Some remarks on non-abelian homological algebra
By SYED A. HUQ (Canberra)*)

§ 1. Introduction

The aim of these notes is to indicate how one can translate the non-abelian
homological algebra of groups over near rings in abstract terms as proposed by
FROCHLICH at the end of the introduction of his paper [1]. This is of similar nature
as done by BUCHSBAUM [2] in translating homological algebra of modules in terms
of an exact category: later on this study was coatinued by HELLER [7]. For our
purpose, we shall choose the same category % as in [4] and continue our study in
€. To recall, briefly, ¢ is a category equipped with the following axioms:

C,: € has a null object.
C,: Every morphism o in €, admits a factorisation as in the diagram.

i.e. x=vu, where v is a normal epimorphism and p is a monomorphism
Ci: € has product and coproduct for any arbitrary family of objects.
C,: The subobjects and normal factor objects of any object form a set.
Ce: If o is @ monomorphism and B is a normal epimorphism such that off admits
image v' ', then
(1) « normal implies u’ is normal
(1) If (K, p) denotes the kernel of B, then (K, n)=(A, ) and p" normal will
rogether imply that x is normal.

Under these axioms, the theory of commutators is available [4]. We shall be frequently
using the results and notations of [4] in the sequel. The theory of derived functors
and satellites seems plausible and will be left for subsequent study. Various other

*) Contents of this paper form a portion of the author’s doctoral thesis at London University
in 1965. The author understands that some of these results have also been obtained by P. LEcouTu-
RIER in a Hofmannian category; [6].
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authors [ see SULINSKI [8], WIEGANDT and SzAsz [9]] have also sudied similar categories
for different purposes.

Since our axioms guarantee the existence of kernels, cokernels and normal
images, the concept of exact sequences is available as usual [cf. § 8. of 10]. In parti-
cular we shall say a short exact sequence

0-C%=BLA-0 (A

is central, when x is a central monomorphism.

§ 2. Object pairs; distinguished monomorphisms, epimorphisms and equivalences

By a pair A|(A’, 1’) we shall mean an object A with a central monomorphism
u':A” -~ A; when no confusion arises, we shall indicate a pair by 4|4". One observes
that A” belongs to the abelian subcategory o/ of €.

By a morphism f| f":A|A" ~C|C’ of the pairs we mean a pair of morphisms
fiA-C, f": A"~ C’ making the diagram

l“'\

ALc
.
A 5C
commutative, the verticals being the usual monomorphisms of the pairs. With the
usual composition law, the pairs form a category, which we denote in the sequel
by €2,

Now any morphism f: 4 - C gives rise to a morphism of pairs f| f: 4|4 ~C|C’
if and only if the image of u’ffactors through C’, where u": 4" — A4 is again the natural
monomorphism of the pair 4|4". ;

Thus if A"~ 0, we have a morphism of pairs 4|0 ~C|C’ in ¢'*, for any mor-
phism f: 4 —~C in € and this we denote by flwyc .

We denote the morphism f|w:A|0—-B|0 induced by f in ¥ by f again. The
identity 1,:A4 — A induces a morphism

;'API' H A|0—-A:A'
in €3, such that the following diagram

A|0 244 4|47
flo) Vil
Clo =i

‘eie’

commutes.

A morphism pair f|f":A|A"~B|B’ is a distinguished monomorphism in €'*
if fand hence f” is a monomorphism in ¥. A morphism pair g|g":4|4" ~B|B’ is
called a distinguished epimorphism in C', if g and g" are normal epimorphsms and
if (K, i) is the kernel of g, then ji admits a factorisation = Au" for the pair (4",x")
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From now on we shall denote by monomorphisms and epimorphisms, in €»
only to mean in the distinguished sense. The monomorphisms, epimorphisms in the
distinguished sense are indeed monomorphisms, epimorphisms respectively in the

usual sense.
We notice that f| f” is invertible if and only if it is a monomorphism and an

epimorphism.
A central sequence of pairs in €'* is a sequence

0j0-C|CLL BB’ 97 414’00 (B)

whose component sequences of objects in % are central. Thus (B) can be written
in a commutative diagram

oﬁchB’!Z.A'_.o
|
0~C—+B ~A ~0
g

with central row in . The bottom row is the underlying central sequence of objects.
Now every central sequence of objects in €,

0-CLBLA-0 (O
can be embeded in a diagram of the form (B) and thus defines a central sequence
0/0—~C|C L% B|C #°<e. 4/0-0|0.

It is clear that (B) is central in €'® if and only if f| f is @ monomorphism, g|g’
an epimorphism and

(C, f)=kernel g.

Proposition 2. 1. Every epimorphism g|g':B|B’—~A|A" in €® can be extended
to a central sequence.

Proor. If (K, ji) denotes the kernel of g, then g=Aiu" where u':B" —~B is the
natural monomorphism of the pair.
Hence ‘
0-KLBL A4 -0
I | |
' ¥y
O*K—“:'B ;-A -0

is a central sequence. Also 7 and Z are central [cf. corollary of Proposition 3.1. 10

of [4]].

Lemma 2. 2. If the natural monomorphisms y':B"—~B and p”:C’ -~ C admit co-
kernels (s, E) and (¢, F), and glg’: B|B" —~C|C’ is an epimorphism, then E~ F.
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Proor. We consider the diagram

e

BJ 9' C:

-

¥ p

K= - B -
3 ls 3 lt

E Ql' F

in which
(K, u)=kernel of g.
Now u'gt=g’'nu”t=w implies gt=s0, for some 6.
Since by definition u=2u’, we have s=gh for some h. Now g'n"h=p"gh=w
which implies u"h=w, i.e. h=10".
Now 500"=s which implies 60’=1 i.e. 6 is a monomorphism. Since it is already
a normal epimorphism, it is indeed an equivalence.

§ 3. Results concerning projectives:

A pair A|A’ is said to be €® -projective if every diagram

AlA
|

oo

B |8'——Ic’
l ol cic

of pairs whose row is an epimorphism in ¥® can be completed to a commutative
diagram

AlA

u[u’

Bl8'——C(|C’
0|6’
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Proposition 3. 1. If A is €-projective, then A|A’ is €'® -projective.

Proor. Consider the diagram (D) in ¥‘® with 0]0” an epimorphism.
Since A is ¥-projective, there exists ¢: 4 — B such that pf=o. Hence u’of=
=u’a=a’pu”, where the morphisms involved can be seen in the diagram

B'—-"{C?:/ 1’

=
FB ’g"?’/

Now if u and p” admit cokernels (s, E) and (¢, F), then by lemma 2. 2 there exists an
equivalence g: E~ F, such that
sg=0t.

Now K "00t=p"at=0o’ u”"t=cw which implies u’ psg=w.
ie. p' os=w. Since pu=Kkernels, u’ o= uand forthis ¢’, '@’ u"=o'pu"iec. ¢'0’'=a'.
Hence ¢|o":A|A”—~B|B’ is the required morphism, such that
(ele”) (6]0") = ala’.
Proposition 3.2. A|(A4, 1) is €® -projective if and only if A is sf-projective.
Proposition 3. 3. If €=sf, the category of abelian objects, then A|A" is oA -
projective, if and only if A is sf-projective.
ProoF. By proposition 3. 1, if 4 is o/-projective, then 44" is o/®-projective.
Conversely, if A|A’ is o? -projective, then for any diagram

A

|a

B-~C-+0

with row an epimorphism, we have an induced diagram
AlA
lulp'ﬂ
BB, C|C—0[0

in o/® for the pair A4|(4", u’). Thus the assertion follows from the fact that 4|4” is
o/ -projective.
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Proposition 3. 4. If A|A” and C|C are €'¥-projective, then so is AXC|A’XC.

PROOF. For the pair A|(4", u'), u’X1:A"XC — AXC is central, [cf. Proposi-
tion 3. 1.9 of [4]]. Thus we have the pair AXC|(A"XC, u'X1).

Next let g|g’: D|D’ —~E|E’ be an epimorphism in €'® and f|f":AXC|4"XC -~
- E|E’ a morphism. Then we have commutative diagrams

A8 . 4'%C CZ.4'%C
p’i lp‘xl l‘ iy‘xl
A -4 XC C,-AXC

where the horizontals are the monomorphisms of the products [cf. Lemma 3. 1.3
of [4]]; i.e. 0|07 and 0|03 are morphisms in ¢'?. Hence o, f|o] f* determines a

A|A” such that
iglA’g" = o, florf".
Similarly there exists p|¢”: C|C —D|D’ such that

oglo’'s’ = o, flosf".

Now since ¢":C—~D" and 2':A—D’" are central, (D’ being abelian) they determine
a unique
i og,
such that
01(’0Q) =15 03(F o) = ¢

Also g=g u* is central. [Corollary 3, Proposition 3. 1. 2 of [4]]. Thus 4 and ¢ com-
mute and infact Aog = (AX1)(10¢) [cf. Proposition 3.1.12 of [4]]. and so
A0l 00 :AXC|A’XC -~ D|D’ is a morphism in %®, since

0= (WXx1)(hog) = (A o)y

as follows from the uniqueness of 0, determined by the components a3 0, ¢ 0.

Similarly (Aco)g =1, (o0’ )g =f".
Hence A X C|A"XC is €® -projective.

Proposition 3. 5. If (B, u) is a normal subobject of A, and p*=(u, 1,) is the
commutator ideal of the morphisms p and 1 4, then p* =ou. If u* and o admit cokernels
(e, F) and (¢, D), then there exists a monomorphism f: D —~ F such that F|D is a pair.
if A is €-projective, then F|D is €® -projective.

Proor. First part is essentially proposition 4. 1. 5 of [4]. For the second part,
since oue=pu*e=w, we have ue=gpf. We shall now check that § is a central mono-
morphism. Let f admit image f=04x and let (L, 2) be the kernel of gd, then

c=04 for some 0.

Also Ape=w implies Au=@u*. Thus Au=Pu*=®0iu which implies P0=1. i.e.
0 is a retraction hence a normal epimorphism and therefore invertible.

Thus (C, o) serves as the kernel of gd i.e. g6 and ¢ both serve as cokernels.
of ¢. Hence 4§ is in an equivalence, showing that f is a monomorphism.
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Now since [u, 1,]=¢ is a commutator quotient, ue and ¢ commute i.e. ¢f and
& commute. .

So B and 1z commute by Proposition 3. 1. 4 of [4] i.e. B is central.

Next let g|g’:M|M’—~LI|L" and

flf:FID~LIL’

be an epimorphism and a morphism respectively in ¥?). Now since 4 is €-projective,
there exists 5, such that
ng = ¢f.

Then as in the proof of Proposition 3. 1, this » determines a n": B~ M’ such that
n’ ji=un where ji: M” -~ M is the natural monomorphism.
Since n'ji is central, it commutes with n and since [u, 1)=& we must have
n=¢€ for some &.
Again
ng=efg=¢f which implies Zg=f.

Again as before this £ determines a &', such that
BE=¢n.
Thus ¢|¢: F|D - M|M’ such that
(€18 (glg) = 111"

Next we assume our category % has the further additional axiom;*) Cg. C has
preserving pull backs and push outs. By this we mean in the pull back diagram

Py,
nl e
Al ‘;;"'A

if o; is a normal epimorphism so is f, and dual considerations holds for mono-
morphisms in the push outs.

Proposition 3. 6. If € has enough projectives so has €?.

PRrOOF. Suppose ¥ has enough projectives, and consider the pair 4|4". Then
there exists a projective object B, with a normal epimorphism h:B—~A. Let P be
the inverse image of 4" i.e. consider the pull back diagram

PLy
Bl s
B -4
in which /" is a normal epimorphism; then (P, i) is a subobject of B. We notice

*) For our purpose, we are using much weaker form of this axiom namely

(i) Existence of normal inverse images in Proposition 3.6 and

(i) If the monomorphisms u, 4@ admit cokernels & and ¢’, then if @ is a monomorphism, so is
the induced morphism 6’, for which fe=¢6’ in the proof of Theorem 4.1.
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that ji is in fact a normal monomorphism. For if (K, ) is the kernel of A, then there
exists a unique 0:K -~ P, such that Oji= =p and 0h’=w, showing (KX, p)ﬂ(P i); also
h is a normal epimorphism and jh=hé is central as such has normal 1m.age Thus
by axiom Cjs(ii) & is normal Now if u*=(f, 15). Then u*=Aj. Thus if 4, x* admits
cokernels (2, D) and (g%, F) then there exists a f: D — F, such that F|(D, p) is a projec-
tive pair in ¥® and jie*=af for a:P—D (Proposition 3. 5).

Now since u*h=(j, 1,)h

=A(jth, h) [cf. Proposition 4. 1.4 of [4]]
=@, since jih is central.

Thus there exists a normal epimorphism g, such that ¢*g9=h. This ¢ induces
a normal epimorphism @":D—A" such that xp’=h". Now wg’d=h"d=jh=uafp
implies ¢"d=Ffo. We need only to check that, kernel ¢=f; to see this we use

Lemma 3. 7. If v, v’ are normal epimorphisms having kernel u, u’ respectively
such that p’= u, then there exists normal epimorphisms o such that v'«’=v and kernel
of o is the image (L, fi) in the canonical decomposition uv'=vj.

Now let ue* admit image 941, then fi=kernel g. Thus if % is the cokernel of
B, then

Vix = pe*x = o

S0 fix=w i.e. A=f (since B being central is the kernel of x).

The central sequence (B) splits if there exists a morphism hlh':4|A" —~B|B’
such that (g|g’)(hlh")=1,4]1,.. It is easily seen that the central sequence (B) splits
if and only if the underlying central sequence of objects splits. From the definition
and Propositions 3.6 and 2.1, we have

Proposition 3.8. A|A" is €® -projective if and only if
(i) every central sequence (B) splits
or
(ii) some central sequences (B) — with B|B’ €® -projective splits.

If # is a variety in €, with associated variety functor ¥ and quotient functor U [5],
then for any pair 4|4” in ¥, we get a diagram

0—V(A) “& ,;1 AU(?!)-«»O

A’ —v,“ M

in which the top row is exact, and pe, admits image v'u’. We declare

UsUl) = G

We denote by #(, the full subcategory of €(* whose objects are pairs B|B’ with
Be#; then we have

Proposition 3.9. If A|A" is €'¥ -projective, U,(A|A") is B® -projective.
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PRrROOF. U, defined above is a functor from C® —~#(? which is in fact a left
adjoint to the inclusion functor: #? —%. Hence the assertion follows, since
the inclusion functor preserves epimorphisms. In fact U, preserves projectiveness
defined with respect to usual epimorphisms even, (i.e. not distinguished ones only).

§ 4. Connecting homomorphisms
Let
A *~A*-A" =0
TR T
0+ B o+B_ B (H)

be a commutative diagram with exact rows. The using similar techniques as in
Buchsbaum [[2], Theorem 5. 8], [save for the dual construction we use preserving
push out form, see foot note on page 111], we salvage the non-abelian form of his
theorem 5. 8 in [2].

Theorem 4. 1. The diagram (H) gives rise to a sequence of homomorphisms
Ker f’ —Ker f—Ker f” -2~ Coker f” - Coker f —~Coker f”.

The composition of any two consecutive mappings in this sequence is null. If «
is @ monomorphism, then Ker f' —Ker f is a monomorphism. If f is a normal epi-
morphism, then Coker f—Coker f” is such a epimorphism. The sequence Ker f" —~
—Ker f—+Kerf” is exact.

It is not difficult to see, how one can translate the familiar facts of €(® -resolu-
tions and %(® -representations and studied by Frohlich in § 5 of [1].

By taking projective resolutions of pairs and using Heller’s results [7], one can
develop the later part of the theory as mentioned in the introduction and will be
left for the future.
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