The minimum number of spanning paths in a strong tournament

By J. W. MOON (Cape Town)

1. Introduction. A tournament T_n consists of a finite set of nodes 1, 2, ..., n such that each pair of distinct nodes i and j is joined by exactly one of the arcs ij or ji. If the arc ij is in T_n we say that i beats j or j loses to i and write $i \rightarrow j$. If each node a subtournament A beats each node of a subtournament B we write $A \rightarrow B$ and let A + B denote the tournament determined by the nodes of A and B.

A path is a sequence $P = \{p_1, p_2, ..., p_k\}$ of distinct nodes of T_n such that $p_i \rightarrow p_{i+1}$ if $1 \le i < k$; a spanning path contains every node of T_n . Let $h(T_n)$ denote the number of spanning paths in the tournament T_n . RÉDEI [1] showed that $h(T_n)$ is odd for every T_n and SZELE [2] showed that if H(n) denotes the maximum of $h(T_n)$ over all tournaments with n nodes then

$$n!/2^{n-1} \le H(n) \le (n+1)!/2^{(3/4)n-3}$$
 for $n \ge 1$.

A tournament T_n is strong if it cannot be expressed as $T_n = A + B$ for some nonempty subtournaments A and B. If a tournament T_n is not strong, or weak, it has a unique expression of the type $T_n = A + B + \cdots + K$ where the nonempty subtournaments A, B, \ldots, K all are strong and $h(T_n) = h(A) \cdot h(B) \ldots h(K)$. Thus in considering lower bounds for $h(T_n)$ we may as well assume T_n is strong. Our object here is to prove the following result.

Theorem. If h(n) denotes the minimum number of spanning paths a strong tournament T_n can have, then h(1)=1 and

(1)
$$\alpha^{n-1} \le h(n) \le \begin{cases} \beta^{n-1} & n \equiv 1 \pmod{3} \\ 9 \cdot 5^{-4/3} \beta^{n-1} & \text{if } n \equiv 2 \pmod{3} \\ 3 \cdot 5^{-2/3} \beta^{n-1} & n \equiv 3 \pmod{3} \end{cases}$$

for $n \ge 3$, where $\alpha = 6^{1/4} = 1.565$ and $\beta = 5^{1/3} = 1.710$.

2. An upper bound for h(n). If $n \ge 3$ let R_n denote the strong tournament in which $i \to j$ if and only if i < j except that $n \to 1$. Any spanning path P of R_n that involves the arc n1 partitions the nodes (2, 3, ..., n-1) into two subsets, those that come before n and those that come after 1; it follows from the definition of R_n that the nodes in these two subsets must occur in natural order in the path P. Conversely, each partition of the nodes (2, 3, ..., n-1) into two subsets determines a unique spanning path that involves the arc n1. There is only one spanning path of R_n that doesn't

J. W. Moon

involve the arc n1, namely, $\{1, 2, ..., n\}$. Consequently, $h(R_n) = 1 + 2^{n-2}$ for $n \ge 3$. More generally, let $\{s_1, s_2, ..., s_t\}$ denote an increasing subsequence of the nodes 1, 2, ..., n such that $s_1 = 1$, $s_t = n$, and $\alpha_i = s_{i+1} - s_i - 1 \ge 1$ for $1 \le i < t$. Let S_n denote the strong tournament in which i < j if and only if i < j except that $s_{i+1} \rightarrow s_i$ for $1 \le i < t$. It is not difficult to show, by an extension of the argument just used for the case t = 2, that

$$h(S_n) = \prod_{i=1}^{t-1} (1+2^{\alpha_i})$$

for $n \ge 3$. (Notice that $h(S_n)$ is always odd, in accordance with Rédei's theorem.) To minimize $h(S_n)$ for given values of n, notice that

$$(1+2^{\alpha+3}) > (1+2^2)(1+2^{\alpha})$$
 for $\alpha \ge 1$,
 $(1+2^3)^2 > (1+2^1)(1+2^2)^2$,
 $(1+2^1)(1+2^3) = (1+2^1)^3 > (1+2^2)^2$.

and

 $(1+2^1)(1+2^3) = (1+2^1)^3 > (1+2^2)^2$

Thus if n = 3k+1 the minimum occurs when t = k+1 and all the α 's equal two; if n = 3k+2 it occurs when t = k+1 and one α equals three and the rest equal two or when t = k+2 and two α 's equal one and the rest equal two; if n = 3k+3 it occurs when t = k+2 and one α equals one and the rest equal two. It follows, therefore, that the minimum value of $h(S_n)$ is 5^k , $9 \cdot 5^{k-1}$, or $3 \cdot 5^k$ according as n = 3k+1, 3k+2, or 3k+3. This implies the upper bound in inequality (1).

3. A lower bound for h(n). Before proceeding we remark that if node y is not contained in a path P and y beats some node x of P then y can be inserted in the path P before x; in particular, y can be inserted immediately before the first node of P it beats. Similarly, if y loses to x then y can be inserted in P after x.

It is not difficult to verify that h(1)=1, h(3)=3, h(4)=5, and h(5)=9 so the lower bound in inequality (1) certainly holds for small values of n. Suppose the inequality has been established for $3 \le n \le m-1$ and consider a strong tournament T_m such that $h(m)=h(T_m)$.

Let K denote any minimal subset of nodes of T_m whose removal, along with all incident arcs, leaves a weak subtournament R; such a subset K exists since, for example the removal of the nodes that lose to any given node of T_m leaves a weak subtournament. Since R is weak there exist subtournaments A, B and C where A and C are strong such that R = A + B + C; it may be that B is vacuous. Let a, b, c and k denote the number of nodes in A, B, C and K so that a+b+c+k=m. It follows from the minimality property of K and the fact that T_m is strong that each node of K loses to at least one node of C and beats at least one node of C. We now construct two families of spanning paths of T_m and thus obtain a lower bound for h(m).

Let P_1 , P_2 , and P_3 denote any spanning paths of A, B, and C; there are at least h(a)h(c) spanning paths of R and they all are of the type $P_1+P_2+P_3$. Now let X and Y denote any partition of the nodes of K into two subsets. Since each node of X beats some node of A and each node of Y loses to some node of C it follows that the nodes of X and Y can be inserted in the path $P_1+P_2+P_3$ so as to form a spanning path Q of T_m that first passes through the nodes of X and A,

then passes through the nodes of B, and finally passes through the nodes of Y and C. Different paths P_1 and P_3 and different partitions X and Y yield different paths Q so T_m must have at least $2^k h(a)h(c)$ spanning paths of this first type.

Let x denote any given node of K and let u and v denote given nodes of A and C that lose to x and beat x, respectively. For any spanning path P_1 of A let P_{11} denote the (possibly empty) subpath determined by the nodes that come before u in P_1 and let P_{12} denote the subpath determined by u and the nodes that come after u in P_1 ; for any spanning path P_3 or C let P_{31} denote the subpath determined by v and the nodes that come before v in P_3 and let P_{32} denote the (possibly empty) subpath determined by the nodes that come after v in P_3 ; for any partition of the nodes of B into two subsets W and Z, let P_{21} and P_{22} denote spanning paths of the subtournaments determined by W and Z. It is not difficult to see that for each partition W and Z there are at least h(a)h(c) paths of the type $P^* = P_{11} + P_{21} + P_{22}$ $+P_{31}+\{x\}+P_{12}+P_{22}+P_{32}$ that pass through x and the nodes of R. We now estimate the number of ways of inserting the remaining nodes of K into such a path P^* .

If $k \ge 2$, let y denote any node of $K - \{x\}$. Since y beats some node of A it follows that y can be inserted in P^* before the last node or P_{12} ; it can also be inserted arter the last node of P_{12} unless it beats that node and all the nodes of P_{22} and P_{32} . Since y loses to some node of C it follows that y can be inserted in P^* arter the first node of P_{31} ; it can also be inserted before the first node of P_{31} unless it loses to that node and to all nodes of P_{11} and P_{21} . Thus if y can't be inserted in P^* in at least two ways it must be that $y \to Z$ and $W \to y$, among other things. Notice that this last statement also applies when P^* is replaced by any path obtained by

inserting other nodes of $K - \{x\}$ in P^* .

Let the partitions of B into two subsets be numbered from i=1 to $i=t=2^b$. For the *i*-th partition, W_i and Z_i , let γ_i denote the number of nodes y of $K - \{x\}$ such that $y \to Z_i$ and $W_i \to y$. It follows from the observations in the last paragraph that there are at least $2^{k-1-\gamma_i}$ ways to insert the nodes of $K-\{x\}$ in any path P^* associated with the partition W_i and Z_i so as to form a spanning path of T_m . If we apply this construction for all spanning paths of A and C and for all partitions of B we obtain at least

(2)
$$2^{k-1}(2^{-\gamma_1} + \dots + 2^{-\gamma_t})h(a)h(c)$$

different spanning paths of T_m . (Some node of C comes before some node of A in each of these paths so they are not the same as any of the paths enumerated earlier.) Since the nodes of B that beat and lose to any node y of $K - \{x\}$ are fixed, each such node y contributes one to just one γ_i and $\gamma_i + \dots + \gamma_t = k-1$. Therefore, the sum in (2) is minimized when all the γ_i 's equal $(k-1)2^{-b}$ and T_m must have at least $h(a)h(c)2^{b+(k-1)(1-2-b)}$ spanning paths of this second type.

It follows from these two constructions that $h(m) \ge (2^k + 2^{b+(k-1)}(1-2^{-b)})h(a)h(c)$. In order to show that this implies that $h(m) \ge \alpha^{m-1} = \alpha^{a+b+c+k-1}$, it suffices to show, in view of the induction hypothesis, that

(3)
$$2^{k} + 2^{b+(k-1)(1-2-b)} \ge \alpha^{b+k+1} = 6^{(b+k+1)/4}$$

for all integers b and k such that $b \ge 0$ and $k \ge 1$.

Since $\log_2 \alpha < \frac{2}{3}$, inequality (3) certainly holds if $k \ge 2(b+k+1)/3$ or $k \ge 2b+2$ and it can easily be verified directly for $1 \le k \le 2b+1$ when $0 \le b \le 2$. (Notice that equality holds in (3) when k=1 and b=2.) If $b \ge 3$, then inequality (3) holds if

$$(4) 2^k + 2^{b+7(k-1)/8} \ge \alpha^{b+k+1}$$

for $b \ge 3$ and $k \ge 1$. This inequality certainly holds if $b + 7(k-1)/8 \ge 2(b+k+1)/3$ or $5k+8b \ge 37$; if $b \ge 4$ this holds for $k \ge 1$ and if b=3 it holds if $5k \ge 13$ or if $k \ge 3$. In the remaining cases, when b=3 and k=1 or 2, inequality (4) can be verified directly. This suffices to complete the proof of the lower bound of inequality (1) by induction.

References

 L. RÉDEI, Ein kombinatorischer Satz, Acta Litt. Szeged, 7 (1934), 39—43.
 T. SZELE, Kombinatorikai vizsgálatok az irányított teljes gráffal kapcsolatban, Mat. Fiz. Lapok, 50, (1943), 223-256. Reprinted as Kombinatorische Untersuchungen über gerichtete vollständige Graphen, Publ. Math. Debrecen, 13, (1966), 145-168.

The preparation of this paper was assisted by a grant from the National Research Council of Canada.

(Received September 1, 1970.)