Syntopogenous structures and complete regularity
By D. V. THAMPURAN (Stony Brook, N.Y.)

An extensive theory of syntopogenous structures has been developed by CsAszAR
[1]. The purpose of this paper is to study the relationship between syntopogenous
structures and complete regularity.

A syntopogenous structure gives rise to two topologies in general and so it
is natural to associate a bitopological space with a syntopogenous structure. A syn-
topogenous structure characterizes a particular type of bitopological space: a bi-
topological space is completely regular iff it is syntopogenizable. This is similar
to the result that a symmetric syntopogenous structure characterizes a particular
type of topological space — the completely regular one.

The bitopological space of a perfect syntopogenous structure has some special
properties.

Let E denote a set. The empty subset of E will be denoted by 0 and for a subset
A of E we will write ¢A for the complement of A. If 4 contains only one element x
we will write cx for cA.

Definition 1. Let #, J” be two topologies for E. Then the ordered triple
(E, #,5") is said to be a bitopological space; J and S’ are called the left and right
topologies of this space.

Let = be a topogenous structure on E as defined on page 59 of CsAszAr (1).
Denote by # the family of all subsets T of E such that x€ T implies ¢T<cx; it is
then obvious that .# is a topology for E. Take J’ to be the family of all subsets
T of E such that x€ T implies x<T; then #’ is also a topology for E.

Definition 2. We will call (E, <, 7, ") the bitopological space, J the left
topology and . the right topology of <.

But when the context makes the meaning clear we will also denote this space
by (M, <) or M.

Denote by k, k" the Kuratowski closure functions respectively for &, #’. Express
composition of functions by juxtaposition: thus ck will denote c(kA) for all sub-
sets A of E. Take i=cke, i’=ck’c; then i and i’ are the interior functions for k and
k’. We will also write (E, k, k") for the bitopological space (£, .#,.#’). When A
contains only a single point x we will write kx for k4 and k" x for k’A.

Theorem 1. Let A be a subset of E. Then
id={x:cA<cx} and i"A={x:x<A}.
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PrOOF. Let B={x:cA<cx}. Then iAc Bc A and so iA=B if iB=B. Let x¢B.
Then c¢A <ex and so there is C < E such that c4 <C<cx. Now y€¢C implies Cccy
and so ¢4 <cy; hence y € B which implies ¢C < B. Therefore ¢cB < C whence cB<cx
and so iB=B. The other part of the theorem can be proved similarly.

Corollary. kA= {xA<cx} and k’A= {x:x & cA}.
Theorem 2. A<Biff kA<i'B.

PrROOF. Let 4<B. Then kA B since x€kA implies x< B for x¢€cB implies
B cx and so A=cx which is a contradiction. Also x€ A4 implies x<=B8 and so x€i’ B
from which it follows 4 <i’B.

Now A <B implies there is CC E such that A <C<B. Hence kA—C<B and
s0 kA<B. Also A<Cci’B and so A<i'B. Thus A<B implies k4 <B which in
turn implies k4 <i’B.

The converse is obvious.

- Each topogeneous structure < gives rise to a topogenous structure <’ defined
by A<'Biff cB<cA. It is easy to see that the left and right topologies of <’ coincide
respectively with the right and left topologies of <. Hence <’ generates no new
topologies.

Definition 3. Let (E, #,5"), (N, /; /") be two bitopological spaces and f
a function from E to N. Then fis said to be continuous iff is .# — A4 continuous and
J =N continuous.

Definition 4. Let (E, #,.#’) be a bitopological space and F a subset of E.
Denote by 47, A7 the relativizations respectively of #, #“ to N. Then (N, A", A7)
is said to be a subspace of (E,.#,.f").

Let R be the set of all real numbers. Define a quasimetric m for R as follows:
for all real x, y,

y—x, x='y

m'(x,y) = {0’ e
where <’ denotes the usual order for the reals. For subsets 4, B of R write M (A, B)=
=inf {m’(x, y):x€ 4, y€ B}. Define <* for R by A<*B iff M(A4, ¢cB)>0. Then <*
is a topogenous structure on R.

Definition 5. We will call <* the usual topogenous structure on R and
the bitopological space of <* the usual bitopological space for R. If 4 is a sub-
set of R then the subspace for A is said to be the usual bitopological space for A.
Denote by (R, r.r”) the usual bitopological space for R. Let I denote the closed
unit interval [0, 1] of the reals. We will also denote by 7 the usual bitopological
space for 1.

Definition 6. A bitopological space (E,.#,.5") is said to be completely
regular iff

(i) 4 is F-closed and y in ¢4 imply there is a continuous function f from E
to 7 such that f4=0 and f(y)=1 and

(ii) B is .#’-closed and x<c¢B imply there is a continuous function g from E
to 7 such that g(x)=0 and gB=1.
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For x, y in R let xR={y:x<"y} and Rx={y:y<"x} where <’is the usual
order relation for the reals. Then the set of all xR for x in R is a base for the left
topology of R and the set of all Rx for x in R is a base for the right topology of R.

<’ will denote the usual order relation for the reals in Lemmas 1, 2 and Theo-
rem 3. Lemma 1. is well known.

Lemma 1. For each t in a dense subset D of the positive reals let S(t) be a subset
of E such that

i) S@)cSw) if t<="u and
(i) U{S(r):r¢D}=E.

For x in E take f(x)=inf {t:x€ S(t)}. Then

{x:f(x)<"uy=U{S(@):t€D and r<'u}
and

{x:f(x)="u}=N{S():tc¢D and u<"t}
for every real u.

Lemma 2. Let (E, k, k") be a bitopological space. For each t in a dense subset
D of the positive reals let S(t) be a subset of E such that

(1) 'S(@)=S(1)
(i) kS(r)c S(u) if t="u and
Gii)) U{S(r):t¢D}=E.

Then the function f from E to R defined by f(x)=inf {t:x¢€ S(1)} is continuous.

PRrOOF. For a real u the set f~! Ru={x: f(x)<'u} is the union of i’-open sets
and so is i-open. Hence f'is kK" —r’ continuous.

Next, for a real u, the set /~!'uR={x:u<"f(x)} and so ¢f "' uR={x: f(x)="u} =
=N {S@t):t€D,u<"t}=A, say. Now A< N{kS(t):t€D, u<'t}. Also

N{kS(t):teD,u<"t}yc A

since 1€ D, u<"r imply there is v in D such that u<"v<"t and so kS(v) = S(¢). Hence
A is the intersection of k-closed sets and so is k-closed. Therefore icA=cA and this
implies f'is k—r continuous.

Theorem 3. Let (E, <, k, k") be a bitopological space and let A< B. There is
then a continuous function f from E to I such that fA=0 and feB=1.

PROOF. Let D be the set of all numbers of the form p2-4 where p and g are
positive integers. Take S(7)=E for ¢t in D and 1<"t, take S(1)=2B and take S(0)
to be an i’-open set such that A <S(0)<B. For ¢ in D and 0<"t<’'1 take ¢ in the
form ¢t = (2m+1)2~" and choose, inductively on n, S(¢) to be an i’-open set such
that S(2m2-") <= S(¢t) <= S((2m+2)2~"). Such choice is possible since < is a
topogenous structure. Take f(x)=inf {f:x€ S(7)}. Then fis continuous. Also f4=0
and feB=1.

Corollary. A= B implies there is a continuous function f from E to 7 such that
JkA=0 and fk' cB=1.
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Corollary. The bitopological space (E, <, k, k) is completely regular.

Let S be a syntopogenous structure for E. Define # to be the family of all sub-
sets 7 of E such that x in 7 implies ¢7<"cx for some <’ in S. Then .# is a topology
for E. Similarly the family ., of all subsets 7" of E such that x in T implies x<'T
for some <’ in S, is also a topology for E.

Definition 7. We will say (E, S, .#,.#") is the bitopological space of S, #
is the left topology of S and .#” is the right topology of S.

Given a syntopogenous structure S on E define a binary relation < by 4<B
iff A<'B for some <" in S. Then < is a topogenous structure on E and the left
and right topologies of <= coincide respectively with the left and right topologies
of S. Hence a syntopogenous space (E, S) is completely regular. Also 4<'B for
some =" in S implies there is a continuous function f from E to 7 such that f4=0
and feB=1.

Definition 8. A bitopological space (E, #, J ) is said to be syntopogenizable
(or topogenizable) iff there is a syntopogenous structure (or topogenous structure)
on E whose bitopological space is (E, .7, .7’).

THAMPURAN [3] has proved that a completely regular bitopological space is
quasiuniformizable. From a quasiuniformity % we can get a syntopogenous structure
S — in the same way as a symmetric syntopogenous structure can be obtained
from a uniformity — such that % and S have the same bitopological space.

It is clear that a bitopological space is topogenizable iff it is syntopogenizable.
We now have the result:

Theorem .4. A bitopological space is completely regular iff it is topogenizable.

It is obvious that a subspace of a completely regular space is completely regular.
Thampuran (2) has proved that a product of completely regular spaces is completely
regular,

Definition 9. A bitopological space (M, k, k’) is said to be regular iff

(i) A=kA and y€cA imply there are sets X=iX, X'=i"X’ such that Ac X’
and y¢X and XN X" = 0 and

(i) B=k’B and x€cB imply there are sets Y=iY Y '=i"Y’ such that xc Y’
and BcY and YNY' = 0.

A completely regular space is evidently regular; hence a syntopogenous space
is regular. It is clear that a subspace of a regular space is regular. A product of regular
spaces has been shown to be regular by Thampuran (2).

Theorem 5. Let < be a perfect topogenous strucutre on E. Then

(i) A<Biff ANk'cB # 0 and

(ii) kA = U {kx:x€ A}.

PROOF.

(i) 4 < Bimplies there is x in 4 such that x4 B and so x is in k" ¢B. Conversely,

if there is x in A such that x is in kc¢B then x < B and hence A < B.
(i) x€kA iff A< cx and this holds iff there is y in 4 such that y < cx or x€ky.
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We also have the following result for a perfect topogenous structure < on E.
If <’is also a topogenous structure on E such that both < and <’ have the same
bitopological space (E,k.k) then < is finer than <’, A < cx implies A <’cx and
X < cA implies x <’cA. But if <’ is also perfect then <= <’. These follow
easily from Theorem 5., and from Corollary to Theorem 1.
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