Conditional (p, q) entropy

By R. W. ALLEN, Jr. (Florence, South Carolina)

1. Introduction

Let (2, o7, P) be a probability space. The purpose of this paper is to investigate
properties of a conditional entropy of a finite g-subfield of the o-field o/. SHANNON
[9] has defined an entropy based on information theoretic principles, while DAROCZY
[3] has defined a more general family of entropies that is based primarily on properties
of mean values. A conditional entropy has been formulated based on the Shannon
entropy (see, for example, [1]), by replacing probabilities with conditional probabilities
and then taking the expected value.

Several interesting and useful results have been obtained using this conditional
entropy. In this paper we shall define a family of conditional entropies based on
the family of Dardczy (p, g )-entropies and consider the properties of this family of
(p, q)-entropies. In particular we shall consider which properties are common to
both conditional Shannon and conditional (p, g )-entropy and which properties are
unique to one or the other.

Throughout the entire paper, a basic working knowledge of conditional ex-
pectations will be assumed. Further, the following notation will be used throughout:
I1(#) will denote the atoms of a finite o-field #, > will denote the summation over

F

the atoms of #, P#(F) will denote the conditional probability of F with respect to
the o-field #, and E(-) will denote the expected value.

2. Definition of conditional (p, g)-entropy and properties of (p, g)-entropy

We consider the following

Definition: Let & be a finite g-subfield of o/ and # any o-subfield of .o.
Then the Z-conditional (p, q)-entropy of #, denoted by HJ (#), is defined by

1) HF (F) = E[—lﬂg{fz P’(F)]"”/’Z[P’(F)]"}”"], p#0.
) H§ (F) = E[- 2 [P*(F)I'log P?(F) 3 [P*(F)I],

respectively, where p and g are arbitrary real numbers and (p, q¢) is the order of the
function.
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One can see that the #-conditional Shannon entropy of #is such an entropy
of order (0, 1). Further, we shall define #-conditional Rényi entropy of & of order
o (see [8]) to be the above entropy of order (p, 1), with p+1 = «, and it will be
denoted H2(#).

As immediate consequences of the definition of (p, ¢ )-entropy of #, we have
the following

Lemma 1. Let # be a finite 6- subfield of /. Then for all real o,

(3) H:(f) = Hf:—l.l)(f) — Hil—:,:)(g)
and for all o0,
4) H_on(F) = 1/xlogN— ;’ H.(%),

where N is the cardinality of I1(F).

Now using a Lagrange multiplier technique to maximize or minimize a function
f(xy, x5, ..., Xy) under the condition x,+Xx,+:-+xy = 1 plus the definition of
Rényi entropy of order z we have

Lemma 2. Let F be a finite c-subfield of </ and let N= cardinality of I1(¥).
Then
H,(#)=1logN if a=0, H,(#F)=logN if a=0.

Daréczy in his work ([2], Theorem 5) has proved the following result that is
central to the boundedness properties that we shall obtain.

Lemma 3. Let F be a finite o-subfield of o/ . Then if py=p, H,,, (F)=H,, (F)
and if ,=q,, Hp , (F)=H, , (F); that is, H, o(F) is a decreasing function of both
p and q.

3. Boundedness properties of (p, ¢) entropy and conditional (p,q) entropy

We now seek boundedness conditions on H,, o(#) and H} ,(F). Using the above
lemmas we can prove the following

Theorem 1. Let F be a finite o-subfield of < and let N=cardinality of II(F).
If p and q are real numbers such that either q=1 and p+q =0 or 0=q<1 and
p+q =1, then H, ((F)=log N. If p and q are real numbers such that either ¢=0
and p+q =1 or 0<=q=1 and p+q = 0, then H, ,(¥)=log N.

ProOOF. We prove the theorem in the cases g=1 and p+¢q = 0 or 0=¢=<1 and
p+q = 1. The other cases can be proved by a similar method with the obvious
changes. First suppose g=1 and p+q = 0. By lemma 1, equation (4), we have

He g o(F)= %log N—l;—q H,(#), and by lemma 2 and the fact that 1—q = 0,

we have H_, o(F) = qllog N+qT-l log N = log N. Since p= —q, by Lemma 3.
we have H, (F)=H_44,(F)=log N.
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Next suppose 0=g<1 and p+q = 1. Since p = 1—q, Lemma 3., Lemma 2.
and Lemma 1. give Hy ((F)=H,_, (F)=H,(F)=log N as desired.

The obvious question now is what can one say about H, ,(¥) whenpand ¢
are not in the ranges covered by theorem 1. The answer is that log N may be neither
an upper bound nor a lower bound for H, ,(F)forarbitrary #such that N=cardinal-
ity of IT(#)if p and g are not in the ranges of Theorem 1. To be more specific, the
complement of the sets of (p, ¢) considered in Theorem 1. consists of the union of
the sets §;, S,, and S;, where

S,={(p,q):q=1, p+q < 0}
S,={(p.q):0<q<1, 0 < p+q < 1}
S;={(p,q):9<0, p+q > 1}.

It is possible to find a point (p,, go) in each of these three sets such that for dif-
ferent o-subfields #, and #, with cardinality of IT(#,)=cardinality of IT(#,)=N,
and such that H, . (#)<logN and H, . (#)=logN. Consider the “points”
(—9/2,3)€S,, (1/6,1/3)€S,, and (5/2, —1/2)£ S;. With each of these points there
exist g-subfields #, and #, with cardinality IT(#,), I1(#,)=2 that have the property
Hp, o(F)<log2<=H,, 4(#). Two such o-subfields for (5/2, —1/2)€S; are the
o-subfields #, (with P(F})=1/4, P(F{)=3/4) and %, (with P(F;)=1/25, P(F3)=
=24/25). These particular #, and %, do not necessarily give the desired results
for the “points” in §; and S,, but appropriate o-fields can be found.

Because of this erratic behaviour of the (p, g)-entropy for some p and g not
in the ranges indicated by Theorem 1, we shall henceforth exclude values of p and
q in the sets S;, S,, and S; from our further consideration of (p, g )-entropy. From
information theoretic principles, we note that a measure of entropy should be bounded
above by the entropy of a finite g-field in which each of the atoms has equal prob-
ability. For this reason, we also exclude values of p and ¢ which lie in the ranges
indicated by the second half of theorem 1 from our further consideration. There-
fore we restrict our attention to the study of H, ,(%) for values of p and g such
that either g=1 and p+q = 0 or 0=g<1 and p+q = 1. It is also easy to show
by examining the definition that H, ,(#)=0. We are now in a position to state
and prove

Theorem 2. Let Fbe a finite a-subfield of £, such that Il1(F) has cardinality N,
and B be any o-subfield of /. Then 0=H] (F)=log N, provided either q=1 and
Pp+q=0o0r 0=qg=<1 and p+q = 1.

PROOF. For any o< Q, almost everywhere we have, according to Theorem 1. that
2 [PA(F) (w))rte
F

lg[f’”(fr)(fﬂ)]q =logN if p=0,

0=——log

- ‘; [P2(F) (w)]*log[P?(F) (w)] |
Z[P-"’(F)(w)]q — =logN if p=0.

0=
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Thus the expected value of each of these functions must be bounded between 0 and
log N. But the expected value of the above functions is exactly H?,(#) and so
0=H2 (#)=log N if pand g are in the ranges indicated.

We next prove a theorem which gives us an interpretation of the statement that
the #-conditional (p, g)-entropy of #is 0.

Theorem 3. Let p and q be real numbers such that either q=1 and p+q = 0
or 0=q<1 and p+q = 1. Then H} (F)=0 if and only if FC# a.e.

PRrooF. First suppose ZC #. Then if FEZ, PA(F)=1, a.e. and if m is any real
number and « is a point such that P?(F)(w)=1(w) for all FeII(#), then
2 [P#(F)(w)]"=1. Thus given w€ Q, if p=0,

ZPP(F)@p]
SIP*F))F |~ p
=
and hence H} (#)=0. If p=0, then
— Z[P*(F) (@) log [P*(F) ()]
cinl SPA(F) (@)

1 1
log cp

=0

Il

——1lo
p g

E = J[P*(F) (@) log[P?(F) (@)] =0

Wl

since —01log0 is defined to be zero and log 1 is zero. Hence Hg ,(#)=0.
Next suppose H7? (#)=0. If p=0, it follows that

S[P*(F) (w))*
b [P?(F) (w)]*

Let @ be any point such that (5) holds and let [1(#)={F,, F,, ..., F,}. For
each F,eI1(F),0=P*(F)(w)=1 a.e. and hence if p<0, [P?(F))(w)]"*1=[P2(F))
a.e. and if p=0, [P?(F,)(w)]P*9=[P?(F,)(w)]? a.e. Further we have strict inequality
unless P#(F;)(w)=0 or 1. Thus since (5) holds we have equality of [P#(F)(w)]P*9
and [P#(F,)(w))* for all i and hence we have for one j, 1=j=n, P?(F))(®w)=1 and
for 1=i=n, i=#j we have P?(F;)(w)=0. Since ®» was arbitrary, we have for every
i=1,2,...,n, P*(F)(w)=0 or 1 a.e.

If p=0, it follows that ; [P#(F)(w)])?log 'PET%(TE)' = Oa.e. Since each of these

=1 ‘Heé

&)

terms is non-negative, we must have for each i, | =i=n, [P?(F))(w)]* log [PE(F)(»)]=0
a.e. which implies that either P?(F)(w)=0or 1 a.e.

Hence in either case we have that P?(F;)=0 or 1 a.e. for each i, 1=i=n, and
since P?(F;)(w) is a #-measurable function. we have that it is the indicator function
of some set B in Z. Now B={w:P?(F)(w)=1}={w:P?(F)(w)=0}> F; by [4].
Further

P(B) = [14(w)dP = [P*(F)(w)dP— [1f(w)dP = P(BNF).
B B B

Now P(B—F)) = P(B—BN F;) =0 and hence BC F;. Therefore B=F; a.e. and
hence FC Z4.
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4. Further properties of conditional (p, ¢) entropy

One of the most useful and important properties of conditional Shannon entropy
is the additivity property:

H§((FNF') = HEW(F)+ HEY (F)

where # and F' are finite o-subfields of & and # is an arbitrary o-subfield of 7.
It is this additivity property that enables one to prove the useful Sinai theorem
(see [10]) which facilitates the actual computation of the entropy of a measure-
preserving, invertible transformation . However, the additivity property is one of
the properties that characterizes the Shannon entropy and hence one expects that
for arbitrary p and ¢, the conditional (p, g¢) entropy of # given # will not satisfy
this property and indeed this is generally true. One can define an invariant of a trans-
formation 7 in the same manner as the Kolmogoroffi—Sinai invariant ([1], [6], [10])
using conditional (p, g) entropy, but the absence of this additivity property prevents
us from proving an analogous Sinai theorem and hence the computation of this
invariant will be difficult.

Even with the absence of this additivity property, for certain p and ¢ we can prove
a monotone property that is an obvious corollary of the additivity property when
considering conditional Shannon entropy.

Theorem 4. Let Fand F' be finite o-fields with F C F ' and let # be an arbitrary
a-field. Then if p and q are real numbers such that either 0<=q=1andp+q = 1 or g=1
and 0 < p+q = 1, then

H2 (%) = HS ().

Proor. First we note that if f(¢) is convex (concave) in the interval [0, 1] and
f(0)=0, then for arbitrary x, y, and x+y€[0, 1] we have the inequality (see [5],
p. 132),

(6) S(x+y) = (=) S(x)+/().

We also note that since #C F#, then for every set A;€ [1(F), i=1, 2, ..., n, there exist
finitely many sets C;; € IT(#") (jruns through a finite index set) so that 4, = U C;;,
j

from which we have P(A4;) = Z P(C;;). Moreover, for any o-subfield # of <7, we
have P#(4) = P2(U Cy) = f:’ P#(C;;) a.e. We select representatives of P#(4,)
J

for all 1=i=n and representatives of P#(C;;) for all 1=i=n and all j in a finite
index set. Let @ be a point in the intersection of the sets of definition of all P#(A4,)
and P#(C;)). Define x; and y;; associated with this point @ as follows: x;=P#(4,)(w),
n n
¥i;=P#(C;;)(w). We observe that x;=0and > x;=1and also y;;=0and 3 > y;;=1.
i=1 i=17]
Further we have x;=_> y;; for almost all w€ Q.

First assume p=0 in either of the cases. Then g=1 in either case and we are
considering conditional Shannon entropy which is known to satisfy this monotone
property.

Assume now that p=0 and let F(r) =—log (¢'/?). First assume 0=g=1 and
p+q = 1. We note that since p=0, we must have p=0 and hence F(7) is a decreas-
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ing function of 7. Since 17*9 is a convex function in the interval [0, 1] and #79 is a
concave function in the interval [0, 1], using (6) we have that the following inequality
is true:

: 1 "
S PP PACA N gy
HE(#)=E |-logi=—— | = E[F{ = -
Z PR PAGED)
n L -l-
3 Sty = ZIPcyr|?
=EI|F ‘."___—lnj = E|—log fl—;l —— = P.q(F’)'
S0 2 Z[P2(Cy)r
i=17 ek

If we now assume ¢=1 and 0 < p+¢g = 1, we note p<0 and hence F(t) is
an increasing function of 7. In this case #7*? is a concave function and 77 is a convex
function in the interval [0, 1]. Again, using (6) in a similar fashion we have the
desired inequality.

In particular, one should note that among the values of p and ¢ for which the
inequality is valid are those p and g which represent conditional Shannon entropy and
conditional Rényi entropy of order x=0.

We now seek values of p and g for which the convexity property of H3 (#)
holds. That is, if Zand #" are ¢-fields such that Zc #’, then do there exist values
of p and q such that H} (F)=H7 (¥) for ever yfinite o-field #? This problem
is very closely related to the problem of finding values of p and g for which the
function

n
2 xb*e

i=1

1
Fp.q(“'h"'! xn):";log " ’
3

under the condition 3'x;=1, is a concave function of the n variables, We state the
following

Definition: Let F(x,. ..., x,) be a real-valued function of » variables defined
on a convex set G in n-space. Then F is a concave function of the n-variables if and
only if

(7 F(a(xyy cves X)+0(P1s co0s Vo)) = AF(Xys ooy X)+DF(¥yy oovs Yo

for all non-negative real numbers @ and b such that a+b = 1.

Restricting our attention to conditional Rényi entropy of order «, we can prove
that for 0<x <1, the convexity property does hold. Under these restrictions we can
prove the following

Lemma. Let F,(x,,...,X,) = ﬁlog[x‘{ﬁ-m +x3] where 0 <a <1, x;=0,

n
if x; = 1. Then F,(x,....,x,) is a concave function.
=1
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Proor. First note that xf+-:--+x§ is a concave function since each x‘{ is a
concave function for 0<a<1 and O<x;<1. The added restriction that Z x=1

is a linear restriction of a convex set and this will not affect the concavxty of the
function. It is easily shown that an increasing concave function of a concave func-

Gy 4 : 1 : . .
tion is a concave function. Now A(y) = T— log y is an increasing concave func-

tion since 0<=a<1 and hence F,(x,,...,x,) =

1 .
e log [x} +---+x}] is a concave

function.

We note that the restrictions must be made to Rényi entropy of order &, 0<a <1,
since the functions used to obtain other (p, q)-entropies are not in general concave.
We can now state and prove the following convexity theorem.

Theorem 5. Let # and B’ be a a-subfields of of such that B R’, F be a finite
a-subfield of o, and 0<u<1. Then H2(F)= HZ (F).

PrOOF. Since #c %', we have that for any summable function f, E®(f) =
= E'(E-" (f))- Hence if FEII(F), we have that P#(F) = E#(P#(F)) and from
this we obtain Z[P’(F)]" = Z‘ [E®(P# (F))]*. Further

= log 3 [P# (F))* = ——logZ [E2(P% (F))],
and finally

(8) H2(#F) =£[

: la log %’ [E*(P* (F))]‘] 3

§ 1 Lo
Since, by the lemma, e log 3 xf, under the conditions that x; = 0 and

2 x;=1,and 0<a <1, is a concave function, we have by Jensen’s inequality that

ii_g log Z [E2(P¥(F))]* = E*[l{; log é‘[P”(F)]'].

Then from (8) we have

as@ =l L os stpr o] = £ L 108 StPo o) = ),
and hence H2(F) = H¥ (#).

We now state a special form of the martingale convergence theorem (see [7]).

L,-Martingale Convergence Theorem: Let {#,} be an increasing (decreasing)
sequence of o-subfields of o and let # = lim &,. Then for every f€L,(Q, o, P),

Ean(f) L E#(f). e

We now use the above convergence theorem to prove a continuity theorem
for conditional (p, ¢) entropy if p and g are as in the first part of Theorem 1.

11 D
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Theorem 6. (Continuity Theorem.) Suppose {#,} is an increasing (decreasing)
sequence of o-subfields of o and lim #,=2% and that either q=1 and p+q = 0 or

n—+o

0=q<1 and p+q = 1. If Fis finite o-field, then H}"(F ) ~HZ (). For conditional
Rényi entropy of order o, 0<x<1, we have H’n(ﬁﬁ(})H’(ﬁ %

PRrROOF. Suppose p and g are real numbers in either of the above ranges. We
know by the martingale convergence theorem that for F&II(F ) P#+(F) = pa(F)

and hence P#(F)-*~ P#(F).
We first assume p=0. Since #™ is uniformly continuous on [0, 1] for m=0, then

ZPwEN S ZPAEN and I [PA(FF = 3 [P
Now log ¢ is uniformly continuous on [a, =), a=0 and so
1 1
— log{Z (PP} = ——log{Z [P (F)*)

and similarly when the power (p+q) is replaced by ¢g. From this we obtain

1 Yk oo 1 P+q
—;los{grPsn(F)lv }+;log{§[P*n(F)r}f——;log{girﬂml }+

I @ q
+;log{§[i’ (F))}.
That is,
2 [Pan(F)pte 1 %' Vo V| i

" p | SPAET

SPaF) v

Since, by theorem 1, all of the functions are bounded by log N, where N is the
cardinality of IT(#), we have L, -convergence. Thus

ZPa(F)pe ” [ Z[Px(p)]m

o =g T STPaEF Sar

and hence lim Hf,',"q(F)= HZ (F) if p#0.1f p=0, the proof is analogous, if we

n—-ece

note that —rlog ¢ is uniformly continuous on [0, 1] provided we define 0log0
to be 0. .

If we consider conditional Rényi entropy of order», 0<a <1, then by T heorem 5.
we have H2(FW()H2(F).
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5. Open questions

Several open questions can now be posed. First, as mentioned in the beginn
ing of section 4, one may define a new entropy, ﬁ;_q('r), of a measure-preservin-
transformation in a completely analogous way as when discussing conditiolng
Shannon entropy. This 4} ,(r) is a conjugacy invariant. An interesting questioa
would be to determine if /, ,(7) as formulated by Daréczy [3] is the same as &), , (7).
That is, is the entropy of 7 as evaluated using two different methods the same, or
are h), ,(t) and h, ,(7) two different measures of 7. Another question is whether
there is an axiomatic characterization of the (p, q) entropy.
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