The space of bounded maps into a Banach space

By E. MAKAL Jr. (Budapest)

Let D be a real B-space satisfying the following conditions: 1) D is strictly
convex, 2) for every v, v€ D*, |v]|=1 the set {w, weD, |w|=1, v(w) = 1—4J} con-
tains a u, for which

{w,we€D, |lw—uy| =r, v(w) =1-08} < {w,weD, |w|=1, v(w) =1-4},
where 7/ —+ < if 0<=d<1, d -0 and v is fixed, 3) D has no proper subspace isometric-
ally isomorphic to D, 4) D is infinite dimensional. Let X be a realcompact space,
i.e. completely regular and for every p€ X\ X there is an /€ C(X) not extensible
to p. C*=C*(X, D) denotes the B-space of bounded continuous functions from
XtoD.

Theorem. C*, as a B-space, determines X and D. More accurately if for C*(X,, D;)
(X;, D; belonging to the above classes) we have a linear isometry § of C*(X,, D,)
onto C*(X,, D,), then there exist a homeomorphism ¢:X, ~X, and a continuous
map A from X, to the isometrical isomorphies of D, onto D, (taken in the strong

operator topology) such that (Yf)(x;) = A(¢(x,))f(@(x,)).

PRroOoOF. 1. For later use we consider first the case D=R, and X is compact T,
(condition 4 is not satisfied). We denote C*(X, R) by B.

f€B is an extremal point of the unit sphere if and only if | f(x)|=1 for every
ZEX.

Let f, be an extremal point of the unit sphere. Let 4 be a continuous map from
X to the isometrical isomorphies of R to itself.

After applying such an A4 to each element of B (like above, with ¢ =identity)
we can suppose fo=1. For f€ B we consider || f—Aif,|, where A€ R. This is

max (jmax f—A|, |min f—A4|).

Its minimum is attained for 4 = (max f+min f)/2 and has value (max f—min f)/2.
So we can determine max f and min f.

Let f,, f> € B. We shall determine the convex hull S( f,, f;) of the range R( f;, f>)
of the vector-valued function (f;,/f5). This consists of those points (x,, x,)€ R?
for which for every (4,,4,)€R?> we have min (4, fi+4,/5) = A, X, +4,x, =
= max (4, f; +4, o).

For those elements f€ B for which min f=0 and max f=1 we write f;~f; if
(xy, x,)€S(f;,/>) implies that either (x,, x,)=(0,0) or x,=0 and x,=0. This
condition is equivalent to the following: (x,, x,)€R(f,,f;) implies that either
(x1,x3)=(0,0) or x,>0 and x,=>0, i.e. f7'(0)=f5"(0). Let the class of f by the
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equivalence relation ~ be f. We say f; <f, if g, €1}, g2 €5, (%1, X5) € S(g, g3), X, =0
imply x,>0. This means f;'(0) > f5 ' (0).

Thus we obtained the lattice / (whose elements are the above f-s) dual to the
lattice of the compact G; sets of X. By [3], p. 173 we obtain a homeomorphic copy
of X, the points of which are the maximal ideals of H.

For f€ B and x€ X we determine f(x). We can suppose max f—min f= 1. Let
min f=c=maxf. Then f= c—f,+/f, where minf;=0, minf,=0, maxf,=1,
max f>= 1 and for every maximal ideal g of H one of f; and f, belongs to g (and
this decomposition is unique). We say for those maximal ideals g that the value
of f at the corresponding point is ¢, for which f; €g and f,€g. If min f=c=max f
is not true, the value of fis not ¢ in any point.

At the beginning we applied an operator 4 to each f¢ B. This means that we
determined X up to a homeomorphism and the functions f'€ B up to the application of
some A. Thus for compact T, X, and X, and D= R the linear isometries of C*(X,, D)
onto C*(X,, D) are of the required form.

2. We turn to the proof of the theorem. Let C* be given, at first we determine
D and BX.

f€C* is an extremal point of the unit sphere if and only if || f(x)| =1 for every
x€X.

Let now i: D — C* be any linear isometric embedding such that for every d€ D id
is an extremal point of the sphere with center in the origin and of radius ||d|. Then
for every x€ X |(id)(x)| =||d||, thus d —~(id)(x) is a linear isometry of D to a sub-
space of D, which by condition 3 has to be D. Thus the functions id can be carried
over to the functions identically equal to d by the application of an operator 4
of the theorem (with ¢ =identity) cf. [1] Theorem 6. 1. Up to the application of such
an A we can suppose (id)(x)=d for every x€ X.

If C* is isometrically isomorphic to C*(X,” D") (X, D’ from the above classes)
then there is a linear isometric embedding i": D’ — C* having the same property as i,
so D’ can be embedded in D. Similarly vice versa, so D and D’ are isometrically
isomorphic.

For f€C* let S(f) denote the intersection of the closed spheres of centers d,
d is any element of D, and radii || f—id|. S(f) is a weakly closed convex set. We
prove that it is the weakly closed convex hull of the range of f. That is, if a u"€ D
does not belong to some closed half-space {w’, v(w’)=c} containing the range of f,
then it does not belong to S( f) either.

We note that {w, |[w—u,]| = r, v(w) = 1-8} < {w, [w|=1, v(w) = 1-35} im-
plies K = {w, [w—u,]| = r, v(W) = 1-0} < {w, [w|=1, v(w) = 1-6} if 0<d<].
This can be proved for two-dimensional subspaces by elementary geometry and
the statement follows. There exist r’, u; such that v(u;)=c and the range of f/ belongs
to {W,o(w)=e¢, |W—ujl| =r’} =K. We define u, uy by the condition that
{ug, K',uj, u’} could be obtained from {0, K, u, u} by magnification and transla-
tion. If & is sufficiently small » does not belong to the unit sphere since
v(u) = (v(u’)—c)r/r’+1—3 = 1. So u’ does not belong to the closed sphere of center
u, and radius r’, while K’ belongs to it.

Let 0=veD*. v(S(f)) is the (closed, open or semi-open) interval determined by
infv(f), supv(f). vC*=C*(X). Like in 1 we determine X and for every f€C*
[v()]f € C*(BX). For f;€C*, 0=info(f)=supv(f)=1,i=1,2, f, and f, are said to
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be equivalent if v( f;)~v( f3). The equivalence class of f is denoted by f*. These f*-s
are elements of the lattice H"* (ordered similarly as H). For 0:<v,, v, the elements
of H"+ and H": will be made to correspond so that the maximal ideals belonging
to the same point x € fX correspond to each other. For linearly dependent v,
v, this can be made easily. For linearly independent v,, v, f{* and f32 will be made
to correspond if for g, €f¥1,v,(g,)=0, g, €32, v1(£2)=0 (such g,, g, exist) g"f:*”z=
51472 (these are meaningful). The last equality is equivalent to v,(g,)~ v,(g;) (i.e.
{lv, (S} 2(0)={[v,( fz)]"} '(0)). Thus we have determined X and for every
feC* and 0=veD* [v( ).

We consider D** > D with the weak™ topology. f€ C* can be extended to an
f2:BX —~D** continuous map, | f2||=||f| and for veD* [v( ) =v(fP).

3. By condition 4 D contains {e,},y for which |le,]=1 and for any n, 4,, ..., 4,
|Aigeo+ -+ inly+ensill = 1/2. Let R* ={x, x€ R, x=0}. We define ¢:R* —D. pR*
will belong to the unit sphere. For x€ R* ¢ (x) = e+ (1 =x+[x]D+er s 13- (x—[x]).
@R* is closed in D. @R* denotes the closure of @R* in D**, ((pR*\tpR*)ﬂD is
closed in D. Let x¢X. If for feC* f8(BX)C@R* and f"(x)E(pR"\goR* then for
a closed-open neighbourhood U (in X) of tf(U)C(qu"'\qaR*) N D so for a neigh-
bourhood V(=U) (in BX) of x f#(V)C @R*\@R*. Let x€ X\ X. Then there exists
a continuous map /: X —R* such that the extension h of &, h: X —R* | {=} (one-
point compactification) satisfies hi(x)=<=. For f= @oh fF(BX)c@R"*, fP(x)€
€@R*N\@R*, but every neighbourhood of x contains an x” such that f#(x")¢

R*,
i Thus we have found the subspace X of X. Thus we have determined X and
found the value of every f€ C* at every x€ X up to the application of an operator 4
of the theorem.

Remark. Let X be S-compact, where S is the unit sphere of D with the weak
topology (i.e. let X be completely regular and for every p€ X\ X there is a con-
tinuous map X — S not extensible to p, cf. [4]). Let D have the above property 2.
CL(X, D) denotes the B-space of the bounded weakly continuous functions from
XtoD. Let C*(X, D)c C*c Ck(X, D) and let i map D into C*, (id)(x)=d for every
x€X. Then for the pair (i, C*) a similar statement holds (with 4 =identity).
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