows that y can be inserted in P* before the last node or P,,; it can also be inserted
arter the last node of P;, unless it beats that node and all the nodes of P,, and
P,,. Since y loses to some node of C it follows that y can be inserted in P* arter
the first node of P,,; it can also be inserted before the first node of P;; unless it
loses to that node and to all nodes of P;; and P,,. Thus if y can’t be inserted in P~
in at least two ways it must be that y —Z and W —y, among other things. Notice
that this last statement also applies when P* is replaced by any path obtained by
inserting other nodes of K— {x} in P*.

Let the partitions of B into two subsets be numbered from i=1 to i=r=2".
For the i-th partition, W, and Z;, let y;, denote the number of nodes y of K— {x}
such that y -Z; and W, —y. It follows from the observations in the last paragraph
that there are at least 2~ '~ ways to insert the nodes of K— {x} in any path P*
associated with the partition W; and Z; so as to form a spanning path of 7,,. If we
apply this construction for all spanning paths of 4 and C and for all partitions of B
we obtain at least

@) 2%=1(2=71 4 oee + 27 7) h(@) 1 (c)

different spanning paths of 7,,. (Some node of C comes before some node of 4 in
each of these paths so they are not the same as any of the paths enumerated earlier.)
Since the nodes of B that beat and lose to any node y of K— {x} are fixed, each
such node y contributes one to just one y; and y;+-++7y, = k—1. Therefore,
the sum in (2) is minimized when all the /s equal (k—1)2-" and T7,, must have
at least h(a)h(c)2b+*-D(1-2"" spanning paths of this second type.

It follows from these two constructions that A (m)= (2% 420+ =D =2"") h (@)} (c).
In order to show that this implies that A(m)=o™ ! =g *b+<*k=1 it suffices to show,
in view of the induction hypothesis, that

(3) 2k 4 b+ (k=1)(1=2-0) = gb+k+1 — g(b+k+1)/4

for all integers b and k such that 5=0 and A=1.
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Since log, <4, inequality (3) certainly holds if k = 2(b+k+1)/3 or k = 2b+2
and it can easily be verified directly for 1=k=2b+1 when 0=5=2. (Notice that
equality holds in (3) when k=1 and »=2.) If b= 3, then inequality (3) holds if

(4) : 2k+ 2b+7 (k= 1)/8 = ybtk+1

for b=3 and k=1. This inequality certainly holds if b+7(k—1)/8 = 2(b+k+1)/3
or 5k+8b = 37; if b=4 this holds for k=1 and if 5=3 it holds if 5k=13 or if k=3.
In the remaining cases, when =3 and k=1 or 2, inequality (4) can be verified
directly. This suffices to complete the proof of the lower bound of inequality (1) by
induction.
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