Some remarks on non-abelian homological algebra

By SYED A. HUQ (Canberra)*)

§ 1. Introduction

The aim of these notes is to indicate how one can translate the non-abelian homological algebra of groups over near rings in abstract terms as proposed by FRÖCHLICH at the end of the introduction of his paper [1]. This is of similar nature as done by BUCHSBAUM [2] in translating homological algebra of modules in terms of an exact category; later on this study was continued by Heller [7]. For our purpose, we shall choose the same category & as in [4] and continue our study in &. To recall, briefly, & is a category equipped with the following axioms:

C1: & has a null object.

 C_2 : Every morphism α in \mathcal{C} , admits a factorisation as in the diagram.

i.e. $\alpha = v\mu$, where v is a normal epimorphism and μ is a monomorphism

 C_3 : C has product and coproduct for any arbitrary family of objects. C_4 : The subobjects and normal factor objects of any object form a set.

C₅: If α is a monomorphism and β is a normal epimorphism such that $\alpha\beta$ admits image $v'\mu'$, then

(i) α normal implies μ' is normal

(ii) If (K, μ) denotes the kernel of β , then $(K, \mu) \leq (A, \alpha)$ and μ' normal will together imply that α is normal.

Under these axioms, the theory of commutators is available [4]. We shall be frequently using the results and notations of [4] in the sequel. The theory of derived functors and satellites seems plausible and will be left for subsequent study. Various other

^{*)} Contents of this paper form a portion of the author's doctoral thesis at London University in 1965. The author understands that some of these results have also been obtained by P. Lecouturier in a Hofmannian category; [6].

authors [see Suliński [8], Wiegandt and Szász [9]] have also sudied similar categories for different purposes.

Since our axioms guarantee the existence of kernels, cokernels and normal images, the concept of exact sequences is available as usual [cf. § 8. of 10]. In particular we shall say a short exact sequence

$$0 \to C \xrightarrow{\alpha} B \xrightarrow{\beta} A \to 0 \quad (A)$$

is central, when α is a central monomorphism.

§ 2. Object pairs; distinguished monomorphisms, epimorphisms and equivalences

By a pair $A|(A', \mu')$ we shall mean an object A with a central monomorphism $\mu': A' \to A$; when no confusion arises, we shall indicate a pair by A|A'. One observes that A' belongs to the abelian subcategory \mathcal{A} of \mathscr{C} .

By a morphism $f|f':A|A' \rightarrow C|C'$ of the pairs we mean a pair of morphisms $f: A \rightarrow C, f': A' \rightarrow C'$ making the diagram

$$A' \xrightarrow{F} C'$$

$$A \xrightarrow{F} C$$

commutative, the verticals being the usual monomorphisms of the pairs. With the usual composition law, the pairs form a category, which we denote in the sequel by 8(2).

Now any morphism $f: A \to C$ gives rise to a morphism of pairs $f|f': A|A' \to C|C'$ if and only if the image of $\mu' f$ factors through C', where $\mu' : A' \to A$ is again the natural monomorphism of the pair A|A'.

Thus if $A' \sim 0$, we have a morphism of pairs $A|0 \rightarrow C|C'$ in $\mathcal{C}^{(2)}$, for any mor-

phism $f: A \to C$ in \mathscr{C} and this we denote by $f|_{\omega_{0C'}}$.

We denote the morphism $f|\omega:A|0\rightarrow B|0$ induced by f in $\mathscr C$ by f again. The identity $1_A: A \rightarrow A$ induces a morphism

$$\lambda_{A|A'}:A|0\rightarrow A|A'$$

in $\mathscr{C}^{(2)}$, such that the following diagram

commutes.

A morphism pair $f|f':A|A'\to B|B'$ is a distinguished monomorphism in $\mathscr{C}^{(2)}$ if f and hence f' is a monomorphism in \mathscr{C} . A morphism pair $g(g':A|A'\to B|B')$ is called a distinguished epimorphism in $C^{(2)}$, if g and g' are normal epimorphsms and if $(K, \bar{\mu})$ is the kernel of g, then $\bar{\mu}$ admits a factorisation $\bar{\mu} = \lambda \mu'$ for the pair (A', μ') From now on we shall denote by monomorphisms and epimorphisms, in $\mathcal{C}^{(2)}$ only to mean in the distinguished sense. The monomorphisms, epimorphisms in the distinguished sense are indeed monomorphisms, epimorphisms respectively in the usual sense.

We notice that f|f' is invertible if and only if it is a monomorphism and an epimorphism.

A central sequence of pairs in $\mathscr{C}^{(2)}$ is a sequence

$$0|0 \rightarrow C|C \xrightarrow{f|f'} B|B' \xrightarrow{g|g'} A|A' \rightarrow 0|0$$
 (B)

whose component sequences of objects in $\mathscr C$ are central. Thus (B) can be written in a commutative diagram

$$0 \rightarrow C \xrightarrow{f'} B' \xrightarrow{g'} A' \rightarrow 0$$

$$\parallel \qquad \downarrow \qquad \downarrow$$

$$0 \rightarrow C \xrightarrow{f} B \xrightarrow{g} A \rightarrow 0$$

with central row in C. The bottom row is the underlying central sequence of objects. Now every central sequence of objects in C,

$$0 \rightarrow C \xrightarrow{f} B \xrightarrow{g} A \rightarrow 0$$
 (C)

can be embeded in a diagram of the form (B) and thus defines a central sequence

$$0|0 \rightarrow C|C \xrightarrow{f|1} B|C \xrightarrow{g|\omega_{C0}} A|0 \rightarrow 0|0.$$

It is clear that (B) is central in $\mathscr{C}^{(2)}$ if and only if f|f' is a monomorphism, g|g' an epimorphism and

$$(C, f) = \text{kernel } g$$
.

Proposition 2.1. Every epimorphism $g|g':B|B' \to A|A'$ in $\mathscr{C}^{(2)}$ can be extended to a central sequence.

PROOF. If $(K, \bar{\mu})$ denotes the kernel of g, then $\bar{\mu} = \lambda \mu'$ where $\mu' : B' \to B$ is the natural monomorphism of the pair.

Hence

$$0 \to K \xrightarrow{\lambda} B' \xrightarrow{g'} A' \to 0$$

$$\parallel \qquad \downarrow^{\mu'} \downarrow$$

$$0 \to K \xrightarrow{\overline{\mu}} B \xrightarrow{g} A \to 0$$

is a central sequence. Also $\bar{\mu}$ and λ are central [cf. corollary of Proposition 3. 1. 10 of [4]].

Lemma 2.2. If the natural monomorphisms $\mu': B' \to B$ and $\mu'': C' \to C$ admit cokernels (s, E) and (t, F), and $g|g': B|B' \to C|C'$ is an epimorphism, then $E \sim F$. PROOF. We consider the diagram

in which

$$(K, \mu)$$
 = kernel of g.

Now $\mu' g t = g' \mu'' t = \omega$ implies $g t = s\theta$, for some θ .

Since by definition $\mu = \lambda \mu'$, we have s = gh for some h. Now $g' \mu'' h = \mu' gh = \omega$ which implies $\mu'' h = \omega$, i.e. $h = t\theta'$.

Now $s\theta\theta'=s$ which implies $\theta\theta'=1$ i.e. θ is a monomorphism. Since it is already a normal epimorphism, it is indeed an equivalence.

§ 3. Results concerning projectives:

A pair A|A' is said to be $\mathcal{C}^{(2)}$ -projective if every diagram

$$B \mid B' = C \mid C'$$

of pairs whose row is an epimorphism in $\mathscr{C}^{(2)}$ can be completed to a commutative diagram

$$B|B' \xrightarrow{\theta|\theta'} C|C'$$

Proposition 3.1. If A is \mathscr{C} -projective, then A|A' is $\mathscr{C}^{(2)}$ -projective.

PROOF. Consider the diagram (D) in $\mathscr{C}^{(2)}$ with $\theta|\theta'$ an epimorphism. Since A is \mathscr{C} -projective, there exists $\varrho: A \to B$ such that $\varrho\theta = \alpha$. Hence $\mu' \varrho\theta = \mu' \alpha = \alpha' \mu''$, where the morphisms involved can be seen in the diagram

Now if μ and μ'' admit cokernels (s, E) and (t, F), then by lemma 2. 2 there exists an equivalence $g: E \sim F$, such that

$$sg = \theta t$$
.

Now $\mu' \varrho \theta t = \mu' \alpha t = \alpha' \mu'' t = \omega$ which implies $\mu' \varrho s g = \omega$. i.e. $\mu' \varrho s = \omega$. Since $\mu = \text{kernel } s$, $\mu' \varrho = \varrho' \mu$ and for this ϱ' , $\varrho' \theta' \mu'' = \alpha' \mu''$ i.e. $\varrho' \theta' = \alpha'$. Hence $\varrho | \varrho' : A | A' \to B | B'$ is the required morphism, such that

$$(\varrho|\varrho')(\theta|\theta') = \alpha|\alpha'.$$

Proposition 3.2. A|(A, 1) is $\mathcal{C}^{(2)}$ -projective if and only if A is A-projective.

Proposition 3.3. If $\mathscr{C} = \mathscr{A}$, the category of abelian objects, then A|A' is $\mathscr{A}^{(2)}$ -projective, if and only if A is \mathscr{A} -projective.

PROOF. By proposition 3. 1, if A is \mathscr{A} -projective, then A|A' is $\mathscr{A}^{(2)}$ -projective. Conversely, if A|A' is $\mathscr{A}^{(2)}$ -projective, then for any diagram

$$A \downarrow \alpha$$

$$B \to C \to 0$$

with row an epimorphism, we have an induced diagram

$$A|A'$$

$$\downarrow_{\alpha|\mu'\alpha}$$

$$B|B_{\overline{\theta}|\theta} C|C \longrightarrow 0|0$$

in $\mathcal{A}^{(2)}$ for the pair $A|(A', \mu')$. Thus the assertion follows from the fact that A|A' is $\mathcal{A}^{(2)}$ -projective.

Proposition 3.4. If A|A' and C|C are $\mathscr{C}^{(2)}$ -projective, then so is $A\times C|A'\times C$.

PROOF. For the pair $A|(A', \mu')$, $\mu' \times 1: A' \times C \to A \times C$ is central, [cf. Proposition 3. 1. 9 of [4]]. Thus we have the pair $A \times C | (A' \times C, \mu' \times 1)$.

Next let $g[g':D|D'\to E|E']$ be an epimorphism in $\mathscr{C}^{(2)}$ and $f[f':A\times C|A'\times C\to E]$

 $\rightarrow E|E'$ a morphism. Then we have commutative diagrams

$$\begin{array}{ccc}
A' \xrightarrow{\sigma_1'} A' \times C & C \xrightarrow{\sigma_2'} A' \times C \\
\mu' \downarrow & \downarrow \mu' \times 1 & 1 \downarrow & \downarrow \mu' \times 1 \\
A \xrightarrow{\sigma_1} A \times C & C \xrightarrow{\sigma_2} A \times C
\end{array}$$

where the horizontals are the monomorphisms of the products [cf. Lemma 3. 1. 3 of [4]]; i.e. $\sigma_1|\sigma_1'$ and $\sigma_2|\sigma_2'$ are morphisms in $\mathscr{C}^{(2)}$. Hence $\sigma_1 f|\sigma_1' f'$ determines a $\lambda|\lambda'$ such that

$$\lambda g | \lambda' g' = \sigma_1 f | \sigma_1' f'.$$

Similarly there exists $\varrho|\varrho':C|C\rightarrow D|D'$ such that

$$\sigma g | \sigma' g' = \sigma_2 f | \sigma'_2 f'$$
.

Now since $\varrho': C \to D'$ and $\lambda': A \to D'$ are central, (D' being abelian) they determine a unique

such that

$$\sigma_1'(\lambda' \circ \varrho') = \lambda'; \quad \sigma_2'(\lambda' \circ \varrho') = \varrho'.$$

Also $\varrho = \varrho' \mu^*$ is central. [Corollary 3, Proposition 3. 1. 2 of [4]]. Thus λ and ϱ commute and infact $\lambda \circ \varrho = (\lambda \times 1)(1 \circ \varrho)$ [cf. Proposition 3. 1. 12 of [4]]. and so $\lambda \circ \varrho | \lambda' \circ \varrho' : A \times C | A' \times C \rightarrow D | D'$ is a morphism in $\mathscr{C}^{(2)}$, since

$$\theta = (\mu' \times 1)(\lambda \circ \varrho) = (\lambda' \circ \varrho')\mu^*$$

as follows from the uniqueness of θ , determined by the components $\sigma'_1\theta$, $\sigma'_2\theta$.

Similarly $(\lambda \circ \varrho)g = f$, $(\lambda' \circ \varrho')g' = f'$. Hence $A \times C | A' \times C$ is $\mathscr{C}^{(2)}$ -projective.

Proposition 3.5. If (B, μ) is a normal subobject of A, and $\mu^* = (\mu, 1_A)$ is the commutator ideal of the morphisms μ and 1_A , then $\mu^* = \sigma \mu$. If μ^* and σ admit cokernels (ε, F) and (ϱ, D) , then there exists a monomorphism $\beta: D \to F$ such that F|D is a pair. if A is \mathscr{C} -projective, then F|D is $\mathscr{C}^{(2)}$ -projective.

PROOF. First part is essentially proposition 4. 1. 5 of [4]. For the second part, since $\sigma\mu\varepsilon=\mu^*\varepsilon=\omega$, we have $\mu\varepsilon=\varrho\beta$. We shall now check that β is a central monomorphism. Let β admit image $\beta=\delta\varkappa$ and let (L,λ) be the kernel of $\varrho\delta$, then

$$\sigma = \theta \lambda$$
 for some θ .

Also $\lambda\mu\epsilon=\omega$ implies $\lambda\mu=\Phi\mu^*$. Thus $\lambda\mu=\Phi\mu^*=\Phi\theta\lambda\mu$ which implies $\Phi\theta=1$. i.e. θ is a retraction hence a normal epimorphism and therefore invertible.

Thus (C, σ) serves as the kernel of $\varrho \delta$ i.e. $\varrho \delta$ and ϱ both serve as cokernels of σ . Hence δ is in an equivalence, showing that β is a monomorphism.

Now since $[\mu, 1_A] = \varepsilon$ is a commutator quotient, $\mu \varepsilon$ and ε commute i.e. $\varrho \beta$ and ε commute.

So β and 1_F commute by Proposition 3. 1. 4 of [4] i.e. β is central.

Next let $g|g':M|M' \rightarrow L|L'$ and

$$f|f':F|D \rightarrow L|L'$$

be an epimorphism and a morphism respectively in $\mathscr{C}^{(2)}$. Now since A is \mathscr{C} -projective, there exists η , such that

$$\eta g = \varepsilon f$$
.

Then as in the proof of Proposition 3.1, this η determines a $\eta': B \to M'$ such that $\eta' \bar{\mu} = \mu \eta$ where $\bar{\mu}: M' \to M$ is the natural monomorphism.

Since $\eta' \bar{\mu}$ is central, it commutes with η and since $[\mu, 1_A] = \varepsilon$ we must have $\eta = \varepsilon \xi$ for some ξ .

Again

$$\eta g = \varepsilon \xi g = \varepsilon f$$
 which implies $\xi g = f$.

Again as before this ξ determines a ξ' , such that

$$\beta \xi = \xi' \bar{\mu}$$
.

Thus $\xi | \xi' : F | D \rightarrow M | M'$ such that

$$(\xi|\xi')(g|g') = f|f'.$$

Next we assume our category \mathscr{C} has the further additional axiom;*) C_6 . C has preserving pull backs and push outs. By this we mean in the pull back diagram

$$\begin{array}{c|c}
P & \xrightarrow{\beta_2} A_2 \\
\beta_1 \downarrow & \downarrow \alpha_2 \\
A_1 \xrightarrow{\alpha_1} A
\end{array}$$

if α_1 is a normal epimorphism so is β_2 and dual considerations holds for monomorphisms in the push outs.

Proposition 3. 6. If \mathscr{C} has enough projectives so has $\mathscr{C}^{(2)}$.

PROOF. Suppose \mathscr{C} has enough projectives, and consider the pair A|A'. Then there exists a projective object \overline{B} , with a normal epimorphism $\overline{h}: \overline{B} \to A$. Let P be the inverse image of A' i.e. consider the pull back diagram

$$P \xrightarrow{h'} A'$$

$$\overline{B} \xrightarrow{\overline{h}} A$$

in which h' is a normal epimorphism; then $(P, \bar{\mu})$ is a subobject of \bar{B} . We notice

^{*)} For our purpose, we are using much weaker form of this axiom namely

⁽i) Existence of normal inverse images in Proposition 3.6 and (ii) If the monomorphisms μ , $\mu\theta$ admit cokernels ε and ε' , then if θ is a monomorphism, so is the induced morphism θ' , for which $\theta\varepsilon = \varepsilon\theta'$ in the proof of Theorem 4.1.

that $\bar{\mu}$ is in fact a normal monomorphism. For if (K, μ) is the kernel of \bar{h} , then there exists a unique $\theta: K \to P$, such that $\theta \bar{\mu} = \mu$ and $\theta h' = \omega$, showing $(K, \mu) \leq (P, \bar{\mu})$; also \bar{h} is a normal epimorphism and $\bar{\mu}\bar{h} = h'\delta$ is central as such has normal image. Thus by axiom $C_5(ii)$ $\bar{\mu}$ is normal Now if $\mu^* = (\bar{\mu}, 1_{\bar{B}})$. Then $\mu^* = \lambda \bar{\mu}$. Thus if λ , μ^* admits cokernels (α, D) and (ε^*, F) then there exists a $\beta: D \to F$, such that $F|(D, \beta)$ is a projective pair in $\mathscr{C}^{(2)}$ and $\bar{\mu}\varepsilon^* = \alpha\beta$ for $\alpha: P \to D$ (Proposition 3. 5).

Now since $\mu^* \bar{h} = (\bar{\mu}, 1_{\bar{a}}) \bar{h}$

$$=\lambda(\bar{\mu}\bar{h},\bar{h})$$
 [cf. Proposition 4.1.4 of [4]]

 $=\omega$, since $\bar{\mu}\bar{h}$ is central.

Thus there exists a normal epimorphism ϱ , such that $\varepsilon^* \varrho = \bar{h}$. This ϱ induces a normal epimorphism $\varrho': D \to A'$ such that $\alpha \varrho' = h'$. Now $\alpha \varrho' \delta = h' \delta = \bar{\mu} \bar{h} = \alpha \beta \varrho$ implies $\varrho' \delta = \beta \varrho$. We need only to check that, kernel $\varrho \leq \beta$; to see this we use

Lemma 3.7. If v, v' are normal epimorphisms having kernel μ , μ' respectively such that $\mu' \leq \mu$, then there exists normal epimorphisms α' such that $v'\alpha' = v$ and kernel of α' is the image $(L, \bar{\mu})$ in the canonical decomposition $\mu v' = \bar{\nu}\bar{\mu}$.

Now let $\mu \varepsilon^*$ admit image $\hat{\nu}\hat{\mu}$, then $\hat{\mu}$ =kernel ϱ . Thus if \varkappa is the cokernel of β , then

$$\hat{v}\hat{\mu} = \mu \epsilon^* \varkappa = \omega$$

so $\hat{\mu} \times = \omega$ i.e. $\hat{\mu} \leq \beta$ (since β being central is the kernel of κ).

The central sequence (B) splits if there exists a morphism $h|h':A|A' \rightarrow B|B'$ such that $(g|g')(h|h')=1_A|1_{A'}$. It is easily seen that the central sequence (B) splits if and only if the underlying central sequence of objects splits. From the definition and Propositions 3. 6 and 2. 1, we have

Proposition 3. 8. A|A' is $\mathcal{C}^{(2)}$ -projective if and only if (i) every central sequence (B) splits

or

(ii) some central sequences (B) — with $B|B' \mathcal{C}^{(2)}$ -projective splits.

If \mathcal{B} is a variety in \mathcal{C} , with associated variety functor V and quotient functor U [5], then for any pair A|A' in \mathcal{C} , we get a diagram

$$0 \to V(A) \xrightarrow{\mu_A} A \xrightarrow{\varepsilon_A} U(A) \to 0$$

$$\downarrow^{\mu \uparrow} \qquad \uparrow^{\mu'}$$

$$A' \longrightarrow M$$

in which the top row is exact, and $\mu \varepsilon_A$ admits image $v' \mu'$. We declare

$$U_2(A|A') = \frac{U(A)}{(M,\mu')}.$$

We denote by $\mathcal{B}^{(2)}$, the full subcategory of $\mathcal{C}^{(2)}$ whose objects are pairs B|B' with $B \in \mathcal{B}$; then we have

Proposition 3.9. If A|A' is $\mathcal{C}^{(2)}$ -projective, $U_2(A|A')$ is $\mathcal{B}^{(2)}$ -projective.

PROOF. U_2 defined above is a functor from $C^{(2)} \to \mathcal{B}^{(2)}$ which is in fact a left adjoint to the inclusion functor: $\mathcal{B}^{(2)} \to \mathcal{C}^{(2)}$. Hence the assertion follows, since the inclusion functor preserves epimorphisms. In fact U_2 preserves projectiveness defined with respect to usual epimorphisms even, (i.e. not distinguished ones only).

§ 4. Connecting homomorphisms

Let

$$A' \xrightarrow{\alpha'} A \xrightarrow{\alpha} A'' \to 0$$

$$\downarrow f' \qquad \downarrow f \qquad \downarrow f''$$

$$0 \to B' \xrightarrow{\beta'} B \xrightarrow{\beta} B'' \qquad (H)$$

be a commutative diagram with exact rows. The using similar techniques as in Buchsbaum [[2], Theorem 5.8], [save for the dual construction we use preserving push out form, see foot note on page 111], we salvage the non-abelian form of his theorem 5. 8 in [2].

Theorem 4.1. The diagram (H) gives rise to a sequence of homomorphisms

$$\operatorname{Ker} f' \to \operatorname{Ker} f \to \operatorname{Ker} f'' \xrightarrow{\delta} \operatorname{Coker} f' \to \operatorname{Coker} f \to \operatorname{Coker} f''.$$

The composition of any two consecutive mappings in this sequence is null. If α' is a monomorphism, then $\operatorname{Ker} f' \to \operatorname{Ker} f$ is a monomorphism. If β is a normal epimorphism, then Coker f op Coker f'' is such a epimorphism. The sequence $\operatorname{Ker} f' op$ → Ker f → Ker f" is exact.

It is not difficult to see, how one can translate the familiar facts of $\mathscr{C}^{(2)}$ -resolutions and $\mathcal{C}^{(2)}$ -representations and studied by Fröhlich in § 5 of [1].

By taking projective resolutions of pairs and using Heller's results [7], one can develop the later part of the theory as mentioned in the introduction and will be left for the future.

Bybliography

- [1] A. FRÖHLICH, Non abelian homological algebra I, Derived functiors and satellites, Proc. London Math. Soc. 11, (1961), 239-275.
- [2] D. A. BUCHSBAUM, Exact categories and Duality, Trans. Amer. Math. Soc., 80, (1955), 1-34.
- [3] H. CARTAN and S. EILENBERG, Homological Algebra, Princeton (1955).
- [4] S. A. Huq Commutator, Nilpotency and Solvability in categories, Quart, J. Math. Oxford Ser. (2), 19, (1968), 363—389.
- [5] S. A. Huq Semivarieties and subfunctors of the identity functior, Pacific J. Math. 29, (1969), 303-309.
- [6] F. HOFMANN, Über eine die Kategorie der Gruppen Umfassende Kategorie, Sitsungsber. Bayer Akad. Wiss, Math. Natur. Kl. S. B., (1960), 163-204.
- [7] A. Heller, Homological algebra in abelian categories, Ann. of Math., 68, (1958), 484—525.
 [8] A. Suliński, The Brown-McCoy radicals in categories, Fund. Math., 59, (1966), 23—41.
- [9] F. Szász and R. Wiegandt, On the dualization of sub direct embeddings, Acta. Math. Acad. Sci. Hungar., 20, (1969), 289-302.
- [10] A. G. KUROSH, A. KH. LIVSHITS and E. G. SCHULGEIFER, Foundations of theory of categories. Russian Math. Surveys, 15, (1960), 1-46.

(Received August 3, 1970.)