Syntopogenous structures and complete regularity

By D. V. THAMPURAN (Stony Brook, N.Y.)

An extensive theory of syntopogenous structures has been developed by Császár [1]. The purpose of this paper is to study the relationship between syntopogenous structures and complete regularity.

A syntopogenous structure gives rise to two topologies in general and so it is natural to associate a bitopological space with a syntopogenous structure. A syntopogenous structure characterizes a particular type of bitopological space; a bitopological space is completely regular iff it is syntopogenizable. This is similar to the result that a symmetric syntopogenous structure characterizes a particular type of topological space — the completely regular one.

The bitopological space of a perfect syntopogenous structure has some special

properties.

Let E denote a set. The empty subset of E will be denoted by \emptyset and for a subset A of E we will write cA for the complement of A. If A contains only one element x we will write cx for cA.

Definition 1. Let \mathscr{I} , \mathscr{I}' be two topologies for E. Then the ordered triple $(E, \mathscr{I}, \mathscr{I}')$ is said to be a bitopological space; \mathscr{I} and \mathscr{I}' are called the left and right topologies of this space.

Let < be a topogenous structure on E as defined on page 59 of Császár (1). Denote by $\mathscr I$ the family of all subsets T of E such that $x \in T$ implies cT < cx; it is then obvious that $\mathscr I$ is a topology for E. Take $\mathscr I'$ to be the family of all subsets T of E such that $x \in T$ implies x < T; then $\mathscr I'$ is also a topology for E.

Definition 2. We will call $(E, <, \mathcal{I}, \mathcal{I}')$ the bitopological space, \mathcal{I} the left topology and \mathcal{I}' the right topology of <.

But when the context makes the meaning clear we will also denote this space

by (M, <) or M.

Denote by k, k' the Kuratowski closure functions respectively for \mathcal{I} , \mathcal{I}' . Express composition of functions by juxtaposition; thus ck will denote c(kA) for all subsets A of E. Take i=ckc, i'=ck'c; then i and i' are the interior functions for k and k'. We will also write (E, k, k') for the bitopological space $(E, \mathcal{I}, \mathcal{I}')$. When A contains only a single point x we will write kx for kA and k'x for k'A.

Theorem 1. Let A be a subset of E. Then

$$iA = \{x : cA < cx\}$$
 and $i'A = \{x : x < A\}$.

PROOF. Let $B = \{x: cA < cx\}$. Then $iA \subset B \subset A$ and so iA = B if iB = B. Let $x \in B$. Then cA < cx and so there is $C \subset E$ such that cA < C < cx. Now $y \in cC$ implies $C \subset cy$ and so cA < cy; hence $y \in B$ which implies $cC \subset B$. Therefore $cB \subset C$ whence cB < cx and so iB = B. The other part of the theorem can be proved similarly.

Corollary. $kA = \{xA < cx\}$ and $k'A = \{x: x < cA\}$.

Theorem 2. A < B iff kA < i'B.

PROOF. Let A < B. Then $kA \subset B$ since $x \in kA$ implies $x \in B$ for $x \in cB$ implies $B \subset cx$ and so A < cx which is a contradiction. Also $x \in A$ implies x < B and so $x \in i'B$ from which it follows $A \subset i'B$.

Now A < B implies there is $C \subset E$ such that A < C < B. Hence $kA \subset C < B$ and so kA < B. Also $A < C \subset i'B$ and so A < i'B. Thus A < B implies kA < B which in turn implies kA < i'B.

The converse is obvious.

Each topogeneous structure < gives rise to a topogeneous structure <' defined by A <' B iff cB < cA. It is easy to see that the left and right topologies of <' coincide respectively with the right and left topologies of <. Hence <' generates no new topologies.

Definition 3. Let $(E, \mathcal{I}, \mathcal{I}')$, $(N, \mathcal{N}, \mathcal{N}')$ be two bitopological spaces and f a function from E to N. Then f is said to be continuous iff is $\mathcal{I} - \mathcal{N}$ continuous and $\mathcal{I}' - \mathcal{N}'$ continuous.

Definition 4. Let $(E, \mathcal{I}, \mathcal{I}')$ be a bitopological space and F a subset of E. Denote by \mathcal{N} , \mathcal{N}' the relativizations respectively of \mathcal{I} , \mathcal{I}' to N. Then $(N, \mathcal{N}, \mathcal{N}')$ is said to be a subspace of $(E, \mathcal{I}, \mathcal{I}')$.

Let R be the set of all real numbers. Define a quasimetric m for R as follows: for all real x, y,

$$m'(x, y) = \begin{cases} y - x, & x \leq y \\ 0, & y < x \end{cases}$$

where <' denotes the usual order for the reals. For subsets A, B of R write $M(A, B) = \inf \{m'(x, y): x \in A, y \in B\}$. Define $<^*$ for R by $A <^*B$ iff M(A, cB) > 0. Then $<^*$ is a topogenous structure on R.

Definition 5. We will call $<^*$ the usual topogenous structure on R and the bitopological space of $<^*$ the usual bitopological space for R. If A is a subset of R then the subspace for A is said to be the usual bitopological space for A. Denote by (R, r, r') the usual bitopological space for R. Let I denote the closed unit interval [0, 1] of the reals. We will also denote by I the usual bitopological space for I.

Definition 6. A bitopological space $(E, \mathcal{I}, \mathcal{I}')$ is said to be completely regular iff

(i) A is \mathscr{I} -closed and y in cA imply there is a continuous function f from E to I such that fA = 0 and f(y) = 1 and

(ii) B is \mathscr{I}' -closed and $x \in cB$ imply there is a continuous function g from E to I such that g(x) = 0 and gB = 1.

For x, y in R let $xR = \{y: x < 'y\}$ and $Rx = \{y: y < 'x\}$ where <' is the usual order relation for the reals. Then the set of all xR for x in R is a base for the left topology of R and the set of all Rx for x in R is a base for the right topology of R.

<' will denote the usual order relation for the reals in Lemmas 1, 2 and Theo-

rem 3. Lemma 1. is well known.

Lemma 1. For each t in a dense subset D of the positive reals let S(t) be a subset of E such that

- (i) $S(t) \subset S(u)$ if t < 'u and
- (ii) $\cup \{S(t): t \in D\} = E$.

For x in E take $f(x) = \inf \{t: x \in S(t)\}$. Then

$$\{x: f(x) < u\} = \bigcup \{S(t): t \in D \text{ and } t < u\}$$

and

$$\{x: f(x) \leq u\} = \bigcap \{S(t): t \in D \text{ and } u < t\}$$

for every real u.

Lemma 2. Let (E, k, k') be a bitopological space. For each t in a dense subset D of the positive reals let S(t) be a subset of E such that

- (i) i'S(t) = S(t)
- (ii) $kS(t) \subset S(u)$ if t < 'u and
- (iii) $\bigcup \{S(t): t \in D\} = E$.

Then the function f from E to R defined by $f(x) = \inf \{t : x \in S(t)\}\$ is continuous.

PROOF. For a real u the set $f^{-1}Ru = \{x: f(x) < 'u\}$ is the union of i'-open sets and so is i'-open. Hence f is k'-r' continuous.

Next, for a real u, the set $f^{-1}uR = \{x : u < f(x)\}$ and so $cf^{-1}uR = \{x : f(x) \le u\} = 0$ = 0 = 0 { $x \in D$, $x \in D$, $x \in C$ } Also

$$\cap \{kS(t): t \in D, u < t\} \subset A$$

since $t \in D$, u < t imply there is v in D such that u < t < t and so $kS(v) \subset S(t)$. Hence A is the intersection of k-closed sets and so is k-closed. Therefore icA = cA and this implies f is k-r continuous.

Theorem 3. Let (E, <, k, k') be a bitopological space and let A < B. There is then a continuous function f from E to I such that fA = 0 and fcB = 1.

PROOF. Let D be the set of all numbers of the form $p2^{-q}$ where p and q are positive integers. Take S(t)=E for t in D and 1<'t, take S(1)=B and take S(0) to be an i'-open set such that A < S(0) < B. For t in D and 0<'t<'1 take t in the form $t=(2m+1)2^{-n}$ and choose, inductively on n, S(t) to be an i'-open set such that $S(2m2^{-n}) < S(t) < S((2m+2)2^{-n})$. Such choice is possible since < is a topogenous structure. Take $f(x)=\inf\{t:x\in S(t)\}$. Then f is continuous. Also fA=0 and fcB=1.

Corollary. A < B implies there is a continuous function f from E to I such that fkA = 0 and fk'cB = 1.

Corollary. The bitopological space (E, <, k, k) is completely regular.

Let S be a syntopogenous structure for E. Define \mathscr{I} to be the family of all subsets T of E such that x in T implies cT < cx for some <' in S. Then \mathscr{I} is a topology for E. Similarly the family \mathscr{I}' , of all subsets T of E such that x in T implies x < T for some <' in S, is also a topology for E.

Definition 7. We will say $(E, S, \mathcal{I}, \mathcal{I}')$ is the bitopological space of S, \mathcal{I}

is the left topology of S and \mathcal{I}' is the right topology of S.

Given a syntopogenous structure S on E define a binary relation < by A < B iff A < 'B for some <' in S. Then < is a topogenous structure on E and the left and right topologies of < coincide respectively with the left and right topologies of S. Hence a syntopogenous space (E, S) is completely regular. Also A < 'B for some <' in S implies there is a continuous function f from E to I such that fA = 0 and fcB = 1.

Definition 8. A bitopological space $(E, \mathcal{I}, \mathcal{I}')$ is said to be syntopogenizable (or topogenizable) iff there is a syntopogenous structure (or topogenous structure)

on E whose bitopological space is $(E, \mathcal{I}, \mathcal{I}')$.

THAMPURAN [3] has proved that a completely regular bitopological space is quasiuniformizable. From a quasiuniformity \mathcal{U} we can get a syntopogenous structure S — in the same way as a symmetric syntopogenous structure can be obtained from a uniformity — such that \mathcal{U} and S have the same bitopological space.

It is clear that a bitopological space is topogenizable iff it is syntopogenizable.

We now have the result:

Theorem 4. A bitopological space is completely regular iff it is topogenizable.

It is obvious that a subspace of a completely regular space is completely regular. Thampuran (2) has proved that a product of completely regular spaces is completely regular.

Definition 9. A bitopological space (M, k, k') is said to be regular iff

- (i) A=kA and $y \in cA$ imply there are sets X=iX, X'=i'X' such that $A \subset X'$ and $y \in X$ and $X \cap X' = \emptyset$ and
- (ii) B=k'B and $x \in cB$ imply there are sets Y=iY Y'=i'Y' such that $x \in Y'$ and $B \subset Y$ and $Y \cap Y' = \emptyset$.

A completely regular space is evidently regular; hence a syntopogenous space is regular. It is clear that a subspace of a regular space is regular. A product of regular spaces has been shown to be regular by Thampuran (2).

Theorem 5. Let < be a perfect topogenous strucutre on E. Then

- (i) $A \not \prec B$ iff $A \cap k' cB \neq \emptyset$ and
- (ii) $kA = \bigcup \{kx : x \in A\}.$

PROOF.

- (i) $A \not\prec B$ implies there is x in A such that $x \not\prec B$ and so x is in k' cB. Conversely, if there is x in A such that x is in kcB then $x \not\prec B$ and hence $A \not\prec B$.
- (ii) $x \in kA$ iff $A \not< cx$ and this holds iff there is y in A such that $y \not< cx$ or $x \in ky$.

We also have the following result for a perfect topogenous structure < on E. If <' is also a topogenous structure on E such that both < and <' have the same bitopological space (E,k,k') then < is finer than <', A < cx implies A <' cx and x < cA implies x <' cA. But if <' is also perfect then < = <'. These follow easily from Theorem 5., and from Corollary to Theorem 1.

References

- Á. Császár, Foundations of general topology, New York, 1963.
 D. V. THAMPURAN, Bitopological spaces and complete regularity (to appear).
 D. V. THAMPURAN, Bitopological spaces and quasiuniformities (to appear).

(Received March 12, 1970.)